
Controllers for the Verification of
Communicating Multi-Pushdown Systems?

C. Aiswarya1, Paul Gastin2, and K. Narayan Kumar3

1 Uppsala University, Sweden
aiswarya.cyriac@it.uu.se

2 LSV, ENS Cachan, CNRS & INRIA, France
gastin@lsv.ens-cachan.fr

3 Chennai Mathematical Institute, India
kumar@cmi.ac.in

Abstract. Multi-pushdowns communicating via queues are formal mod-
els of multi-threaded programs communicating via channels. They are
turing powerful and much of the work on their verification has focussed
on under-approximation techniques. Any error detected in the under-
approximation implies an error in the system. However the successful
verification of the under-approximation is not as useful if the system
exhibits unverified behaviours. Our aim is to design controllers that
observe/restrict the system so that it stays within the verified under-
approximation. We identify some important properties that a good con-
troller should satisfy. We consider an extensive under-approximation
class, construct a distributed controller with the desired properties and
also establish the decidability of verification problems for this class.

1 Introduction

Most of the critical hardware and software consists of several parallel comput-
ing units/components. Each of these may execute recursive procedures and may
also have several unbounded data-structures to enhance its computing power.
Several of such components may be running on the same processor giving rise to
a multi-threaded system with many unbounded data-structures. Furthermore,
such complex infinite state systems may communicate over a network and be
physically distributed. The high computational power in combination with un-
constrained interactions make the analysis of these systems very hard.

The verification of such systems is undecidable in general. Even the basic
problem of control state reachability (or emptiness checking) is undecidable as
soon a program has two stacks or a self queue. However, these systems are so
important, that several under-approximation techniques have been invented for
their verification. If the under-approximation fails to satisfy a requirement, that
immediately indicates an error in the system. However, if the system is verified
correct under such restrictions, the correctness is compromised if the system

? Supported by LIA InForMel, and DIGITEO LoCoReP.

eventually exhibits behaviours outside the class. Controlling the system to only
exhibit behaviours that have been verified to be correct is therefore crucial to
positively use these under-approximation techniques. Alternately, we may use
these controllers to raise a signal whenever the system behaviour departs from
the verified class. For example, in the cruise control system of a car (or auto-
pilot systems in trains/aircrafts), it will be useful to signal such a departure and
switch from automatic to manual mode.

Our contributions We aim at obtaining a uniform controller for a class, which
when run in parallel with the system, controls it so as to exhibit only those be-
haviours permitted by the class. Such a controller should possess nice properties
like determinism, non-blocking, system independence etc. In Section 3, we iden-
tify and analyse such desirable features of a controller.

Our next contribution is to propose a very generous under-approximation
class and to construct a controller satisfying all the desired properties. Our class
bounds the number of phases – in a phase only one data-structure can be read
in an unrestricted way though writes to all data-structures are allowed. But our
notion of phases extends sensibly contexts of [13] and phases of [12]. In particular
it permits autonomous computations within a phase instead of the well-queuing
assumption. The latter corresponds to permitting reads from queues in the main
program but not from any of the functions it calls. We permit recursive calls to
be at any depth of recursion when reading from a queue. After such a read,
however, returning from the function causes a phase change.

A concurrent system may be controlled in a global manner or in a distributed
manner. If the concurrent processes are at a single location and communicate
via shared variables, e.g., multi-threaded programs, a global controller is reason-
able. We describe this sequential controller in Section 4. However, when these
multi-threaded processes are physically distributed it is natural to demand a
distributed controller. In Section 5, we illustrate the design of a controllable
under-approximation class by extending our idea of phases to the distributed
setting and constructing a distributed controller with all the desired properties.

Finally, we can prove using the split-width technique [5–7] that our generous
under-approximation class can be model-checked against a wide variety of logics.

Related Work: In the study of distributed automata a number of difficult syn-
thesis theorems [8–10,18] have been proved. These theorems in conjunction with
constructions for intersections yield controllers for these classes. Of particular
interest is the theory of finite state machines communicating via queues, called
message-passing automata (MPA). These have been well studied using labeled
partial-orders (or graphs) called MSCs (Message-sequence charts) to represent
behaviours. These systems are turing powerful and techniques restricting channel
usage have been studied to obtain decidability. The most general class of this
kind, called existentially k-bounded MSCs, consists of all behaviours (MSCs)
that have at least one linearization in which the queue lengths are bounded by
k at every point. A deep result of [8] shows that for each k there is an MPA
which accepts precisely the set of existentially k-bounded MSCs. Thus, if one

2

uses such behaviours as an under-approximation class then this result implies
the existence of a distributed controller. However, it is known that this controller
cannot be made deterministic.

The bounding technique for verification has been extensively studied in the
case of multi-pushdown systems (MPDS). For the restrictions studied in litera-
ture, bounded-context [17], bounded-phase [12], bounded-scope [15] and ordered
stacks [2, 3], it is quite easy to construct deterministic controllers, though this
question has not been addressed before. The context bounding technique is ex-
tended to pushdown systems communicating via queues under the restriction
that queues may be read only when the stacks are empty (well-queuing) in [13],
and under a dual restriction (on writes instead of reads) in [11]. Controllability is
however not studied there. The k-Phase restriction we consider here is a natural
joint generalization of these contexts (as well as the bounded-phase restriction
for MPDS). In fact, for every bound k, there exist behaviours which are not
captured by [12] and [13], but which are captured by our class with a bound of
3. (See Figure 1 for an example.)

2 Systems with stacks and queues

We provide a formal description of systems with data-structures and their be-
haviours. We restrict ourselves to systems with global states providing an (inter-
leaved) sequential view. In Section 5 we extend this to the distributed case where
there are a number of components each with their own collection of transitions.
We consider a finite set DS = Stacks]Queues of data-structures which are
either stacks or queues and a finite set Σ of actions. Our systems have a finite set
of control locations and use these (unbounded) stacks and queues. We obtain an
interesting class of infinite state systems, providing an (interleaved) sequential
view of multi-threaded recursive programs communicating via FIFO channels.

A stack-queue system (SQS) over data-structures DS and actions from Σ
is a tuple S = (Locs,Val,Trans, in,Fin) where Locs is a finite set of locations, Val
is a finite set of values that can be stored in the data-structures, in ∈ Locs is the
initial location, Fin ⊆ Locs is the set of final locations, and Trans is the set of
transitions which may write a value to, or read a value from, or do not involve
a data-structure. For `, `′ ∈ Locs, a ∈ Σ, d ∈ DS and v ∈ Val, we have
– internal transitions of the form `

a−→ `′,

– write transitions of the form `
a,d!v−−−→ `′, and

– read transitions of the form `
a,d?v−−−→ `′.

Intuitively, an SQS consists of a finite state system equipped with a collection
of stacks and queues. In each step, it may use an internal transition to merely
change its state, or use a write transition to append a value to the tail of a
particular queue or stack or use a read transition to remove a value from the
head (or tail) of a queue (of a stack respectively). The transition relation makes
explicit the identity of the data-structure being accessed and the type of the
operation. As observed in [1, 6, 12, 16] it is often convenient to describe the

3

runs of such systems as a state-labeling of words decorated with a matching
relation per data-structure instead of the traditional operational semantics using
configurations and moves. This will prove all the more useful when we move to
the distributed setting where traditionally semantics has always been given as
state-labelings of appropriate partial orders [8, 10,18].

A stack-queue word (SQW) over DS and Σ is a tuple W = (w, (Bd)d∈DS)
where w = a1a2 · · · an ∈ Σ+ is the sequence of actions, and for each d ∈ DS,
the matching relation Bd ⊆ {1, . . . , n}2 relates write events to data-structure d
to their corresponding read events. The following conditions should be satisfied:

– write events should precede read events: eBd f implies e < f ,
– data-structure accesses are disjoint: if e1Bde2 and e3Bd

′
e4 are distinct edges

(d 6= d′ or (e1, e2) 6= (e3, e4)) then they are disjoint (|{e1, e2, e3, e4}| = 4),
– ∀d ∈ Stacks, Bd conforms to LIFO: if e1 Bd f1 and e2 Bd f2 are different

edges then we do not have e1 < e2 < f1 < f2.
– ∀d ∈ Queues, Bd conforms to FIFO: if e1 Bd f1 and e2 Bd f2 are different

edges then we do not have e1 < e2 and f2 < f1.

We let B =
⋃
d∈DS Bd be the set of all matching edges and E = {1, . . . , n} be

the set of events of W. The set of all stack-queue words is denoted by SQW.

