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Abstract

We study the reachability problem of a quantum system modelled
by a quantum automaton. The reachable sets are chosen to be boolean
combinations of (closed) subspaces of the state space of the quantum
system. Four different reachability properties are considered: eventually
reachable, globally reachable, ultimately forever reachable, and infinitely
often reachable. The main result of this paper is that all of the four
reachability properties are undecidable in general; however, the last three
become decidable if the reachable sets are boolean combinations without
negation.

1 Introduction

Recently, verification of quantum systems has simultaneously emerged as an
important problem from several very different fields. First, it was identified
by leading physicists as one of the key steps in the simulation of many-body
quantum systems [9]. Secondly, verification techniques for quantum protocols
[11, 3] become indispensable as quantum cryptography is being commercialised.
Thirdly, verification of quantum programs [26, 27] will certainly attract more
and more attention, in particular after the announcement of several scalable
quantum programming languages like Quipper [12].

Reachability is a fundamental issue in the verification and model-checking
of both classical and probabilistic systems because a large class of verification
problems can be reduced to reachability analysis [4]. Reachability of quantum
systems also started to receive attention in recent years. For example, Eisert,
Müller and Gogolin’s notion of quantum measurement occurrence in physics [10]
is essentially the reachability of null state; a certain reachability problem [25]
lies at the heart of quantum control theory since the controllability of a quan-
tum mechanical system requires that all states are reachable by choosing the
Hamiltonian of the system [1]. Reachability of quantum systems modelled by
quantum automata, or more generally by quantum Markov chains, was stud-

1

http://arxiv.org/abs/1401.6249v1


ied by the authors [28] with an application in termination analysis of quantum
programs [16, 29].

This paper is a continuation of our previous work [28, 16, 29], where only
reachability to a single (closed) subspace of the state Hilbert space of a quan-
tum system was considered. In this paper, we consider a class of much more
general reachability properties; that is, we use subspaces of the state space
as the basic properties (atomic propositions) about the quantum system, and
then reachability properties can be defined as certain temporal logical formulas
over general properties, which are formalized as boolean combinations of the
subspaces. The reason for using boolean combinations rather than orthomodu-
lar lattice-theoretic combinations in the Birkhoff-von Neumann quantum logic
[6] is that in applications these reachability properties will be used as a high-
level specification language where boolean connectives are suitable; for example,
when a physicist says that a particle will eventually enter region A or region
B, the word “or” here is usually meant to be the boolean “or” but not the
orthomodular “or” (see Example 2.1). The reachability properties that we are
concerned with are:

• eventually reachability denoted by the temporal logic formula Ff ;

• globally reachability denoted by Gf ;

• ultimately forever reachability denoted by Uf ;

• infinitely often reachability denoted by If ,

where f is a boolean combination of the subspaces of the state Hilbert space.
We use quantum automata [14] as a formal model for quantum systems.

Then the reachability problem can be described as: decide whether or not all
the execution paths of a quantum automaton satisfy Ff , Gf , Uf , or If . There
are two reasons for adopting this model. First, it contains unitary operations
so that a lot of closed physical systems can be modelled, e.g., quantum circuits.
Second, without probabilistic choices (which occur in other operations such as
quantum measurements and super-operators) it can be seen more clear that the
reachability problem for quantum systems is essentially more difficult than that
for classical systems. In fact, we note that reachability analysis is challeng-
ing in the quantum scenario, since the state space is a continuum where some
techniques that have been successfully used in the classical case will become
ineffective.

1.1 Contributions of the paper

• We prove undecidability of the above reachability problem, even with f
in a very simple form containing the boolean negation. Undecidability of
Gf (globally reachable), Uf (ultimately forever reachable) and If (in-
finitely often reachable) comes from a straightforward reduction from the
emptiness problem for quantum automata [7]. However, undecidability of
Ff (eventually reachable) requires a careful reduction from the halting
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problem for 2-counter Minsky machines [18]. In particular, a novel strat-
egy is introduced in this reduction to simulate a (possibly irreversible)
classical computation using a quantum automaton which is definitely re-
versible. These undecidability results present an impressive difference be-
tween quantum systems and classical systems because the reachability
properties considered in this paper are decidable for classical systems.

