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Abstract. Discrete representations of systems are usual in theoretical computer
science and they have many benefits. Unfortunately they also suffer from the
problem of state space explosion, sometimes termed the curse of dimensionality.
In recent years, research has shown that there are cases in which we can reap the
benefits of discrete representation during system description but then gain from
more efficient analysis by approximating the discrete system by a continuous one.
This paper will motivate this approach, explaining the theoretical foundations and
their practical benefits.

1 Introduction

Over the last twenty to thirty years, areas of quantitative modelling and analysis, such
as performance, dependability and reliability modelling have embraced formal mod-
els [37]. This trend has been motivated by the increasing concurrency of the systems
under consideration and the difficulties of constructing the underlying mathematical
models, which are used for analysis, by hand. In particular concurrent modelling for-
malisms such as stochastic Petri nets and stochastic process algebras have been widely
adopted as high-level modelling languages for generating underlying Markovian mod-
els. Moreover, there has been much work exploring how the properties of the high-level
languages can be exploited to assist in the analysis of the underlying model through a
variety of techniques (e.g. decomposition [23, 39], aggregation based on bisimulation
[38], etc).

However, a combination of improved model construction techniques, and the in-
creasing scale and complexity of the systems being developed, has led to ever larger
models; and these models now frequently defy analysis even after model reduction
techniques such as those mentioned above. The problem is the well-known curse of
dimensionality: the state space of a discrete event system can grow exponentially with
the number of components in the system.

Fortunately, over the last decade a new approach has emerged which offers a way
to avoid this state space explosion problem, at least for one class of models. When the
system under consideration can be presented as a population model and the populations
involved are known to be large, then a good approximation of the discrete behaviour
can be achieved through a continuous or fluid approximation. Moreover, this model is
scale-free in the sense that the computational effort to solve it remains the same even
as the populations involved grow larger. Of course, there is a cost, in the sense that
some information is lost and it is no longer possible to analyse the system in terms of
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individual behaviours. But when average behaviours or expectations are required, for
example in situations of collective behaviour, the fluid approach has substantial benefits.

The rest of this paper is organised as follows. Section 2 gives an intuitive explanation
of how the fluid approximation approach has been widely used in biological modelling
for many years, before presenting the mathematical foundations for the approach as
provided by Kurtz’s Theorem in Section 3. The attraction of combining the technique
with the compositional models generated by process algebras is explained in Section
4, with discussion of how the mapping has been developed for a variety of process
algebras. In Section 5 we give an overview of extending these results into the model
checking arena, and in Section 6 we briefly summarise and conclude.

2 Biologists just do it!

In several disciplines fluid approximations have long been used, often without concern
for formal foundations. The most noticeable example of this is in biological modelling
of intra-cellular processes. These processes result from the collisions of molecules
within the cell, an inherently discrete process. Yet, the most common form of mathe-
matical model for these processes is a system of ordinary differential equations (ODEs)
which captures the collective behaviour in terms of concentrations of different molec-
ular states, rather than the states of individual molecules. At heart, this is a fluid ap-
proximation, as highlighted by Kurtz [46] and Gillespie [32]. But it has been so widely
adopted that many biologists no longer recognise that there is a fundamental shift in
representation taking place.

That there was an implicit transformation taking place during model construction
became more obvious when formal representations started to be used to describe intra-
cellular biological processes [58]. In the early 2000s researchers recognised that the
intracellular processes were highly concurrent systems, amenable to description for-
malisms used to describe concurrency in computer systems. This led to a plethora of
adopted and developed process algebras for describing cellular processes e.g. [18, 56,
57, 24]. Whilst most focussed on the discrete representation and subsequent discrete
event simulation of an underlying continuous time Markov chain (CTMC) using Gille-
spie’s algorithm [32], work such as [17, 20] established that it was also possible to derive
the systems of ODEs more familiar to biologists from process algebra descriptions.

3 Kurtz’s Theorem

At the foundations of fluid approximation is a fundamental result by Kurtz, dating back
to the 1970s [45], which establishes that a sequence of CTMCs which satisfy some con-
ditions and represent essentially the same system under growing populations, converges
to a set of ODEs. At convergence the behaviour of the CTMC is indistinguishable from
the behaviour of the set of ODEs. However, this theoretical limit is at an infinite popu-
lation. Nevertheless in many practical cases we find empirically that sufficient conver-
gence is often achieved at much lower populations, as illustrated in Fig. 1.