We say that an event e is a read event (on data-strucutre d) if there is an
f such that f Bd e. We define write events similarly and an event is internal if
it is neither a read nor a write. To define the run of an SQS over a stack-queue
word W, we introduce two notations. For e ∈ E , we denote by e− the immediate
predecessor of e if it exists, and we let e− = ⊥ /∈ E otherwise. We let max(W)
be the maximal event of W.

A run of an SQS S on a stack-queue word W is a mapping ρ : E → Locs
satisfying the following consistency conditions (with ρ(⊥) = in):

– if e is an internal event then ρ(e−)
λ(e)−−−→ ρ(e) ∈ Trans,

– if eBd f for some data-structure d ∈ DS then for some v ∈ Val we have both

ρ(e−)
λ(e),d!v−−−−−→ ρ(e) ∈ Trans and ρ(f−)

λ(f),d?v−−−−−→ ρ(f) ∈ Trans.

The run is accepting if ρ(max(W)) ∈ Fin. The language L(S) accepted by an
SQS S is the set of stack-queue words on which it has an accepting run.

Notice that SQSs are closed under intersection, by means of the cartesian
product. Let Si = (Locsi,Vali,Transi, ini,Fini) for i ∈ {1, 2} be two SQSs. The
cartesian product is S1×S2 = (Locs1×Locs2,Val1×Val2,Trans, (in1, in2),Fin1×
Fin2) where the set of transitions is defined by

– (`1, `2)
a−→ (`′1, `

′
2) ∈ Trans if `i

a−→ `′i ∈ Transi for i ∈ {1, 2},
– (`1, `2)

a,d!(v1,v2)−−−−−−−→ (`′1, `
′
2) ∈ Trans if `i

a,d!vi−−−−→ `′i ∈ Transi for i ∈ {1, 2},
– (`1, `2)

a,d?(v1,v2)−−−−−−−→ (`′1, `
′
2) ∈ Trans if `i

a,d?vi−−−−→ `′i ∈ Transi for i ∈ {1, 2}.
In fact, S1×S2 has an (accepting) run on a stack-queue wordW iff both S1 and
S2 have an (accepting) run on W. Therefore, L(S1 × S2) = L(S1) ∩ L(S2).

4

3 Controllers and Controlled Systems

SQSs are turing powerful as soon as DS contains two stacks or a queue, and
hence their verification is undecidable. However, since it is an important problem,
various under-approximation techniques have been invented in the recent years
[2,3,12,13,15,17], starting with the bounded-context restriction [17] for systems
with only stacks. Here, the number of times the system switches from using one
stack to another is bounded by a fixed number k. Reachability and many other
properties become decidable when restricted to such behaviours.

A typical under-approximation technique describes a whole family of classes
Ck parametrized by an integer k which is proportional to the coverage: the higher
the parameter, the more behaviours are covered. For example, the bound on
number of context switches k serves as this parameter for the context bounding
technique. Ideally, the under-approximations defined by the classes (Ck)k should
be universal, i.e., should cover all behaviours: every stack-queue word W should
be in Ck for some k. This is true for the context bounding technique.

Traditionally under-approximations yield decidability for verification prob-
lems such as reachability [17] and model checking against linear time properties
expressed in various logics upto MSO [16]. For such properties, if the model-
checking problem yields a negative answer then this immediately means that
the full system fails the verification as well.

However, assume that a system S has been verified against some linear-
time or reachability property (or properties) wrt. some under-approximation
class C. This give us little information on whether the full system satisfies these
properties. Hence we need a mechanism, which we call a controller, to restrict
the system so that it does not exhibit behaviours outside C. Observe that w.r.t.
linear-time properties restricting the system to even a proper subset of C would
still be acceptable though not desirable. However, for reachability properties a
proper restriction might lead to a system that no longer satisfies the property.
Therefore, a controller should allow all and only the behaviours of C.

We now describe formally our notion of a controller for a class and examine
some key properties that make it interesting.

A controller for a class C ⊆ SQW is an SQS C such that L(C) = C. We say
that a class C is controllable if it admits a controller.

Suppose the restriction of the behaviours of a system S to a class C has been
verified against some linear-time or reachability property ϕ. Further suppose
that C admits a controller C. Then, the controlled system S ′ = S × C is such
that L(S ′) = L(S) ∩ C, and therefore satisfies ϕ. Thus, a controller for a class
is independent of the system S as well as the property. Once we identify a con-
trollable class with decidable verification we may verify and control any system
in a completely generic and transparent manner without any additional work.
Notice that we could have introduced more general controllability. For instance,
a class C is non-uniformly controllable if for each system S, there exists another
system S ′ such that L(S ′) = L(S) ∩ C. While this would allow more classes to

5

be controllable, it would not be very useful since it does not yield an automatic
way to build S ′ from S.

Using the cartesian product makes the controller integrable into the system.
The controller, by definition, does not have its own auxiliary data-structures,
but only shares the data-structures of the system. Moreover, it does not access
a data-structure out of sync with the system. We could also give more intrusive
power to a controller by allowing its transitions to depend on the current state
of the system and on the current value read/written by the system on data-
structures. But again, such a system would not be generic, and also, by its
strong observation power, would compromise the privacy of the system.

We now consider other properties that a good controller must satisfy and
use that to arrive at a formal definition of such a controller.

The under-aproximation classes are often defined based on the data-structure
accesses, and do not depend on the action labels/internal actions. Hence an
ideal controller should be definable independent of the action labels and must
be oblivious to the internal moves. This can be done as follows.

We omit action labels from read/write transitions of C: an abstract transition

`
d!v−−→ `′ stands for transitions `

a,d!v−−−→ `′ for all a ∈ Σ and similarly for read
transitions. Also, we do not describe internal transitions and assume instead that
there are self-loops `

a−→ ` for all locations and actions.
This (abstract) controller should be deterministic and non-blocking, so that

instantiating it with any alphabet will still be deterministic and non-blocking.
Thus, the controller should have a unique run on any W and moreover this run
does not depend on the internal events / action labels along the run, but depends
only on the sequence of reads/writes on the different data-structures that appear
along W. The state of the controller at any point along this run unambiguously
indicates whether the current prefix can be extended to a word that belongs to
the class C. With this we are ready to formalize our notion of a good controller.

A DS-controller is an SQS C which is oblivious to internal events and to ac-
tion labels and which is deterministic and non-blocking. Formally, its (abstract)
transitions should satisfy:
– for every ` ∈ Locs and d ∈ DS there exists exactly one `′ ∈ Locs and v ∈ Val

such that `
d!v−−→ `′,

– for every ` ∈ Locs, d ∈ DS and v ∈ Val there exists exactly one `′ ∈ Locs

such that `
d?v−−→ `′.

All that we said so far suffices for a global (or seqeuntial) system. If the
system to be verified and controlled is actually physically distributed, then a
global sequential controller would not be integrable in the system. Instead we
would need a distributed controller and this is much harder to achieve. We
discuss this in Section 5.

Next we examine real examples of controllable under-approximations. While
an under-approxiamation Ck is nicely controllable if it admits a controller with
the above features, the class itself should satisfy some other properties for it to be

6

useful. Firstly, Ck should have a wide coverage over the set of possible behaviours.
A useful feature is that all behaviours fall in the class for an appropriately
chosen parameter. Second, the definition of the class should be easy to describe.
Finally, the verification problem for the class should be decidable. For instance,
considering the collection of behaviours with clique/split/tree-width bounded by
k satisfies the first and third properties but does not satisfy the second property.
But more importantly, it is not clear that they have nice controllers of the form
described above. We propose a meaningful class which has more coverage than
bounded phase of [12], and is nicely controllable. We show the decidability of
this class by demonstrating a bound on split-width.

4 Class and Controller: Sequential case

We begin by identifying a class of behaviours, called k-Phase behaviours, which
is verifiable and admits a DS-controller. Roughly speaking, a phase is a segment
of the run where the reads are from a fixed data-structure. However, between
successive reads, read-free recursive computations are permitted which may write
to all data-structures, including their own call-stack. We formalize this below.

An autonomous computation involves a single recursive thread executing
a recursive procedure without reading any other data structure. All read events
are from a single stack while there is no restriction placed on the writes. We
say that an edge e B f is autonomous if e Bs f for some s ∈ Stacks and all
in-between read events are from the same stack s: if e′ Bd f ′ with e ≤ f ′ ≤ f
then d = s. We shall write Ba for the subset of B consisting of the autonomous
edges and Bna for B \ Ba and refer to them as the non-autonomous edges. If
eBa f then e and f are called autonomous write and read events respectively.