• We prove decidability of the reachability problem for Gf , Uf , and If
with f being positive; that is, containing no negation. A key strategy
in proving this decidability is to characterize how a set of states can be
reached infinitely often in execution paths of a quantum automaton. For
the special case where the quantum automaton has only a single unitary
operator and f is an atomic proposition, it is shown based on the Skolem-
Mahler-Lech Theorem [24, 17, 15] that states are reached periodically, and
thus the execution can be represented by a cycle graph. In general, we
show that this execution graph becomes a general directed graph repre-
senting a reversible DFA (deterministic finite automaton), which can be
inductively constructed.

1.2 Organization of the paper

The main results are stated in Sec. 2 after introducing several basic definitions.
In Sec. 3 we first give a brief discussion about the Skolem’s problem and relate
it to a special case of the quantum reachability problem. Then we prove un-
decidability of Gf , Uf and If . The undecidability of Ff is separately proved
in Sec. 4 by using 2-counter Minsky machines. The proofs of decidable results
about Gf , Uf and If for positive f and related algorithms are presented in
Sec. 5. A brief conclusion is drawn in Sec. 6. Some technical lemmas are col-
lected in Appendix.

2 Basic Definitions and Main Results

2.1 A Propositional Logic for Quantum Systems

We first introduce a propositional logical language to describe boolean combina-
tions of the subspaces of a Hilbert space. Let H be the state Hilbert space of a
quantum system. A basic property of the system can be described by a (closed)
subspace V of H. In quantum mechanics, to check whether or not this property
is satisfied, a binary (yes-no) measurement {PV , PV ⊥} would be performed on
the system’s current state |ψ〉, where PV and PV ⊥ are the projection on V and
its ortho-complement V ⊥, respectively. The measurement outcome is gener-
ally nondeterministic: X is considered as being satisfied in |ψ〉 with probability
〈ψ|PV |ψ〉, and it is not satisfied with probability 〈ψ|PV ⊥ |ψ〉 = 1−〈ψ|PV |ψ〉. A
quantitative satisfaction relation can be defined by setting a threshold λ ∈ [0, 1]
to the probability of satisfaction:

V is (λ,⊲)− satisfied in |ψ〉 if 〈ψ|PV |ψ〉⊲ λ
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where ⊲ ∈ {<,≤, >,≥}. In this paper, we only consider the qualitative sat-
isfaction, namely, the (λ,⊲)−satisfaction with the threshold λ being 0 or 1.
Obviously, we have:

• V = {|ψ〉 ∈ H|V is (1,≥)− satisfied in |ψ〉};

• V ⊥ = {|ψ〉 ∈ H|V is (0,≤)− satisfied in |ψ〉}.

Thus, it is reasonable to choose the set of atomic propositions to be AP =
{V |V is a (closed) subspace of H}. Furthermore, we define a (classical) propo-
sitional logic over AP so that we can talk about, for example, that “the current
state of the quantum system is in subspace U , or in V but not in W”. The
logical formulas are generated from AP by using boolean connectives ¬, ∧ and
∨, and their semantics are inductively defined as follows: for any state |ψ〉 ∈ H,

• If f ∈ AP , then |ψ〉 |= f if |ψ〉 ∈ f ;

• |ψ〉 |= ¬f if |ψ〉 |= f does not hold;

• |ψ〉 |= f1 ∧ f2 if |ψ〉 |= f1 and |ψ〉 |= f2;

• |ψ〉 |= f1 ∨ f2 if |ψ〉 |= f1 or |ψ〉 |= f2.

For a logical formula f , we write ‖f‖ for the set of states that satisfy f . In
general, ‖f‖ might not be a subspace of H. For example, for a subspace V of
H, we have:

• ‖¬V ‖ = {|ψ〉 ∈ H|V is (1, <)− satisfied in |ψ〉};

• ‖¬(V ⊥)‖ = {|ψ〉 ∈ H|V is (0, >)− satisfied in |ψ〉}.

It is clear that these classical connectives are different from their quantum coun-
terparts interpreted as the operations in the orthomodular lattice of (closed)
subspaces of H [6].