In order to explain this result in more detail we introduce a simple representation
of Markov models of populations of interacting agents. Such models may be readily
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(b) N = 1000

Fig. 1. Comparison between the limit fluid ODE and a single stochastic trajectory of a network
epidemic example, for total populations N = 100 and N = 1000. This demonstrates how the
accuracy of the approximation of behaviour captured by the fluid ODE improves as the population
size grows.

derived from stochastic process algebras such as PEPA or EMPA [38, 7]. We consider
the case of models of processes evolving in continuous time, although a similar theory
can be considered for discrete-time models (see, for instance, [13]). In principle, we can
have different classes of agents, and many agents for each class in the system. To keep
notation simple, we assume here that the number of agents is constant and equal to N
(making a closed world assumption) but analogous results can be derived for systems
which include the birth and death of agents.

In particular, let us assume that each agent is a finite state machine, with internal
states taken from a finite set S, and labelled by integers: S = {1,2, . . . ,n}. We have a
population of N agents, and denote the state of agent i at time t, for i = 1, . . . ,N, by
Y (N)

i (t) ∈ S. Note that we have made explicit the dependence on N, the total population
size.
A configuration of a system is thus represented by the tuple (Y (N)

1 , . . . ,Y (N)
N ). This repre-

sentation is based on treating each agent as a distinct individual with identity conferred
by the position in the vector. However, when dealing with population models, it is cus-
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tomary to assume that single agents in the same internal state cannot be distinguished,
hence we can move from the individual representation to the collective representation
by introducing n variables counting how many agents are in each state. This is some-
times termed a counting abstraction. Hence, we define

X (N)
j =

N

∑
i=1

1{Y (N)
i = j}, (1)

where 1{Y (N)
i = j} is an indicator function with value 1 when Y (N)

i = j and zero, oth-
erwise. Note that the vector X(N) = (X (N)

1 , . . . ,X (N)
n ) has a dimension independent of

N; it is referred to as the collective, population, or counting vector. The domain of
each variable X (N)

j is {0, . . . ,N}, and, by the closed world assumption, it holds that

∑
n
j=1 X (N)

j = N. Let us denote with S (N) the subset of vectors of {1, . . . ,N}n that sat-
isfy this constraint.

The dynamics of the population models is expressed in terms of a set of possible
events or transitions. Events are stochastic, and take an exponentially distributed time
to happen. Moreover their rate may depend on the current global state of the system.
Hence, each event will be specified by a rate function, and by a set of update rules,
specifying the impact of the event on the population vector.
In this model, the set of events, or transitions, T (N), is made up of elements τ ∈T (N),
which are pairs τ = (vτ ,r

(N)
τ ). Here vτ is the update vector; specifically vτ,i records the

impact of event τ on the ith entry (ith population) in the population vector. The rate
function, r(N)

τ : S (N)→ R≥0, depends on the current state of the system, and specifies
the speed of the corresponding transition. It is assumed to be equal to zero if there are
not enough agents available to perform a τ transition, and it is required to be Lipschitz
continuous (when interpreted as a function on real numbers).

Thus we define a population model X (N) = (X(N),T (N),x(N)
0 ), where x(N)

0 is the
initial state. Given such a model, it is straightforward to construct the CTMC X(N)(t)
associated with it; its state space is S (N), while its infinitesimal generator matrix Q(N)

is the |S (N)|× |S (N)| matrix defined by

qx,x′ = ∑{rτ(x) | τ ∈T , x′ = x+vτ}.

As explained above, fluid approximation approximates a CTMC by a set of ODEs.
These differential equations can be interpreted in two different ways: they can be seen
as an approximation of the average of the system (usually a first order approximation,
see [9, 68]). This is often termed a mean field approximation. Alternatively, they can be
interpreted as an approximate description of system trajectories for large populations.
We will focus on this second interpretation, which corresponds to a functional version of
the law of large numbers. In this interpretation, instead of having a sequence of random
variables, like the sample mean, converging to a deterministic value, like the true mean,
in this case we have a sequence of CTMCs (which can be seen as random trajectories
in Rn) for increasing population size, which converge to a deterministic trajectory, the
solution of the fluid ODE.
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In order to consider the convergence, we must formally define the sequence of
CTMCs to be considered. To allow models of different population sizes to be compared
we normalise the populations by dividing each variable by the total population N. In
this way, the normalised population variables X̂(N) = X(N)

N , or population densities, will
always range between 0 and 1 (for the closed world models we consider here), and so
the behaviour for different population sizes can be compared. In the case of a constant
population, normalised variables are usually referred to as the occupancy measures, as
they represent the fraction of agents which occupy each state.