A d-phase is a sequence of consecutive events in which all non-autonomous
reads are from the data-structure d ∈ DS. Writes to all data-structures are
permitted. Moreover, a phase must not break an autonomous computation. For-
mally, a d-phase is identified by a pair of events e ≤ f (the first and the last
events in the sequence) such that, if e′ Bna f ′ with e ≤ f ′ ≤ f then e′ Bd f ′ and
if e′ Ba f ′ with e ≤ f ′ ≤ f or e ≤ e′ ≤ f then e ≤ e′ ≤ f ′ ≤ f .

Example 1. Suppose DS = {q, s1, s2}.
A q-phase is depicted on the right.
Straight lines (resp. curved lines) rep-
resent Bd edges from queues (resp.
stacks). Autonomous computations are
highlighted in white.

Remark 2. Permitting autonomous (recursive) computations during a phase is
a natural generalization of well-queueing assumption of [13] where reads from
queues are permitted only when the stack associated with a process is empty.
The latter corresponds to permitting reads from queues in the main program

7

but not from any of the functions it calls. We permit recursive calls to be at any
depth of recursion when reading from the queue. After such a read, however,
returning from the function causes a phase change.

Our aim is to obtain a decidable and controllable class by bounding the num-
ber of phases. In the presence of queues, reading and writing on a queue during a
phase can be used to simulate a turing machine using just 1-phase computations.
Allowing autonomous computations on one stack while reading and writing on
another also results in the same effect. This motivates the following definition
which rules out such self-loops.

A phase identified by a pair (e, f) has a self-loop if it contains a non-
autonomous edge: e ≤ e′ Bna f ′ ≤ f .

A phase decomposition is a partition of the set of events into phases with
no self-loops. A k-phase decomposition is a phase decomposition with at most
k phases. We denote by k-Phase the class of stack-queue words that admit a
k-phase decomposition.

Remark 3. Observe that by freely allowing autonomous computations (as op-
posed to well-queuing), every stack-queue word is in k-Phase for some k.

Remark 4. When restricted to systems with only stacks, k-Phase subsumes the
k bounded phase restriction for multi-pushdown systems [12]. It also subsumes
the k bounded context restriction for systems with stacks and queues [13]. In
fact, for every bound k, there exist stack-queue words which are not captured
by [12] and [13], but which are in 3-Phase. (See Figure 1.)

A phase with no self-loops identified by (e, f) is upper-maximal if it cannot
be extended upwards in a phase with no self-loops: if (e, g) is a phase with no
self-loops then g ≤ f . Given any k phase decomposition, we may extend the first
phase to be upper-maximal and then extend the next (remaining) phase to be
upper-maximal and so on till all the phases are upper maximal.

Remark 5. A phase (e, f) with no self-loops is upper-maximal iff the successor
f ′ of f is a non-autonomous read on some data-structure d′ (e′ Bd

′

na f
′) with

either e ≤ e′ (self-loop) or d′ is not the data-structure d associated with phase
(e, f), i.e., there is a non-autonomous read e′′ Bdna f

′′ with e ≤ f ′′ ≤ f .

Lemma 6. Every stack-queue word in k-Phase admits a maximal k-phase de-
composition in which all phases are upper-maximal.

Proof. We start with an arbitrary k-phase decomposition. Let (e, f) be the first
phase (if any) in this decomposition which is not upper-maximal. Let g > f be
maximal such that (e, g) is a phase with no self-loops. We replace in the decom-
postion phase (e, f) by (e, g). Notice that (e, g) may completely subsume some of
the phases following (e, f) which are therefore removed from the decomposition.
It may also partially subsume one phase (e′, f ′) if e′ ≤ g < f ′. This phase is
trimmed in order to start at the successor of g. We repeat this procedure until
all phases are upper-maximal. Note that the number of phases do not increase
so that we get a maximal k-phase decomposition. ut

8

Phase 1 Phase 2 Phase 3

Fig. 1: A stack-queue word over two stacks and its maximal phase decomposition.

Now we take up the task of constructing a DS-controller for the class k-Phase.
A crucial step towards this end is to identify autonomous reads. We show below
that this can be achieved with a multi-pushdown automaton B observing the
data-structure access. When the system S writes/reads some value on a stack
s the automaton B will simultaneously write/read a bit on the same stack. B
is obtained as a cartesian product of automata Bs (s ∈ Stacks) identifying the
autonomous reads on stack s (described in Figure 2).

Here, s!b (resp. s?b) means that the system S
writes/reads on stack s and b is the tag bit
that is simultaneously written/read by Bs
on stack s. The other events do not change
stack s. Moreover, s̄? is the observation of a
read event of S which is not on stack s, and
else means any event which is not explicitly
specified.

0 1

s?0

s?1

s̄?

else

s?0

s!0

else

s!1

s?1

s̄?

Fig. 2: The automaton Bs.

We say that e is a possibly autonomous write to stack s at event g if eBs f
and e ≤ g < f and e′ Bd f ′ with e ≤ f ′ ≤ g implies d = s. Intuitively Bs will be
in state 1 iff in the current prefix there is an unmatched write event e to stack s
which is possibly autonomous. On a write to s the automaton moves from state
0 to 1 since this write is possibly autonomous, and pushes 1 on the stack to
indicate that it is the first possibly autonomous write in the past. Then, as long
as it does not read from a data-structure d 6= s, it stays in state 1, pushing 0
on the stack on a write to s and reading 0 from the stack on a read from s. If it
reads 1 from the stack, then it has matched the first possibly autonomous write
in the past, hence it goes back to state 0. On a read from d 6= s it goes to state
0 since there cannot be any possibly autonomous write to s at this read event.

Lemma 7. The automaton Bs is deterministic and non-blocking. Moreover, in
the unique run of Bs on a word, the state bs before a read from stack s determines
whether this read is autonomous (bs = 1) or not (bs = 0).

Proof. Automaton Bs is non-blocking, thanks to the else loops. Clearly, it is also
deterministic.

Let w = a1a2 · · · an be a visible word, i.e., for each letter ai we know whether
it is a write on stack s (ai ∈ s!) or a read from stack s (ai ∈ s?) or a read
from a data-structure d 6= s (ai ∈ s̄?), or another type of event (ai ∈ else). Let
(q0, γ0), (q1, γ1), . . . , (qn, γn) be the sequence of configurations along the unique
run of Bs on w.

9

We can easily prove by induction that for all 1 ≤ k ≤ n we have qk = 1 iff
at event k there is a possibly autonomous write event j ≤ k. To carry out this
induction, we simultaneously prove that if qk = 1 then the stack contents γk is
of the form {0, 1}∗10` where ` + 1 is the number of possibly autonomous write
events at k.

We deduce that a read event ak+1 from stack s is autonomous iff qk = 1. ut

We now construct the deterministic DS-controller Ck for k-Phase. This con-
troller computes the maximal phase decomposition of a behaviour and uses the
automaton B to identify autonomous reads. We denote by b = (bs)s∈Stacks a
state of B. In addition, a state of Ck holds two other values:
– a counter n ∈ {1, . . . , k,∞} which indicates the current phase number. The

counter starts from value 1 and is non-decreasing along a run. The ∞ indi-
cates that the number of phases has exceeded k. We follow the convention
that i+ 1 has the usual meaning if i < k, k + 1 =∞ and ∞+ 1 =∞.

– a value d ∈ DS ∪ {?} which indicates that the current phase has non-
autonomous reads from d ∈ DS or that only autonomous reads have oc-
curred so far (d = ?). Note that in the first phase all reads are autonomous
(a non-autonomous read would create a self-loop). Hence, d = ? iff n = 1.

The initial state of the controller is (1, ?,0). On an internal event, the state
remains unchanged. When the system writes to a data-structure the controller
Ck writes its current phase number in addition to the bits written by B.

(n, d, b)
d′!n−−→ (n, d, b) if d′ ∈ Queues (1)

(n, d, b)
d′!(n,c)−−−−−→ (n, d, b′) if d′ ∈ Stacks ∧ b

d′!c−−→ b′ in B (2)

Notice that in the first case, b
d′!−→ b is a transition in B. A read event from a

queue d′ will stay in the same phase if d′ is the current data-structure and the
matching write comes from a previous phase (to avoid self-loops): if d′ ∈ Queues
then we have the following transitions in Ck

(n, d, b)
d′?m−−−→ (n, d′,0) if d′ = d ∧m < n (3)

(n, d, b)
d′?m−−−→ (n+ 1, d′,0) otherwise (4)

Notice that in these cases, b
d′?−−→ 0 is a transition in B since no stack can be

on an autonomous computation at a read event from a queue. Further if d = ?,
reading from a queue forces a phase change. This is needed, as otherwise there
will be a self-loop on the first phase.