2.2 Reachability of Quantum Automata

Definition 2.1 A quantum automaton is a 4−tuple A = (H, Act, {Uα|α ∈
Act},Hini), where

1. H is the state Hilbert space;

2. Act is a finite set of action names;

3. for each name α ∈ Act, Uα is a unitary operator in H;

4. Hini ⊆ H is the subspace of initial states.

We say that automaton A is finite-dimensional if its state space H is finite-
dimensional. Throughout this paper, we only consider finite-dimensional quan-
tum automata.
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A path of A is generated by successively performing actions, starting in an
initial state:

p = |ψ0〉
Uα0→ |ψ1〉

Uα1→ |ψ2〉
Uα2→ · · · ,

where |ψ0〉 ∈ Hini, αn ∈ Act, and |ψn+1〉 = Uαn
|ψn〉 for all n ≥ 0. For a given

initial state |ψ0〉 and a sequence of actions w = α0α1α2 · · · ∈ Actω, we write the
corresponding path as p = p(|ψ0〉, w). We further write σ(p) = |ψ0〉|ψ1〉|ψ2〉 · · ·
for the sequence of states in p. Sometimes, we simply call σ(p) a path of A.

Now let f be a logical formula defined in the above subsection representing
a boolean combination of the subspaces of the state Hilbert space, and let σ =
|ψ0〉|ψ1〉|ψ2〉 · · · be an infinite sequence of states in H. Formally, we define:

• (Eventually reachable): σ |= Ff if ∃i ≥ 0.|ψi〉 |= f ;

• (Globally reachable): σ |= Gf if ∀i ≥ 0.|ψi〉 |= f ;

• (Ultimately forever reachable): σ |= Uf if
∞

∀ i ≥ 0.|ψi〉 |= f ;

• (Infinitely often reachable): σ |= If if
∞

∃ i ≥ 0.|ψi〉 |= f .

Here,
∞

∀ i ≥ 0 means “∃j ≥ 0, ∀i ≥ j”, and
∞

∃ i ≥ 0 means “∀j ≥ 0, ∃i ≥ j”.
These reachability properties can be directly applied to quantum automata.

Definition 2.2 Let A be a quantum automaton. Then for ∆ ∈ {F,G,U, I},
we define:

A |= ∆f if σ(p) |= ∆f for all paths p in A.

The reachability of a quantum automaton A can be stated in a different way.
For any action string s = α0α1 · · ·αn ∈ Act∗, we write Us = Uαn

· · ·Uα1
Uα0

. If
Us|ψ0〉 |= f for some initial state |ψ0〉 ∈ Hini, then we say that s is accepted by
A with f . The set of all accepted action strings is called the language accepted
by A with f , and denoted by L(A, f). We say that a set S ⊆ Act∗ satisfies the
liveness property, if

∀w = α0α1α2 · · · ∈ Actω ,
∞

∃n ≥ 0, α0α1 · · ·αn ∈ S. (1)

Lemma 2.1 Let A be a quantum automaton with dimHini = 1. Then:

1. A |= Ff iff Actω = L(A, f) · Actω;

2. A |= If iff L(A, f) satisfies the liveness condition;

3. A |= Gf iff L(A, f) = Act∗ (i.e. L(A,¬f) = ∅);

4. A |= Uf iff Act∗ − L(A, f) (i.e. L(A,¬f)) is finite.

Here, X · Y in clause1) is the concatenation of X and Y .
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Proof: Clauses 1), 2) and 3) can be derived by definition. We only prove
clause 4). Let |ψ0〉 ∈ Hini. If Act∗ − L(A, f) is finite, then there exists some
N ≥ 0 such that s ∈ L(A, f) and thus Us|ψ0〉 ∈ ‖f‖ for all action strings
s = α0α1 · · ·αn ∈ Act∗ with n ≥ N . Furthermore for any path p of A, and
σ(p) = |ψ0〉|ψ1〉 · · · , we have |ψn〉 ∈ ‖f‖ for all n ≥ N + 1, and it follows that
σ(p) |= Uf . Therefore, A |= Uf . On the other hand, if Act∗ − L(A, f) is
infinite, then according to the König’s infinity lemma, there exists an infinite

sequence w = α0α1 · · · ∈ Actω such that
∞

∃n ≥ 0, α0α1 · · ·αn ∈ Act∗−L(A, f).
For the corresponding path p = p(|ψ0〉, w), we have σ(p) 6|= Uf . So A 6|= Uf .
�

2.3 An Illustrative Example

Example 2.1 Consider a quantum walk on a quadrilateral with the state Hilbert
space H4 = span{|0〉, |1〉, |2〉, |3〉}. Its behaviour is described as follows:

1. Initialize the system in state |0〉.

2. Perform a measurement {Pyes, Pno}, where Pyes = |2〉〈2|, Pno = I4−|2〉〈2|.
Here, I4 is the 4 × 4 unit matrix. If the outcome is “yes”, then the walk
terminates; otherwise execute step 3).

3. Nondeterministically choose one of the two unitary operators:

W± =
1√
3









1 1 0 ∓1
±1 ∓1 ±1 0
0 1 1 ±1
1 0 −1 ±1









and apply it. Then go to step 2).

It was proved in [16] that this walk terminates with a probability less than 1 if
and only if a diverging state (i.e. a state with terminating probability 0) can be
reached, and the set of diverging states is PD1 ∪ PD2, where

PD1 = span{|0〉, (|1〉 − |3〉)/
√
2},

PD2 = span{|0〉, (|1〉+ |3〉)/
√
2}.

So, termination of the walk can be expressed as a reachability property A |=
G¬(PD1 ∨ PD2). Here, “∨” is obviously boolean disjunction rather than the
disjunction in Birkhoff-von Neumann quantum logic.

2.4 Main Theorems

Now we are ready to present the main problem considered in this paper. For
∆ ∈ {F,G,U, I}, the decision problem for the ∆−reachability is defined as
follows:
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Problem 2.1 Given a finite-dimensional quantum automaton A and a logical
formula f representing a boolean combination of the subspaces of the state Hilbert
space of A, decide whether or not A |= ∆f .

For the algorithmic purpose, it is reasonable to make the convention: we
identify a subspace of H with the projection operator on it, and assume that all
the projection operators and unitary operators in automaton A and formula f
are represented by complex matrices in a fixed orthonormal basis. Furthermore,
we assume that all complex numbers are rational.

The main results of this paper can be stated as the following two theorems:

Theorem 2.1 (Undecidability) For ∆ ∈ {F,G,U, I}, the problem whether or
not A |= ∆f is undecidable.

Theorem 2.2 (Decidability) For ∆ ∈ {G,U, I}, if f contains no negation,
then the problem whether or not A |= ∆f is decidable.

3 Relating Quantum Reachability to The Skolem’s

Problem

3.1 The Skolem’s Problem for Linear Recurrence Sequences

For convenience of the reader, we first recall several results about the Skolem’s
problem. A linear recurrence sequence is a sequence {an}∞n=0 satisfying a linear
recurrence relation given as follows:

an+d = cd−1an+d−1 + cd−2an+d−2 + · · ·+ c0an, (2)

for all n ≥ 0, where c0, c1, · · · , cd−1 are constants with c0 6= 0, and d is called
the order of this relation. Let

Z = {n ∈ N|an = 0} (3)

be the set of indices of null elements of the sequence {an}∞n=0. The problem
of characterising Z was first studied by Skolem [24] in 1934, and his result was
generalised by Mahler [17] and Lech [15].

Theorem 3.1 (Skolem-Mahler-Lech) In a field of characteristic 0, for any
linear recurrence sequence {an}∞n=0, the set Z of indices of its null elements is
semi-linear; that is, it is the union of a finite set and finitely many arithmetic
progressions.

The above Skolem’s problem was further considered in terms of decidability.
The problem of deciding whether or not Z is infinite was solved by Berstel and
Mignotte [5] who found an algorithm for generating all arithmetic progressions
used in Theorem 3.1. The problem of deciding the finiteness of the complement
of Z was studied by Salomaa and Soittola [23]. Their results are summarised
as the following:
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Theorem 3.2 (Berstel-Mignotte-Salomaa-Soittola) For linear recurrence
sequences {an}∞n=0, it is decidable whether or not

1. Z is infinite;

2. Z = N;

3. Z contains all except finitely many natural numbers.

The following emptiness problem dual to item 2) in Theorem 3.2 was also
considered in the literature, but it is still open; for details, we refer to [13, 22].