After normalisation we must appropriately scale the update vectors, initial condi-
tions, and rate functions [13]. Let X (N) = (X(N),T (N),X0

(N)) be the non-normalised
model with total population N and X̂ (N) = (X̂(N),T̂ (N), X̂(N)

0 ) the corresponding nor-
malised model. We require that:

– initial conditions scale appropriately: X̂(N)
0 = X0

(N)

N ;

– for each transition (vτ ,r
(N)
τ (X)) of the non-normalised model, define r̂(N)

τ (X̂) to
be the rate function expressed in the normalised variables (obtained from r(N)

τ by
a change of variables). The corresponding transition in the normalised model is
(vτ , r̂

(N)
τ (X̂)), with update vector equal to 1

N vτ .

We further assume, for each transition τ , that there exists a bounded and Lipschitz
continuous function fτ(X̂) : E → Rn on normalised variables (where E contains all
domains of all X̂ (N)), independent of N, such that 1

N r̂(N)
τ (x)→ fτ(x) uniformly on E.

We denote the state of the CTMC of the N-th non-normalised (resp. normalised) model
at time t as X(N)(t) (resp. X̂(N)(t)).

3.1 Deterministic limit theorem

In order to present the “classic” deterministic limit theorem, consider a sequence of
normalised models X̂ (N) and let vτ be the (non-normalised) update vectors. The drift
F(N)(X̂) of X̂ , which is formally the mean instantaneous increment of model variables
in state X̂, is defined as

F(N)(X̂) = ∑
τ∈T̂

1
N

vτ r̂(N)
τ (X̂) (2)

Furthermore, let fτ : E→ Rn, τ ∈ T̂ be the limit rate functions of transitions of X̂ (N).
The limit drift of the model X̂ (N) is therefore

F(X̂) = ∑
τ∈T̂

vτ fτ(X̂), (3)

and F(N)(x)→ F(x) uniformly as N −→ ∞, as easily checked. The fluid ODE is

dx
dt

= F(x), with x(0) = x0 ∈ S.

Given that F is Lipschitz in E (since all fτ are), this ODE has a unique solution x(t) in
E starting from x0. Then, one can prove the following theorem:
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Theorem 1 (Deterministic approximation [45, 27]). Let the sequence
X̂(N)(t) of Markov processes and x(t) be defined as above, and assume that there is
some point x0 ∈ S such that X̂(N)(0)→ x0 in probability. Then, for any finite time hori-
zon T < ∞, it holds that as N −→ ∞:

P
{

sup
0≤t≤T

||X̂(N)(t)−x(t)||> ε

}
→ 0.

Notice that the Theorem makes assertions about the trajectories of the population
counts at all finite times, but nothing about what happens at steady state, i.e. when time
goes to infinity.

3.2 Fast simulation

Based on the Deterministic Approximation Theorem, we can consider the implications
for a single individual in the population when the population size goes to infinity. Even
as the collective behaviour tends to a deterministic process, each individual agent will
still behave randomly. However, the Deterministic Approximation Theorem implies that
the dynamics of a single agent, in the limit, becomes independent of other agents, and it
will sense them only through the collective system state, or mean field, described by the
fluid limit. This asymptotic decoupling allows us to find a simple, time-inhomogenous,
Markov chain for the evolution of the single agent, a result often known as fast simula-
tion [28, 30].

To see this decoupling we focus on a single individual Y (N)
h (t), which is a (Markov)

process on the state space S = {1, . . . ,n}, conditional on the global state of the popu-
lation X̂(N)(t). The evolution of this agent can be obtained by computing the rates qi j
at which its state changes from i to j, by projecting on a single agent the rate of global
transitions that induce a change of state of at least one agent from i to j. Such a rate
qi j(X̂) still depends on the global system state, hence to track the evolution of agent
Y (N)

h (t) we still need to know the global state of the system X̂(N)(t): e.g. solving any

model checking problem on Y (N)
h (t) would requires us to work with the full Markov

model X̂(N)(t).
However, as the size of the system increases, the deterministic limit theorem tells

us the stochastic fluctuations of X̂(N)(t) tend to vanish, and this effect propagates to
the stochastic behaviour of Y (N)

h (t), which can be approximated by making it dependent
only on the fluid limit x(t). More precisely, we need to construct the time-inhomogeneous
CTMC z(t) with state space S and rates qi j(x(t)), computed along the fluid trajectory.
The following theorem [28] guarantees that z(t) is a good approximation of Y (N)

h (t):

Theorem 2 (Fast simulation theorem). For any finite time horizon T < ∞,
P{Y (N)

h (t) 6= z(t), for some t ≤ T}→ 0, as N→ ∞.