Finally, a read event from a stack s will stay in the same phase if it is an
autonomous read (bs = 1), or s = d is the current data-structure and this read
does not create a self-loop: if s ∈ Stacks then in Ck we have the transitions

(n, d, b)
s?(m,c)−−−−−→ (n, d, b′) if (bs = 1 ∨ (s = d ∧m < n)) ∧ b

s?c−−→ b′ in B
(5)

(n, d, b)
s?(m,c)−−−−−→ (n+ 1, s,0) otherwise (6)

Notice that in the last case, b
s?c−−→ 0 is a transition in B and thus in all moves

the third component stays consistent with moves of B.

10

n

d

b1
b2

1

?

0

0

1

?

1

0

1

?

1

1

1

?

1

1

1

?

1

1

1

?

1

0

1

?

0

0

1

?

1

0

1

?

1

1

1

?

1

1

1

?

0

0

1

?

0

1

1

?

0

0

2

s2
0

0

2

s2
0

0

2

s2
1

0

3

q

0

0

3

q

0

1

3

q

0

1

3

q

0

0

3

q

0

0

3

q

0

0

3

q

0

0

3

q

0

0

3

q

1

0

4

q

0

0

4

q

1

0

4

q

0

0

4

q

0

0

4

q

0

1

4

q

0

0

4

q

0

0

5

s1
0

0

5

s1
0

0

5

s1
0

0

Fig. 3: A run of the deterministic sequential controller Ck.

By construction the controller is deterministic and non-blocking. If the unique
run of the controller on a W does not use a state of the form (∞, d, b) then W
is in k-Phase. The set of positions labeled by states of the form (i, d, b) identify
the ith phase in a k phase decomposition. Conversely, let W be in k-Phase. Let
(be) be the state labeling position e in W in the unique run of B on W. Let
(Xi)(i≤l) be the phases in the maximal decomposition of W. It is easy to verify
that the first position of Xi, i ≥ 2 is a non-autonomous read and let di be the
data-structure associated with this read. Then the labeling assigning (1, ?, be)
to any position e ∈ X1 and (i, di, be) to any event e in Xi, 2 ≤ i ≤ l is is an
accepting run of the controller on W.

Theorem 8. The SQS Ck is a DS-controller for the class k-Phase with (|DS| ·
(k + 1) + 1)2|Stacks| states.

Proof. Let ρ be a run of Ck controller on a stack-queue word W. Let Xi be the
set of events labeled by a state of the from (i, d, b) for some d ∈ DS∪ {?} and b
some state of B. Let l ≤ k be the maximum i such that Xi is not empty. Then,
by the definition of the transition relation, Xj is nonempty for each i ≤ l. We
claim that (Xi)i≤l is a (maximal) k-phase decomposition of W.

Notice that if (i, d, b) and (i, d′, b′) are states labeling two events in Xi, then
from the definition of the transition relation, d = d′. We let di ∈ DS ∪ {?} to
be the unique d such that some event in Xi is labeled by a state of the form
(i, di, b) for some b.

By Lemma 7 the state of the B automaton labelling any read event e deter-
mines correctly whether it is a autonomous or non-autonomous read. We first
observe that each Xi contains non-autononous read events on at most one data
structure. This can be seen as follows.

In any state labelling and event in X1, the only read transitions permitted are
from 5 and have to be autonomous transitions. Next we consider Xi with i > 1.
From the definition of transitions 3, 4, 5 and 6, any non-autonomous read event
e on a data-structure d has to be labeled by a state of the from (j, d, b). But,
from the above, if e ∈ Xi then j = i and d = di and thus all non-autonomous
reads are on the same data-structure.

The only transitions that increment the first component are read transitions
from 4, 6 and these cannot be autonomous. Thus if (e, f) defines an autonomous
read-write pair then by definition any read event between e and f must also be

11

autonomous and by the correctness of B, the transitions 4 and 6 will never be
applicable. Thus if e is in Xi then so is f . Thus, each Xi is a phase.

We also observe that if e Bna f and e ∈ Xi then f 6∈ Xi. This is because,
by the correctness of B, one of the rules 4 or 6 is applicable at f . Thus, each
Xi is acyclic as well and thus the word W is in k-Phase and this completes one
direction of the proof.

Next, we show that the controller has an accepting run on anyW that belongs
to k-Phase. Let X1, X2, . . . Xl be the partitions of W in the maximal k-phase
decomposition of W. Let ei be the first event in Xi, 2 ≤ i ≤ l. By the property
described in Remark 5, ei is a read event and let di be the data-structure as-
sociated with ei. In the unique run of the automaton B on W let (be) be the
state labeling event e. We claim that the labeling ρ that labels event e in X1

by (1, ?, be) and every event e in Xi, 2 ≤ i ≤ l by (i, di, be) is an accepting
run of the controller on W. We only need to verify the accuracy of the first two
components of the labeling as the correctness of the third component follows by
definition.

Internal events pose no problems since B does not change states on internal
events. Let e be any event other than ei, 1 < i ≤ l. If e is a write event then
the first two components do not change according to transitions 1 and 2 as
required by the labeling. If e is a read event then there are 3 cases: if it is an
autonomous read then by the correctness of B transition rule 5 is applicable and
it leaves the first two components unchanged as required by the labeling. If it
reads from a queue then since e is not one of eis the data-structure involved
is di and by the acyclicity of the decomposition the corresponding write event
occurs in a strictly earlier phase. Thus rule 3 will be applicable leaving the first
two components unchanged. Finally, if e is a read event on a stack and is not
autonomous then once again the associated data-structure must be di and by
acyclicity the corresponding write has to be from an earlier phase and thus 5
is applicable and leaves the first two components unchanged. Thus, the labeling
agrees with the transition relation at all events other than the eis (2 ≤ i ≤ l).

Let fi−1 = ei − 1. Then fi−1 ∈ Xi−1. Clearly ei cannot be an autonomous
read. By Remark 5 there are two possibilities for ei. If the data-structure di is
different from the data-structure di−1, then one of the rules 4 or 6 is applicable
and consistent with the labeling. If the data-structure di is the same as di−1
then, by Remark 5 it must be the case that the corresponding write event must
be in phase i− 1. Again one of the rules 4 or 6 is applicable consistent with the
labels. This completes the proof. ut

5 Class and Controller: Distributed case

In this section we describe a model intended to capture collections of SQS com-
municating via reliable FIFO channels (or queues). Such systems are called
Stack-Queue Distributed System (SQDS). A behaviour of an SQDS is a tuple
of stack-queue words with additional matching relations describing the inter-
process communication via queues. Such behaviours extend Message Sequence

12

Charts (MSCs) with matching relations for the internal stacks and queues. We
call them stack-queue MSCs (SQMSC).

We then extend the notion of k-Phase to this distributed setting. We show
that k-Phase enjoys a deterministic distributed controller with local acceptance
conditions.

An architecture A is a tuple (Procs,Stacks,Queues,Writer,Reader) con-
sisting of a set of processes Procs, a set of stacks Stacks, a set of queues Queues
and functions Writer and Reader which assign to each stack/queue the process
that will write (push/send) into it and the process that will read (pop/receive)
from it respectively. We write DS for Stacks]Queues.

A stack d must be local to its process, so Writer(d) = Reader(d). On the
other hand, a queue d may be local to a process p if Writer(d) = p = Reader(d),
otherwise it provides a FIFO channel from Writer(d) to Reader(d).

A Stack-Queue Distributed System (SQDS) over an architecture A and
an alphabet Σ is a tuple S = (Locs,Val, (Transp)p∈Procs, in,Fin) where each
Sp = (Locs,Val,Transp, in, ∅) is an SQS over DS and Σ in which the transitions
are compatible with the architecture: Transp may have a write (resp. read) tran-
sitions on data-structure d only if Writer(d) = p (resp. Reader(p) = d). Moreover,
Fin ⊆ LocsProcs is the global acceptance condition. We say that the acceptance
condition is local if Fin =

∏
p∈Procs Finp where Finp ⊆ Locs for all p ∈ Procs.