Problem 3.1 Given a linear recurrence sequence {an}∞n=0, decide whether or
not Z is empty.

3.2 Skolem’s Problem in Matrix Form

In this subsection, we show a useful connection between the quantum reachabil-
ity problem and the Skolem’s problem. The linear recurrence relation Eq. (2)
can be written in a matrix form:

an = uTMnv, (4)

where M is the d× d matrix















cd−1 cd−2 · · · c1 c0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

. . .
...

0 0 · · · 1 0















,

u = [1, 0, · · · , 0]T and v = [ad−1, ad−2, · · · , a0]T are d−dimensional column
vectors, and T stands for transpose. On the other hand, if {an}∞n=0 is of form
Eq. (4) for general u,v and M with dimension d, then the minimal polynomial
g(x) of M is of order at most d, g(M) = 0, and a linear recurrence relation of
order no greater than d is satisfied by {an}∞n=0. Therefore, the Skolem’s problem
can be equivalently considered in the matrix form Eq. (4).

Let us consider Problem 2.1 in a special case: (1) |Act| = 1, i.e., there is
only one unitary operator Uα of A, (2) f = V is a subspace of H, and (3)
dimHini = dimV ⊥ = 1. Let |ψ0〉 ∈ Hini and |ϕ〉 ∈ V ⊥. Then we have
L(A, f) = {n ∈ N|〈ϕ|Un

α |ψ0〉 = 0}. It is actually the set Z in Eq. (3) if we think
of Uα, |ϕ〉 and |ψ0〉 as M , u, and v in Eq. (4). From Lemma 2.1, the emptiness
of Z (Problem 3.1), and the properties 1), 2) and 3) of Z in Theorem 3.2 are
equivalent to A |= FV , A |= IV , A |= GV , and A |= UV , respectively. From
this point of view, our decidability for a general f (Theorem 2.2) is somewhat a
generalization of the decidable results (Theorem 3.2) of Skolem’s problem where
f is taken to be a subspace.
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3.3 Undecidability of A |= Gf , A |= Uf and A |= If

Now we consider an undecidable result relevant to the Skolem’s problem. Instead
of {Mn|n ∈ N} in Eq. (4), there is a semi-group generated by a finite number
of matricesM1,M2, · · · ,Mk, written as 〈M1,M2, · · · ,Mk〉. Then the emptiness
problem can be generalised as follows:

Problem 3.2 Provided d×d matrices M1,M2, · · · ,Mk and d-dimensional vec-
tors u and v, decide whether or not ∃M ∈ 〈M1,M2, · · · ,Mk〉 s.t. uTMv = 0.

The above problem was proved to be undecidable in [20] and [8], through
a reduction from the Post’s Correspondence Problem (PCP) [21]. Similar to
the discussion in last subsection, we can choose Mi as unitary operators and
u, v as quantum states, and then the emptiness of L(A, f) for f = V and
dimHini = dimV ⊥ = 1 but with |Act| > 1 being allowed can be regarded
as a special case of Problem 3.2. In fact, this problem was also proved to be
undecidable by Blondel et. al. [7].

Theorem 3.3 (Blondel-Jeandel-Koiran-Portier) It is undecidable whether
or not L(A, V ) is empty, given a quantum automaton A and a subspace V with
dimHini = dimV ⊥ = 1.

We can use this undecidable result to prove the Theorem 2.1 for ∆ ∈
{G,U, I}. We first prove undecidability of A |= Gf . Let automaton A be the
same as in Theorem 3.3, but put f = ¬V (not V ). Then according to clause 3) of
Lemma 2.1, A |= Gf is equivalent to the emptiness of L(A,¬(¬V )) = L(A, V ).
The undecidability follows immediately from Theorem 3.3.