This theorem states that, in the limit of an infinite population, each agent will behave
independently from all the others, sensing only the mean state of the global system,
described by the fluid limit x(t). This asymptotic decoupling of the system, which can
be generalised to any subset of k ≥ 1 agents, is also known in the literature under the
name of propagation of chaos [5].
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Remark 1. For simplicity here we have considered a single class of agents without
births or deaths. Nevertheless the same results hold for a model consisting of multi-
ple classes of agents. In this case we construct a single agent class but partition the state
space S into subsets, each of which represents the states of a distinct agent, and such
that there are no transitions between subsets. The agents whose initial state is in each
subset corresponds to agents of that class. Furthermore, events that capture birth and
death can easily be included by allowing update vectors which are unbalanced in the
sense that the total positive update is greater than or less than the total negative update.
Such open systems can be handled in the same theory, see [12] for further details, but
for clarity we will restrict to closed world models in this paper.

4 Stochastic process algebra with fluid interpretation

Kurtz’s Theorem, or the Deterministic Approximation Theorem, has been established
for many years. It has been widely used but when it is used directly from a CTMC
model, it is the modeller’s responsibility to prove that the model satisfies the neces-
sary conditions for application of the theory, and moreover, to derive the corresponding
ODEs. This must be done on a model-by-model basis. In recent years, the approach has
been used for several performance and dependability models e.g. [3–5, 30].

This situation made it attractive to incorporate mean field or fluid approximation
into the formal high-level language approaches which have developed over the last two
decades for constructing CTMC models for quantitative analysis. From the perspective
of the formal modelling community, this gives access to a scalable analysis technique
which is immune to the problem of state space explosion; indeed, a technique which
increases in accuracy as the size of the model grows. From the perspective of modellers
already familiar with the mean field approach, it offers the possibility to establish the
conditions for convergence at the language level via the semantics, once and for all,
removing the need to fulfil the proof obligation on a model-by-model basis. Moreover
the derivation of the ODEs can be automated in the implementation of the language.

Work has developed in both stochastic Petri nets, e.g. [66, 60, 61] and stochastic
process algebras, e.g. [43, 40, 16]. Here we focus on the work in the process algebra
context as it is more readily related to the agent-based CTMC model presented in the
previous section. It is straightforward to see that components or agents within the pro-
cess algebra description can be regarded as agents within the CTMC model, typically
occupying different partitions within the notional complete state space for agents, as
explained at the end of Section 3. When multiple instances of a component are present
in the same context within the model, these constitute a population. In terms of the lan-
guage the dynamic combinators are associated with the description of the behaviour of
individual agents, essentially finite state machines, whereas static combinators, princi-
pally parallel composition, specify the structure of the system, which is now interpreted
as the formation and interaction of populations.

The fluid approximation approach is only applicable to models where we have in-
teractions of large populations (parallel compositions of large numbers of components
with the same behaviour) within which each component has relatively simple behaviour
rather than interactions between individuals each with complex behaviour. When this is
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the case we need to make the shift from a state representation based on individuals, to
one based on counting (analogous to the shift represented by equation (1)). How this is
handled depends on the process algebra but is generally straightforward. For example,
in PEPA models there is a simple procedure to reduce the syntactic representation to a
state vector [40, 65], but in languages such as Bio-PEPA the mapping is more straight-
forward because the language was designed to support fluid approximation [24]. The
actions of the algebra correspond to the events in the CTMC model, and the definition
of the process and its continuation via an action is the basis for the definition of the
update vector.

The first work relating process algebra and mean field models can be found in the
thesis of Sumpter [62]. Sumpter developed models of social insects in the discrete syn-
chronous process algebra WSCCS [63]. He then heuristically derived difference equa-
tions to capture the mean field representation of the model. This work inspired the work
of Norman and Shankland [54], in which WSCCS is used to build models of the spread
of infectious diseases and difference equation representations are derived. This led on
to further work with ever more rigour introduced into the relationship between the dif-
ference equation/ODE models and the process algebra descriptions from which they
were derived [52, 53, 51], but in later work the authors switched from using WSCCS to
using PEPA and Bio-PEPA for their modelling of epidemics.