A stack-queue MSC (SQMSC) over architecture A and alphabet Σ is a
tupleM = ((wp)p∈Procs, (Bd)d∈DS) where wp ∈ Σ∗ is the sequence of events on
process p and Bd is the relation matching write events on data-structure d with
their corresponding read events. We let Ep = {(p, i) | 1 ≤ i ≤ |wp|} be the set of
events on process p ∈ Procs. For an event e = (p, i) ∈ Ep, we set pid(e) = p and
λ(e) be the ith letter of wp. We write → for the successor relation on processes:
(p, i) → (p, i + 1) if 1 ≤ i < |wp| and we let B =

⋃
d∈DS Bd be the set of all

matching edges. We require the relation < = (→ ∪ B)+ to be a strict partial
order on the set of events. Finally, the matching relations should comply with
the architecture: Bd ⊆ EWriter(d) × EReader(d). Moreover, data-structure accesses
should be disjoint, stacks should conform to LIFO and queues should conform
to FIFO (the formal definitions are taken verbatim from Section 2). An SQMSC
is depicted in Figure 4.

As before, to define the run of an SQDS over a stack-queue MSC M, we
introduce two notations. For p ∈ Procs and e ∈ Ep, we denote by e− the unique
event such that e− → e if it exists, and we let e− = ⊥p /∈ E otherwise. We let
maxp(M) be the maximal event of Ep if it exists and maxp(M) = ⊥p otherwise.

A run of an SQDS S over a stack-queue MSC M is a mapping ρ : E → Locs
satisfying the following consistency conditions (with ρ(⊥p) = in):

– if e is an internal event then ρ(e−)
λ(e)−−−→ ρ(e) ∈ Transpid(e),

– if eBd f for some data-structure d ∈ DS then for some v ∈ Val we have both

ρ(e−)
λ(e),d!v−−−−−→ ρ(e) ∈ Transpid(e) and ρ(f−)

λ(f),d?v−−−−−→ ρ(f) ∈ Transpid(f).

13

Fig. 4: A stack-queue MSC and its maximal phase decomposition.

The run is accepting if (ρ(maxp(M)))p∈Procs ∈ Fin. The language L(S) accepted
by an SQDS S is the set of stack-queue MSCs on which it has an accepting run.

Notice that SQDSs are closed under intersection, by means of the cartesian
product. The construction is similar to the one for SQSs in Section 2.

Bounded Acyclic Phase SQMSCs We generalize the under-approximation
class k-Phase to the distributed setting. We allow at most k phases per process.
As in the sequential case, autonomous computations are freely allowed. However,
cycles on phases can be caused be the richer structure of the SQMSC than simple
self loops.

In the distributed setting, the definitions of autonomous computations
and of d-phases are identical to the sequential case, cf. Section 4. Again, we write
Ba for autonomous edges and Bna for non-autonomous edges. A phase, which
is a sequence of consecutive events executed by a single process, is identified by
a pair of events (e, f) such that e→∗ f .

A phase (e, f) has a cycle if there is a non-autonomous
edge e′Bna f ′ with e ≤ e′ and f ′ →∗ f . Notice that e′ needs
not be in the phase. So a cycle starts from the phase at e
then follows the partial order to some non-autonomous write

e ff 0

e0

e′ whose read f ′ is in the phase. A phase is acyclic if it has no cycles. Notice
that a non-autonomous edge within a phase induces a cycle (self-loop) whereas
autonomous edges are freely allowed within phases. As a matter of fact, when
there is exactly one process, a phase has a cycle iff it has a self-loop.

A phase decomposition of an SQMSC is a partition of its set of events into
phases. A phase decomposition is acyclic if all phases are acyclic. It is a k-phase
decomposition if there are at most k phases per process. We denote by k-Phase
the set of SQMSCs that admits an acyclic k-phase decomposition.

An acyclic phase (e, f) is upper-maximal if extending it upwards would result
in a cycle, i.e., for every other acyclic phase (e, f ′), we have f ′ ≤ f . See Figure 4
for an example. Lemma 6 easily lifts up to the distributed case as well.

Lemma 9. Every SQMSC in k-Phase admits a maximal acyclic k-phase de-
composition in which all phases are upper-maximal.

14

Deterministic Distributed Controller We extend the notion of nice con-
trollers to the distributed setting. That means controllers should be distributed
and have local acceptance conditions. A local controller for one process should
be able to control the behaviour of that process regardless of the states of the
other local controllers. The communication between the local controllers is also
only by means of overloading the actual messages sent between the processes.
The local controllers are not allowed to send messages out of sync, as it would
create new behaviours in the controlled system. Thus a controlled system should
be again obtained as a cartesian product of the system with a controller where
both are SQDS, but in addition the controller has local acceptance conditions.

Theorem 10. The class k-Phase admits a deterministic distributed controller
Ck with (|DS| · (k + 2)|Procs| + 1)2|Stacks| states.

The distributed controller is a generalisation of the sequential controller of
Section 4. The main difference is that the local controller of process p remembers
not only its current phase number, but a tuple n = (nq)q∈Procs of phase numbers
for each process. The intuition is that nq is the largest phase of process q that
is known to process p (nq = 0 if no events of process q are in the past of the
current event of process p).

For each stack s, we use the automaton Bs defined in Section 4 that identifies
autonomous reads. For each process p ∈ Procs, we let Bp be the product of the
automata Bs where s is a stack of process p (i.e., s ∈ Stacks and Writer(s) = p).

A state of the local controller Ckp for process p is a tuple (n, d, bp) where
n = (nq)q∈Procs is the phase vector with nq ∈ {0, 1, . . . , k,∞}, d ∈ DS ∪ {?}
with Reader(d) = p if d 6= ?, and bp is a state of Bp. The initial state of Ckp is
inp = (n, ?,0) with np = 1 and nq = 0 for q 6= p. The local acceptance condition
Finp is given by the set of states (n, d, bp) with nq 6=∞ for all q ∈ Procs.

We describe now the local transitions of Ckp . They are similar to the transitions
of the sequential controller given in Section 4. We start with write transitions,
so let d′ ∈ DS be such that Writer(d′) = p. On write events, the current phase
vector is written on to the data-structure (in addition to the autonomous bit
where needed).

(n, d, bp)
d′!n−−−→ (n, d, bp) if d′ ∈ Queues (7)

(n, d, bp)
d′!(n,c)−−−−−→ (n, d, b′p) if d′ ∈ Stacks ∧ bp

d′!c−−→ b′p in Bp (8)

Let d′ ∈ Queues be such that Reader(d′) = p. The transitions of Ckp that read
queue d′ are given below. We should switch to the next phase 1) if mp = np since
otherwise this non-autonomous read would close a cycle, 2) or if d′ 6= d 6= ? since
in a phase all non-autonomous reads should be from the same data-structure.

(n, d, bp)
d′?m−−−→ (n′, d′,0) if mp = np ∨ (d′ 6= d 6= ?) (9)

with n′p = np + 1 ∧ n′q = max(nq,mq) for q 6= p

(n, d, bp)
d′?m−−−→ (n′, d′,0) otherwise, with n′ = max (n,m) (10)

15

Similarly, we give below read transitions from d′ ∈ Stacks with Reader(d′) = p.
Here a switch of phase is required under the same conditions but only when the
read is not autonomous.

(n, d, bp)
d′?(m,c)−−−−−→ (n′, d′,0) if bd′ = 0 ∧ (mp = np ∨ (d′ 6= d 6= ?)) (11)

with n′p = np + 1 ∧ n′q = max(nq,mq) for q 6= p

(n, d, bp)
d′?(m,c)−−−−−→ (n′, d, b′p) otherwise, (12)

with n′ = max (n,m) ∧ bp
d′?c−−→ b′p in Bp

One of the differences of a local controller from a sequential controller is that
the first phase may also perform non-autonomous reads. However, in such case,
it must be from a queue.

On read transitions (10 and 12) which stay in the same phase, the phase
vector is updated by taking the maximum between the current phase vector and
the read-phase vector (n′ = max (n,m)). On a phase switch, a similar update
is performed but the current phase number of process p is incremented.

Remark 11. The phase vectors of these transitions when projected to the pth
component, gives a transition of the sequential controller. That is, for d′ ∈
Queues, (np, d, bp)

d′?mp−−−−→ (n′p, d
′, b′p) in Ck and for d′ ∈ Stacks, (np, d, bp)

d′?(mp,c)−−−−−−→
(n′p, d

′, b′p) in Ck.

Proof of Correctness of the Distributed Controller

Soundeness (L(Ck) ⊆ k-Phase): An accepting run induces a phase decomposi-
tion. Let Xp

i be the set of events on process p which are labelled by states of the
form (n, d, bp) with np = i. By definition of the controller, each Xp

i is a phase as
it reads non-autonomously from only one data-structure. Thus, the phases are
valid and since the run is accepting there are at most k of them on each process.
The autonomous reads are computed and handled correctly, thanks to Bp (see
Lemma 7).