To prove undecidability of A |= Uf and A |= If , we slightly modify each
quantum automaton A = (H, Act, {Uα|α ∈ Act},Hini) by adding a silent action
τ . Assume that τ /∈ Act and Uτ = I (the identity operator in H). Put A′ =
(H, Act ∪ {τ}, {Uα|α ∈ Act ∪ {τ}},Hini). Then we claim:

A |= Gf iff A′ |= Uf iff A′ |= If. (5)

In fact, it is obvious that A |= Gf ⇒ A′ |= Uf ⇒ A′ |= If because Uτ is
silent. Conversely, if A 6|= Gf , then there exists s = α0α1 · · ·αn ∈ Act∗ such
that Us|ψ0〉 6|= f . We consider the infinite sequence of actions w = sτω ∈
(Act ∪ {τ})ω. It is clear that σ(p(|ψ0〉, w)) 6|= Uf and σ(p(|ψ0〉, w)) 6|= If , and
so A′ 6|= Uf and A′ 6|= If . Finally, undecidability of A |= Uf and A |= If
follows immediately from Eq. (5) and undecidability of A |= Gf . Remarkably,
the simple form of f = ¬V is sufficient for undecidability.

4 Reduction from The halting problem for 2-

counter Minsky machines

The aim of this section is to prove undecidability of A |= Ff . Our strategy is
a reduction from the halting problem for 2-counter Minsky machines to reach-
ability of quantum automata.
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4.1 2-counter Minsky Machine

A 2-counter Minsky machine [18] is a program M consisting of two variables
(counters) a and b of natural numbers N, and a finite set of instructions, labeled
by l0, l1, · · · , lm. This program starts at l0 and halts at lm. Each of instructions
l0, l1, · · · , lm−1 is one of the following two types:

increment li : c← c+ 1; goto lj ;
test-and-decrement li : if c = 0 then goto lj1 ;

else c← c− 1; goto lj2 ;

where c ∈ {a, b} is one of the counters. The halting problem is as follows:
given a 2-counter Minsky machineM together with the initial values of a and
b, decide whether the computation ofM will terminate or not. This problem is
known to be undecidable.

For convenience of relatingM to a quantum automaton, we slightly modify
the definition ofM without changing its termination:

1. Without loss of generality, we assume the initial values of a and b to be
both 0. This can be done because any value can be achieved from zero by
adding some instructions of increment at the beginning.

2. For each instruction li of test-and-decrement of c, we rewrite it as

li : if c = 0 then goto l′i; else goto l′′i ;

l′i : goto lj1 ;

l′′i : c← c− 1; goto lj2 ;

(6)

where l′i and li
′′ are new instructions. For c ∈ {a, b}, we write L1c for

the set of all instructions of increment of c; and we write L2c, L
′
2c and

L′′
2c for the set of instructions li, the set of instructions l′i and the set of

instructions l′′i given in Eq. (6), respectively. Now the set of all instructions
ofM becomes

L = L1a ∪ L1b ∪ L2a ∪ L2b ∪ L′
2a ∪ L′

2b ∪ L′′
2a ∪ L′′

2b ∪ {lm}.

3. We rewrite lm as
lm : goto lm;

and we define thatM terminates if lm is reachable during the computa-
tion.

Obviously, the halting problem is also undecidable for 2-counter Minsky ma-
chines defined in this way.

We will encode 2-counter Minsky machines into quantum automata so that
undecidability of A |= Ff is derived from the undecidability of halting problem.
More precisely, for any given 2-counter Minsky machineM, we will construct a
quantum automaton A and find two subspaces V and W of H such that

M terminates⇔ A |= F(V ∧ ¬W ). (7)

The basic ideas of this construction are outlined as follows:
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1. A state of M is of form (a, b, x), where a, b ∈ N are the values of the
two counters, and x ∈ L is the instruction to be executed immediately.
We will use quantum states |φn〉 and |l〉 to encode nature numbers n and
instructions l, respectively. Then the corresponding quantum state in A
is chosen as the product state |ψ〉 = |φa〉|φb〉|l〉.