As previously mentioned, work in systems biology stimulated more widespread in-
terest in the relationship between process algebra description and ODE models. The
first work here was the mapping given from PEPA models constructed in a particular
style, representing a reagent-centric view of biological signal transductions pathways,
to equivalent ODE models, by Calder et al. [17]. This was subsequently generalised to
more arbitrary PEPA models with large populations, where the mapping to the ODE
was made completely systematic, based on an intermediate structure termed the activ-
ity matrix [40]. In the work of Bortolussi and Policriti the authors consider a different
style of process algebra, stochastic Concurrent Constraint Programming (sCCP), and
demonstrate a mapping, both from process algebra to ODEs and from ODEs to process
algebra descriptions [16]. At around the same time Cardelli also constructed a system-
atic mapping from process algebra (in this case a variant of CCS) to ODEs, using a
Chemical Parametric Form as an intermediary in this case [20]. The relationship be-
tween this interpretation of the process algebra model and the discrete-state stochastic
semantics is explored in [19].

After these initial explorations of the possibilities to relate the inherently discrete
representation of a process algebra model with a fluid approximation of the underly-
ing Markov process, there came a sequence of papers establishing the mapping on a
firmer foundation and considering the convergence properties which can be inferred
from Kurtz’s Theorem. For example in [31], Geisweiller et al., working with a gen-
eralised form of PEPA models which allow two forms of synchronisation — both the
usual PEPA synchronisation based on the bounded capacity, and the biological notion of
mass action — show that the syntactically derived ODE models are indeed those which
are obtained by the application of Kurtz’s Theoreom, guaranteeing convergence in the
limit. In [65], Tribastone et al. show how it is possible to fully formalise the derivation
of the ODEs for PEPA models, via a structured operational semantics. In [16] Bortolussi
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and Policriti construct a process algebra that matches a given set of ODEs in the limit.
An alternative approach to the derivation of the fluid approximation model is taken in
the work on Kappa [26], where the ODEs are derived as an abstract interpretation.

Some authors also considered how to make the derivation of ODEs from process
algebra descriptions easier. As previously mentioned, the PEPA variant, Bio-PEPA
[24] was explicitly constructed to maintain a counting abstraction, initially making the
derivation of the activity matrix easier and later supporting a semantics in the style of
[65]. Hayden and Bradley developed another variant of PEPA, termed Grouped PEPA,
which makes clearer the population structures within models [34].

The system ODEs derived from a process algebra model are generally not amenable
to algebraic solution, but instead are analysed by numerical simulation. This solution
generates a trajectory, tracking the population counts of each local state over time,
which can be interpreted as the expected population value over time. Such expected
population counts are rarely the objective of quantitative modelling in computer science,
although they are often the focus in biological systems. In computer systems derived
measures such as throughput, response times, or first passage times are of more inter-
est. In [64], Tribastone et al. establish when performance measures such as throughput
and response time may legitimately be derived from a fluid approximation. Hayden et
al. develop an approach to derive the more sophisticated first passage time distribu-
tions [36]. When the ”passage” of interest relates to an individual component within the
model the approach taken relies on the use of the fast simulation result. In further work
[35], Hayden et al. show how response-time measures specified by stochastic probes
can be readily calculated via the mean field approach.

5 Fluid model checking

Stochastic process algebra models have long been also analysed using quantitative
model checking. In the case of stochastic model checking, there are some consolidated
approaches, principally based on checking Continuous Stochastic Logic (CSL) formu-
lae [2, 1, 59], and these are supported by software tools which are in widespread use
such as PRISM [47, 48] and MRMC [41]. However these methods often depend on an
explicit representation of the state space and consequently suffer from the state space
explosion problem, which limits their applicability, particularly for population models.
Even when statistical model checking is used, and the state space is only built on-the-
fly, the size of population models may make adequate statistical sampling costly or even
unattainable.