It remains to show that this induced phase decomposition is acyclic. Notice
that the current phase vector is always propagated along a B edge and that the
phase vector at the read event is updated by max. We deduce that for every
process p ∈ Procs and event g, the value np of the phase vector at g is the
phase number of the maximal event e ≤ g which is on process p.

Now, if there is a cycle, say in the ith phase (e, f) of process p, then by defi-
nition there exists e′ Bna f ′ with e ≤ e′ and f ′ →∗ f . By the above observation,
since e ≤ e′ ≤ f , the value of np at e′ is i. Hence the transition taken at f ′

must be either (9) or (11) which gives the phase number i + 1 to f ′. This is a
contradiction since (e, f) has phase number i and f ′ ≤ f . Hence there cannot
be cycles, which completes the soundness proof.

Completeness (k-Phase ⊆ L(Ck)): LetM be an SQMSC in k-Phase. Consider
the maximal phase decomposition as per Lemma 9. We define the following for
every event with respect to this maximal phase decomposition.

16

– phase-nbr(e) = i ∈ {1, . . . , k} if e is on the ith phase on pid(e). Moreover, we
set ne = (neq)q∈Procs where neq = max{phase-nbr(f) | f ≤ e ∧ pid(f) = q}.
As usual, we assume that max(∅) = 0.

– data-struct(e) = d if there is an earlier event in the phase of e which is a non-
autonomous read from d, i.e., there is some e′ Bdna f

′ such that f ′ →∗ e and
phase-nbr(f ′) = phase-nbr(e). We set data-struct(e) = ? otherwise. Notice
that this last case may occur only if phase-nbr(e) = 1.

– be : the bit vector computed by the automaton Bpid(e) on the sequence of
events up to e on its process. Notice that Bp is deterministic and non-blocking
(Lemma 7) and hence provides a unique value of be for every e.

This allows us to extract a labelling ρ : E → Locs of events by the states of the
controller in the obvious manner: ρ(e) = (ne, data-struct(e), be). We prove below
that ρ is the unique run of the controller Ck on M. Since none of the phase-
numbers exceed k, the run is accepting, which proves that k-Phase ⊆ L(Ck).

We prove that the labelling ρ on M conforms to the transitions of Ck by
induction on the set E of events of M ordered by <.

Let e ∈ Ep be an event on process p and assume that for all events f < e
the labelling ρ conforms to the transitions of Ck. Recall that we denote by e−

the immediate predecessor of e on process p if it exists and otherwise e− = ⊥p.
By convention, we let ρ(⊥p) = inp be the initial state of Ckp . This means that

data-struct(⊥p) = ?, b⊥p = 0 and n
⊥p
p = 1 = phase-nbr(⊥p) and n

⊥p
q = 0 for

q 6= p.

Notice that be is obtained from be
−

via the computation of Bp in the definition
of the labelling ρ and this conforms to the transitions of Ckp (7–12).

If e is an internal event, then we can easily check that ρ(e) = ρ(e−) (even if
e− = ⊥p), and hence conforms to the internal transitions which are self-loops.

If e is a write event to a queue, then again, from the definition of ρ, we can
check that ρ(e) = ρ(e−), which is as dictated by transition (7).

If e is writing to a stack, then we see that ρ(e) differs from ρ(e−) only for
the bits be due to the computations of Bp. This conforms to transition (8).

For the remaining cases, e is a read event from some data-structure d′. Hence,
let f Bd

′
e.

If e is an autonomous read then phase-nbr(e) = phase-nbr(e−), data-struct(e) =

data-struct(e−) and ne = max(ne
−
,nf). Hence, transition (12) validates ρ(e).

Assume that e is a non-autonomous read (from a stack or a queue) and
that phase-nbr(e) = phase-nbr(e−). Let e0 be the minimal event in the phase of e
with respect to the maximal phase decomposition. Then, e0 6≤ f (otherwise there
would be a cycle). Hence it follows that nfp < nep. Moreover, d′ = data-struct(e) =
data-struct(e−) or data-struct(e−) = ? (otherwise it would have non-autonomous
reads from different data-structures contradicting the definition of a phase).

Moreover, ne = max(ne
−
,nf) and we can check that transition (10) or (12)

validates ρ(e).

Finally, assume that phase-nbr(e) = phase-nbr(e−) + 1. Then, e is not au-

tonomous, and either nfp = ne
−

p (change of phase to avoid a cycle) or d′ =

17

data-struct(e) 6= data-struct(e−) 6= ? (change of phase to avoid non-autonomous
reads from different data-structures). We can check that transition (9) or (11)
validates ρ(e). This concludes the proof.

6 Decidability

In this section we explain why k-Phase is a verifiable under-approximation for
SQDS. Consider the reachability problem which is equivalent to asking if given
an SQDS S and k ∈ N whether S accepts at least one M from k-Phase. A non-
trivial extension of the technique of [13] allows to reduce the reachability problem
of SQDS restricted to k-Phase to the reachability problem of multi-pushdown
systems for bounded phase.

A more general question is to model-check properties expressed in linear time
logics ranging from temporal logics to MSO(→,Bd). Given a formula ϕ we have to
determine whether everyM∈ k-Phase that is accepted by S satisfies ϕ. Observe
that we may equivalently ask whether every behaviour of the controlled system
S ′ satisfies ϕ. Using a slightly different approach we can obtain decidability not
only for reachability but also for the linear-time model-checking problems.

In this approach we show that every behaviour in k-Phase has split-width [5–7]
or tree-width [16] or clique-width [4] (measures of the complexity of graphs that
happen to be equivalent for our class of graphs) bounded by some function
f(k). Here, we show an exponential bound on the split-width. Then, results
from [6, 7, 16] imply that MSO model-checking for S ′ is decidable and results
from [5,7] imply that model-checking linear-time temporal logic formulas can be
solved in double exponential time. This is optimal, since reachability of k-phase
multi-pushdown systems is double exponential time hard [14].

The rest of this section is devoted to proving the bound on split-width. We
first perform two refinements on the phase decomposition prior to bounding the
split-width.

6.1 Acyclic to Strongly Acyclic Phase Decomposition

The residual graph of a phase decompostion is a graph whose vertices are the
phases. There is an edge from phase u to phase v if there are events e in u and f
in v with eBna f . A phase decomposition is strongly acyclic if its residual graph
is acyclic. We write k-SAPD to denote a strongly acyclic k phase decomposition.

Interestingly we show that any acyclic phase decomposition can be turned
into a strongly acyclic phase decomposition with just a quadratic blow up in the
number of phases. Let χ be the set of phases of a decomposition of an SQMSC
M. For an event e ∈ E , let χ(e) denote the phase in χ containing e. For a process
p ∈ Procs, let χp denote the phases involving process p in χ. Thus, χ =

⊎
χp.

The elements of χp are linearly ordered in the obvious manner (X ≤ Y iff e ≤ f
for some e ∈ X and f ∈ Y or equivalently, if e ≤ f for all e ∈ X and f ∈ Y).

We say that a phase X in χ is part of a weak cycle if the corresponding
vertex is part of cycle in the residual graph. Our aim is to refine the phases in

18

such a way that none of the phases is part of a weak cycle. We fix an acyclic
phase decomposition χ for the rest of this section. To begin with we divide χ
into three parts G, O and R (Green, Orange and Red). A phase X ∈ χp is in O
iff X is part of a weak cycle and there is no Y < X in χp that is part of a cycle.
Thus, O consists of the minimal phase from each process if any, that is part of
at least one weak cycle. A phase X ∈ χp is in R iff Y < X for some Y ∈ χp ∩O.
All other phases are in G. Observe that any phase in G is not part of any weak
cycle. We say that a phase (or an event) is green (respectively orange or red) if
it (or its phase) belongs to G (respectively O or R).

We write Op (resp. Gp,Rp) for the restriction of O (resp. G, R) to the phases
of process p. Clearly Op is either empty or contains a single phase which we
denote as Op. For any event e the past of e, written ↓e, is the set {f | f ≤ e}.
The past of a phase X is given by ↓X = {f | f ∈ ↓e for some e ∈ X}. The
following proposition identifies a special orange phase.

Proposition 12. If O is nonempty then there is a process p such that ↓Op
contains no red events.

Proof. Towards a contradiction, we assume that ↓Op contains a red event for all
orange phases. Pick some p for which Op is nonempty and let e0 be the maximal
event in Op. We construct a sequence f1, e1, f2, e2, . . . as follows. fi+1 is some
red event in ↓ei and ei+1 is the maximal orange event in the process of fi+1.
Clearly such an ei+1 must exist and ei+1 < fi+1. Thus we have, e0 > f1 > e1 >
f2 > e2 Some ei and ej have to be on the same process with i < j. But then
ei and ej are the same event, by definition, and this contradicts the fact that
the sequence is strictly decreasing. ut

Using the phase Op identified by Proposition 12, we refine χ by subdividing
some of the orange phases so that the number of phases that are not green
reduces by at least 1.

Let X0 = Op and let e0 be the maximal non-autonomous read event in
X0 (such an event must exist since Op is part of a weak cycle). We construct a
sequence of orange phases X1, X2 . . . and events fi, ei ∈ Xi such that, fiBnaei−1
and ei →∗χ fi is the maximal (if any) non-autonomous read below fi in the phase
Xi. The sequence terminates when there is no non-autonomous read ei →∗χ fi
or if fi+1 is a green event (fi and Xi cannot be red since ↓X0 contains no red
events). Notice that f1 is orange since X0 is part of a weak cycle and e0 is the
maximal non-autonomous read in X0.

Since, e0 � f1 � e1 . . . and each process has only one orange phase, if this
sequence enters the same process for the second time that would yield a cycle,
contradicting the assumption that χ is an acyclic phase decomposition. Thus
the length of the sequence X0, X1, X2, . . . is bounded by |Procs|, the number
of processes. Let the sequence of phases obtained as above be X0, X1, . . . , Xm

where either em does not exist or fm+1 is a green event.
We now divide each of the phases Xi (1 ≤ i ≤ m) into (possibly) two parts,

Xg
i and X ′i with Xg

i ≤ X ′i as follows. Set Xg
i = Xi if there is no non-autonomous

19

read above fi in Xi. If gi is the first non-autonomous read above fi in Xi then
Xg
i = {e ∈ Xi | e < gi} and X ′i = Xi \Xg

i . We also let Xg
0 = X0.

By construction, the parts constructed from Xi are all phases. Let χ′ be this
new phase decomposition. We shall show that, for 0 ≤ i ≤ m, Xg

i is not part of
any weak cycle in χ′.

Claim. If Xg
i is part of a weak cyle in the decomposition χ′ then the previous

phase on this cycle must be Xg
i+1.

This claim immediately implies that Xg
i is not part of a weak cycle in χ′

since the processes of the phases X0, X1, . . . , Xm are pairwise distinct.
To prove the claim, let Y be the phase before Xg

i on a weak cycle in χ′.
We find u Bdna v with u ∈ Y , v ∈ Xg

i and d being the data-structure read
non-autonomously by the phase Xi. Since Xg

i has a non-autonomous read, ei
is defined and is the maximal non-autonomous read in Xg

i . Hence, we have
u < v →∗ ei ≤ e0. Since there are no red events in the past of e0 and Y is part of
a weak cycle, Y and u must be orange. Now, d cannot be a stack or self-queue.
Otherwise, Y and Xg

i would be on the same process and since both are orange
we would get Y = Xg

i . But in this case uBna v induces a self-loop on phase Xi,
a contradiction with acyclicity of χ. Therefore, d is a queue and since fi+1Bdna ei
we deduce that u →∗ fi+1. Since u ∈ Y is orange, so is fi+1 ∈ Xg

i+1 and since
they are both on the same process we deduce that Y = Xg

i+1, which concludes
the proof of the claim.

The phases that were left untouched by the subdivision which further were
not part of a weak cycle in χ continue to enjoy the same property in χ′. This
is a simple graph theoretic property. In any graph, if we divide a vertex v as v1
and v2, assign every edge incident on v to v1 or v2 or both, any cycle in the new
graph is also a cycle in the old graph (simply replace vi by v).

In summary, in the new acyclic decomposition χ′, phase X0 = Xg
0 that was

orange in χ and becomes green in χ′, green phases of χ are unchanged and
continue to be green in χ′, some of the orange phases X1, . . . , Xm are split into
2 phases, of which the first one is green in χ′ and the others are orange or green
in χ′. Thus, total number of non-green phases in χ′ is strictly less than the
number of non-green phases in χ. Notice that χ′ has at most |Procs| − 1 more
phases than χ since m < |Procs| − 1. Starting with a k-acyclic decomposition,
with at most k · |Procs| (non-green) phases, and iterating this procedure at most
k · |Procs| times, we end up with a strongly acylic decomposition with at most
k · |Procs|2 phases. We have proved:

Theorem 13. LetM be a acyclic k-phase SQMSC. Then,M admits a strongly
acyclic phase decomposition of size at most k · |Procs|2.

6.2 Strongly Acyclic to Tree-like Phase Decompositions

A tree-like phase decomposition of an SQMSC M is a strongly acyclic phase
decomposition such that the in-degree of any vertice in the residual graph is at

20

most 1. Next, we refine any strongly acyclic phase decomposition into a tree-like
phase decomposition. This transformation results in an exponential increase in
the number of phases.

Lemma 14. If M admits a k-SAPD then it also admits a tree-like 2k−1-APD.

Proof. Let χ be a phase decomposition whose residual graph is strongly acyclic.
Let X1, . . . , Xk be a topological ordering of the phases.

We will split each phase Xi into f(i) many new components (some of them
may be empty), call themXi,1, . . . , Xi,f(i), in such a way that all non-autonomous
reads of the new phase Xi,j have matching writes from a single (new) phase.
Here, f(1) = 1 and f(i) = 2i−2 for i > 1. Notice that the number of new phases

preceding Xi in this procedure is
∑i−1
j=1 f(j) = f(i).

This splitting is possible because all the non-autonomous reads are from the
same data-structure, which is either a stack or a queue.

Suppose phase Xi has non-autonomous reads from a queue. Then, we split
Xi into components Xi,1Xi,2 · · ·Xi,f(i) in such a way that Xi,j contains all non-
autonomous reads from the j-th new component (which is X1 if j = 1 and Xk,`

with j = 2k−2 + ` if j > 1). We may also assume that autonomous phases of Xi

are not split. This is achieved for instance if we inductively define Xi,j as the
smallest factor following Xi,j−1 containing all non-autonomous reads from the
j-th new component. Notice that each new component is indeed a phase.

Suppose phase Xi has non-autonomous reads from a stack. Due to the LIFO
policy on stacks, we split Xi into components Xi,f(i) · · ·Xi,2Xi,1 in such a way
that Xi,j contains all non-autonomous reads from the j-th new component.
Again, each new component is a phase.

We can easily check that the associated residual graph is acyclic, has in-
degree one, and has at most f(k + 1) = 2k−1 vertices. ut

6.3 Split-width and Decidability

We briefly recall the notion of split-width here. The idea of split-width was first
described in [6] for multiply nested words and subsequently extended to include
behaviours of systems with stacks and queues in [5, 7].

The idea is to decompose each SQMSC (in [5, 7] the name MSCNs is used
instead) into atomic pieces. We begin by removing some of the → edges to
create holes which we call elastic edges. This operation is called split. We call
an SQMSC with elastic edges as a split-SQMSC. The number of elastic edges in
split-SQMSC its elasticity.

After removing some → edges it is possible that the entire split-SQMSC
consists of two disjoint parts with only elastic edges connecting them. At this
point we may break-up this split-SQMSC into these two parts and then continue
decomposing them separately. This operation is called divide. Our aim is to use
split and divide repeatedly until we are left with the atomic parts, which are
either singleton internal events (with elasticity 0) or an edge of the form eBd f
(with elasticity 1 if d is a stack and 0 if d is a queue). Figure 5a describes this

21

(a) – of width 2. (b) – of width 5.

Fig. 5: Two decompositions of an SQMSC into atomic splits

process on a sample SQMSC where the elastic edges are dashed (and colored
red).

For any such complete break up of an SQMSC, its width is the maximum
elasticity of all the split-SQMSCs produced in this procedure. The break-up
described in Figure 5a has width 2. There may be several ways of starting with
an SQMSC and breaking it down into its atomic components. A different and
somewhat more trivial decomposition with width 5 is described in Figure 5b.

The split-width of an SQMSC is the minimum width among all possible ways
of breaking it up into its atomic parts using split and divide. It turns out that
in [5–7] the formal definitions are actually in dual. Instead of decomposing we
compose split SQMSCs. We start with the atomic split SQMSCs and then put
them together using shuffle (written �) which is the dual of divide and merge
(written !) which is the dual of split to generate the SQMSC we would like
to. This makes it possible define all this as an algebra. In particular, we write

M = !M′ to mean that M′ is obtained by dropping some → edges in M and
M =M1 �M2 to mean that we can divide M into M1 and M2.