Thus it is natural to ask the question, to what extent can the fluid approximation
techniques presented earlier in this paper be exploited to mitigate the problem of quan-
titative model checking of population CTMC-based models. The first work in this di-
rection was presented in [11, 12], in which fluid approximation is used to carry out
approximate model checking of behaviours of individual agents in large population
models, specified as CSL formulae. This work builds on the Fast Simulation Theorem
[30, 28], which characterises the limit behaviour of a single agent in terms of the solu-
tion of the fluid equation. Recall that the Fast Simulation Theorem states that a single
agent senses the rest of the population only through its “average” evolution, as given
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by the fluid equation. Thus if the modeller wishes to verify a property of an individual
agent within a population of many interacting agents (possibly with a small set of differ-
ent capabilities) the approach is to check the property in a limit model which consists
of the discrete representation of the individual agent taking into account the average
evolution of the rest of the system. In practice, for CTMC models, the discrete repre-
sentation of the individual agent is a time-inhomogeneous CTMC (ICTMC), where the
rates of transitions between states are determined by the fluid approximation of the rest
of the system. Model checking of ICTMCs is far more complex than the homogeneous-
time case, but this is compensated because only the local states of one agent need to be
considered, so the state space is typically small. The authors termed this approach Fluid
Model Checking. Preliminary ideas on using fluid approximation in continuous time for
model checking population models, and in particular for an extension of the logic CSL,
were informally sketched in [43], but no model checking algorithms were presented.
Subsequently the work was more fully developed in [44], which relies substantially
on [11].

In the Fluid Model Checking approach the technicalities come from the time-
inhomogeneous nature of the process being checked. As in the CTMC case, model
checking CSL formulas of ICTMC can be expressed in terms of reachability calcula-
tions on an ICTMC, typically with modified structure that makes some states absorbing.
However, these calculations are more complex as rates are not constant, but changing
over time as the state of the whole system evolves and influences the considered agent.
This introduces discontinuities in the satisfaction probabilities as, for example, states in
the ICTMC may change from being in the goal set to not, as time progresses. Thus the
solution of the Kolmogorov equations to calculate the reachability must be conducted in
a piecewise manner, between the time points at which the sets of goal states and unsafe
states change over time. Convergence and quasi-decidability results are presented that
guarantee the asymptotic consistency of the model checking [12].

Like all results from Kurtz’s theorem, the Fluid Model Checking result pertains to
models within a finite time horizon. However useful properties in CSL are sometimes
expressed in terms of the steady state operator S . Subsequently, Bortolussi and Hillston
consolidated the Fluid Model Checking approach by incorporating the next state oper-
ator and the steady state operator [14]. This latter involved establishing when Kurtz’s
result can safely be extended to the infinite time horizon in this context.

A limitation of the Fluid Model Checking approach is that only properties of a
single individual agent (or small set of agents) within a population can be checked.
But for population models it is natural to wish to evaluate more global properties such
as if a proportion of agents within a population have reached a particular state within
a given time period. In [15], Bortolussi and Lanciani present an alternative approach
which is able to deal with such properties. Their work is based on a second-order fluid
approximation known as Linear Noise Approximation [68]. This can be regarded as a
functional version of the Central Limit Approximation [45].

The basic idea of [15] is to lift local specifications to collective ones by means of
the Central Limit Theorem. Thus the properties that they consider are first expressed
as a property of an individual agent, specified by a deterministic timed automaton with
a single clock. This clock is taken to be global — it is never reset and keeps track of
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global passing of time. For an individual this will be a linear-time property. Such an
individual property ϕ(t) is then lifted to the population level to estimate the probability
that a given number of agents within the system which satisfy ϕ(t).

The method presented in [15] allows us to quickly estimate this probability by ex-
ploiting the Central Limit or Linear Noise Approximation (LNA). The key idea is to
keep some estimation of the variability in the system. Rather than solely using the fluid
approximation of average behaviour of the normalised behaviour x(t), fluctuations in
the form of Gaussian processes of the order of

√
N, where N is the population size, are

included.

X(N)(t)≈ Nx(t)+
√

NZ(t),

where Z(t) is a Gaussian stochastic process, i.e. a process whose finite dimensional
projection (marginal distributions at any fixed and finite set of times) are Gaussian. Z(t)
has zero mean, and a covariance given by the solution of an additional set of O(N2)
ODEs. More details can be found in [15, 68].

For the purposes of model checking the authors combine the automaton-based prop-
erty specification with the model of an individual agent, using a product construction
(taking into account the clock constraints). This produces a population model with more
variables, counting pairs of state-property configurations. The LNA is applied to this
new model. The authors show that for a large class of individual properties, it is pos-
sible to introduce a variable Xϕ(t) in the extended model that counts how many indi-
vidual agents satisfy the local property up to time t. From the Gaussian approximation
of Xϕ(t), then one can easily compute the probabilities of interest. In [15], the authors
discuss preliminary results, which are quite accurate and computationally efficient.