A class C of SQMSCs have split-width k if each of its members has split-
width at most k. Any class with bounded-split width that is MSO definable (or
equivalently recognized by an SQDS) can be model-checked against MSO and
other weaker logics. The precise complexity depends on the alternation depth of
the MSO formula defining the class or the size of the SQDS (if any) recognizing
it. In our case, the class k-Phase is recognizable by the controller of exponential
size. Combining this with exponential bound on the split-width that we establish
in the next section, we obtain double exponential complexity for the decidabil-
ity for different temporal logics and (non-elementary) decidability for MSO. In
paricular, the reachability problem is decidable in time double expoenential in

22

the parameter k, |DS| (number of the data-structures) and |Procs| (number of
processes), but only polynomial in the size of the system. The precise complex-
ity upperbounds of a variety of verification problems follow Table 4.5, and their
optimality is argued in Section 4.4.1 and Section 11.4 of [5].

6.4 Split-width of SQMSCs in k-Phase

We complete our proof of the model-checking problems for k-Phase by proving
the following theorem.

Theorem 15. Any SQMSC M in k-Phase has split-width at most 2k − 1.

Given a k-phase decomposition of an SQMSC we may obtain a k-split SQMSC
by dropping the → edges between events in two adjacent phases. In the rest of
this section, every component of the split-SQMSCs we construct will be phases
and the associated residual graph is tree-like. Thus, we say M is a tree-like m-
APD to mean that it has at most m components (phases) per process. With
this notation, from Theorem 13 and Lemma 14, it follows proving the following
Lemma establishes Theorem 15.

Lemma 16. Let M be a tree-like m-APD, then the split-width of M = !M is
at most 2m− 1.

Proof. The proof is by induction on the size of M. The base case is when all
components ofM are singletons. In this case,M is obtained by shuffling several
basic split-SQMSCs. Doing so, the number of components never exceeds k. Hence
the split-width in this case is at most k − 1.

For the inductive case, suppose M has at least one non-trivial component.
We will identify two nonempty split-SQMSCsM1 andM2 which are both tree-
like m-APD and such thatM = !(M1�M2). The total number of components
of the shuffle is at most 2m, hence its elasticity is at most 2m− 1. We can then
easily conclude by induction.

Now we define the two split-SQMSCsM1 andM2. Let x1, . . . , xk with k ≤ m
be a topological sorting of the components of M. Let xi be the first non-trivial
component. We have two cases to consider.

First, if there are two events e1 and e2 such that e1 B e2, e1 is the first event
of xi and e2 is the last event of xi, then we let M1 be e1 B e2 and M2 be M
without e1 B e2. Clearly, M = !(M1 �M2) and both M1 and M2 define
tree-like m-APD.

Otherwise, we show that xi can be split into two nonempty components
xi = x1i · x2i with no B-edges from x1i to x2i . Consider the first event e1 of xi. If
e1 is not a write event or if it is a write event with matching read not in xi then
we let x1i = e1 and x2i be the corresponding suffix.

Otherwise, e1 is a write event with matching read e2 which is in xi. Since we
are not in the first case above, e2 is not the last event of xi. We let x1i be the
prefix of xi up to and including e2, and x2i be the corresponding suffix. Towards
a contradiction, assume that there is B-edge from x1i to x2i . Let f1Bf2 with f1 in

23

x1i and f2 ∈ x2i . Since the quotient graph of M is acyclic, there are no self-loop
on the component xi in the quotient graph. Since xi is a phase, the factor of xi
between f1 and f2 must be an autonomous computation. This is not possible
since it contains the read event e2 which is from a different stack.

We now propogate the splitting xi = x1ix
2
i to the other components. For j < i,

component xj is a singleton, so it will not be split. If xj is a write event with
matching read in x2i , we let x2j = xj to put this component in M2. Otherwise,

we set x1j = xj and it will be part of M1.
We now explain inductively how to handle component xj for j > i. By

induction, we assume that for each ` < j, either x` was not split in which case
x` = xb` for some b ∈ {1, 2}, or x` was split in xb` · xc` with {b, c} = {1, 2} and
there are no B-edges from xb` to xc`.

If xj has no incoming B-edges from a previous component, then we let
x1j = xj to put it in M1. Otherwise, let x` with ` < j be the unique previous
component having B-edges to xj (` is unique since we started with a tree-like
APD). If x` was not split, i.e., x` = xb` with b ∈ {1, 2}, then we put xj in Mb

by setting xbj = xj . If x` was split but xj has incoming edges only from one of

the two new components, say xb`, we proceed as above setting xj = xbj .

The difficult case is when x` was split in xb` · xc` with {b, c} = {1, 2} and xj
has incoming B-edges from both x1` and x2` . There are two cases to consider,
depending on whether the data structure d of the B-edges from x` to xj is a
queue or a stack.

If d ∈ Queues then we split xj in xbj · xcj with xbj being the shortest prefix

of xj containing all read events on queue d coming from xb`. Note that there are
no B-edges from xbj to xcj otherwise such a B-edge should be in an autonomous

subphase, which is not possible since it contains the last event of xbj which is a
read from d.

If d ∈ Stacks then we split xj in xcj · xbj with xcj being the shortest prefix of
xj containing all read events on stack d coming from xc`. As above, we can show
that there are no B-edges from xcj to xbj .

Finally, for b ∈ {1, 2} we let Mb be the split-SQMSC with xbj as its compo-

nents. Observe that there are no B-edges between components ofMb and those
ofM3−b and thatM = !(M1�M2). Also,M1 andM2 define tree-like APDs
with at most k components each. This concludes the proof. ut

References

1. R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of the
ACM, 56:16:1–16:43, 2009.

2. M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata
is 2ETIME-Complete. In DLT, LNCS 5257, pages 121–133. Springer, 2008.

3. L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-pushdown
languages and grammars. Int. J. Found. Comput. Sci., 7(3):253–292, 1996.

4. B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In G. Rozenberg, editor, Handbook of Graph Gram-
mars, pages 313–400. World Scientific, 1997.

24

5. A. Cyriac. Verification of Communicating Recursive Programs via Split-width. PhD
thesis, ENS Cachan, 2014. http://www.lsv.ens-cachan.fr/~cyriac/download/

Thesis_Aiswarya_Cyriac.pdf.
6. A. Cyriac, P. Gastin, and K. Narayan Kumar. MSO decidability of multi-pushdown

systems via split-width. In CONCUR, volume 7454 of LNCS, pages 547–561.
Springer, 2012.

7. A. Cyriac, P. Gastin, and K. Narayan Kumar. Verifying Communicating Multi-
pushdown Systems. Technical report, Jan. 2014. http://hal.archives-ouvertes.
fr/hal-00943690.

8. B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model checking
algorithms for existentially bounded communicating automata. Information and
Computation, 204(6):920–956, 2006.

9. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSCs:
Model-checking and realizability. Journal of Computer and System Sciences,
72(4):617–647, 2006.

10. J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. A. Sohoni, and P. S. Thia-
garajan. A theory of regular MSC languages. Inf. Comput., 202(1):1–38, 2005.

11. A. Heußner, J. Leroux, A. Muscholl, and G. Sutre. Reachability analysis of commu-
nicating pushdown systems. In FOSSACS, volume 6014 of LNCS, pages 267–281.
Springer, 2010.

12. S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive
languages. In LICS, pages 161–170. IEEE Computer Society, 2007.

13. S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of concur-
rent queue systems. In TACAS, volume 4963 of LNCS, pages 299–314. Springer,
2008.

14. S. La Torre, P. Madhusudan, and G. Parlato. An infinite automaton characteri-
zation of double exponential time. In CSL, volume 5213 of LNCS, pages 33–48.
Springer, 2008.

15. S. La Torre and M. Napoli. Reachability of multistack pushdown systems with
scope-bounded matching relations. In CONCUR, volume 6901 of LNCS, pages
203–218. Springer, 2011.

16. P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In T. Ball
and M. Sagiv, editors, POPL, pages 283–294. ACM, 2011.

17. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In TACAS, volume 3440 of LNCS, pages 93–107. Springer, 2005.

18. W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Informatique
Théorique et Applications, 21:99–135, 1987.

25

http://www.lsv.ens-cachan.fr/~cyriac/download/Thesis_Aiswarya_Cyriac.pdf
http://www.lsv.ens-cachan.fr/~cyriac/download/Thesis_Aiswarya_Cyriac.pdf
http://hal.archives-ouvertes.fr/hal-00943690
http://hal.archives-ouvertes.fr/hal-00943690

	 Controllers for the Verification of Communicating Multi-Pushdown Systems