A further use of mean field approximation in model checking has recently been
developed for discrete time, synchronous-clock population processes by Loreti et al.
[49]. Although also derived from Kurtz’s Theorem, this work takes a different approach
as it is an on-the-fly model checker, only examining states as they are required for
checking the property, rather than constructing the whole state space initially [25, 8,
33]. Similarly to Fluid Model Checking [11], in [49] the authors focus on a single
individual or small set of individuals, with properties expressed in PCTL, and consider
their evolution in the mean field created by the rest of the system. Again fast simulation
provides the foundation for the approach, but for the discrete case, Loreti et al. follow
the approach of [50] in which the behaviour of each agent is captured by a finite state
discrete time Markov chain (DTMC).

As previously, the authors consider a system comprised of N agents, each with some
initial state. A system global state C(N) = 〈c1, . . . ,cN〉 is the N-tuple of the current
local states of its object instances. The dynamics of the system arise from all agents
proceeding in discrete time, synchronously. A transition matrix K(N) defines the state
transitions of the object and their probabilities, and this may depend on the distribution
of states of all agents in the system. More specifically, K(N) is a function K(N)(m) of the
occupancy measure vector m of the current global state C(N) (switching to the counting
abstraction and normalising). State labels are associated with the states of an agent in
its specification, and a global state is taken to assume the labels of the first component
in the N-tuple. Further global system atomic properties can be expressed.
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In [49] the authors develop a model checking algorithm which can applied in both
the exact probabilistic case, and for the approximate mean-field semantics of the mod-
els. Here we focus on the latter approach. In this discrete case, for N large, the overall
behaviour of the system in terms of its occupancy measure can be approximated by
the (deterministic) solution of a mean-field difference equation. Loreti et al. show that
the deterministic iterative procedure developed in [50] to compute the average overall
behaviour of the system and behaviour of individual agents in that context, combines
well with on-the-fly probabilistic model checking for bounded PCTL formulas on the
selected agents. Just as in Fluid Model Checking [11], since the transition probabilities
of individual agents may depend on the occupancy measure at a given time, the truth
values of formulas may vary with time. The asymptotic correctness of the model check-
ing procedure has been proven and a prototype implementation of the model checker,
FlyFast, which has been applied to a variety of models [49].

One drawback of mean-field or fluid approximation is that the convergence results
apply to infinite populations and currently there are not useful bounds on the errors
introduced when smaller populations are considered. Some promising work in this di-
rection was recently published by Bortolussi and Hayden [10]. In this paper the authors
consider the transient dynamics and the steady state of certain classes of discrete-time
population Markov processes. They combine stochastic bounds in terms of martingale
inequalities and Chernoff inequalities, with control-theoretic methods to study the sta-
bility of a system perturbed by non-deterministic noise terms, and with algorithms to
over-approximate the set of reachable states. The key idea is to abstract stochastic noise
non-deterministically and apply techniques from control theory to examine the phase
space of the mean field limit. This gives a more refined view of the dynamic behaviour
allowing tighter bounds than the previously proposed bounds of Darling and Norris [28]
which expand exponentially with time.

6 Conclusions and future perspectives

The fluid approximation technique is suitable for models comprised of interactions of
populations of components, each component having relatively simple behaviour (few or
moderate numbers of local states) but many components within the population. More-
over, in these cases the accuracy of the approximation increases as the size of the
population grows. Building such models with a discrete formal description technique
supports careful specification of the interactions between the components. This is in
contrast to when mean field or fluid approximation is applied in fields such as epidemi-
ology where predefined sets of ODEs are used, without consideration for the implicit
assumptions about the interactions of individuals.

However, the population models amenable to fluid approximation are not the only
systems which suffer from state space explosion and the technique is not suitable for
models comprised of a small number of individual components, each of which has very
complex behaviour resulting in a large number of local states. Moreover, recent work
by Tschaikowski and Tribastone has shown that if the mapping to ODEs is carried out
naively, there can be a problem of fluid state space explosion [67]. Nevertheless, the
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approach offers new possibilities for model analysis, tackling systems which would
previously have been completely intractable and opening new arenas of research.
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