2. The computation ofM is represented by the sequence of its states:

σM = (a0, b0, x0)(a1, b1, x1)(a2, b2, x2) · · · , (8)

where (a0, b0, x0) = (0, 0, l0) is the initial state and (ai+1, bi+1, xi+1) is
the successor of (ai, bi, xi) for all i ≥ 0. We will construct unitary oper-
ators of A to encode the transitions from a state to its successor. Then
by successively taking the corresponding unitary operators, the quantum
computation

σ0 = |ψ0〉|ψ1〉 · · · , ∀i ≥ 0 |ψi〉 = |φai
〉|φbi〉|xi〉 (9)

is achieved in A to encode σM.

3. From the correspondence between σM and σ0, termination ofM will be
encoded as certain reachability property of σ0 (Lemma 4.1).

4. Besides σ0, infinitely many computation paths are achievable in A. So
there is still a gap between reachability of σ0 and that of A. Our solution
is to construct two subspaces V and W such that σ |= F(V ∧ ¬W ) for all
paths σ of A except σ0 (Lemma 4.2). Then

A |= F(V ∧ ¬W )⇔ σ0 |= F(V ∧ ¬W ),

and Eq. (7) will be proved from this equivalence.

4.2 Encoding Classical States into Quantum States

This subsection is the first step of constructing quantum automaton A. We
show how to encode the states ofM into quantum states in a finite dimensional
Hilbert space. First, we use qubit states in the 2−dimensional Hilbert space
H2 = span{|0〉, |1〉} to encode natural numbers. Consider the following unitary
operator acting on H2:

G = |+〉〈+|+ eiθ|−〉〈−|,

where |±〉 = (|0〉 ± |1〉)/
√
2 and eiθ = (3 + 4i)/5. It is easy to see that for any

integer n, Gn|0〉 = |0〉 ⇔ n = 0. So for each integer n, we can use Gn|0〉 to
encode n. Moreover, operator G can be thought of as the successor function
g(n) = n+1. Now, let Ha = Hb = H2 and we use states inHa and Hb to encode
the counters a and b, respectively. Specifically, for each value n of c ∈ {a, b},
the corresponding state is |φn〉 = Gn

c |0〉 ∈ Hc.
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We simply encode the instruction labels l as orthonormal quantum states |l〉
and construct the Hilbert space HL = span{|l〉|l ∈ L}. Then a state (a, b, x) of
M can be encoded as the quantum state |φa〉|φb〉|x〉 ∈ Ha⊗Hb⊗HL. Moreover,
the computation σM of M is encoded as the sequence σ0 of quantum states.
We note thatM terminates if and only if xi = lm for some state (ai, bi, xi) in
σM. This condition is equivalent to |ψi〉 ∈ V0, where

V0 = Ha ⊗Hb ⊗ span{|lm〉}. (10)

So the termination ofM is reduced to reachability of σ0 as follows:

Lemma 4.1 M terminates iff σ0 |= FV0.

4.3 Construction of Unitary Operators of A
In this subsection, we construct unitary operators of A to encode the state
transitions ofM. For any state (a, b, x) ofM, we consider the transition from
this state to its successor. There are two cases:

1. x ∈ L1a ∪L1b ∪L′
2a ∪L′

2b ∪L′′
2a ∪L′′

2b ∪ {lm}. Then from the definition of
L, x is of form

x : c← c+ e; goto y;

where c ∈ {a, b}, y ∈ L and e = 1, 0,−1 for l ∈ L1c, L
′
2c ∪ {ln}, L′′

2c,
respectively. So the successor of (a, b, x) is as (ã, b̃, y), where ã = a + e,
b̃ = b for c = a, and ã = a, b̃ = b + e for c = b. We construct a unitary
operator corresponding to x:

Ux = Oe
c ⊗Oxy,

where Oa = Ga ⊗ Ib and Ob = Ia ⊗Gb are unitary operators on Ha ⊗Hb,
and Oxy is a unitary operator on HL satisfying Oxy|x〉 = |y〉. Obviously,
we have |φã〉|φb̃〉|y〉 = Ux|φa〉|φb〉|x〉 for any a, b. So Ux is what we want.

2. x ∈ L2a ∪ L2b. Then x is of form

x : if c = 0 then goto y; else goto z;

where c ∈ {a, b}, y ∈ L′
2c and z ∈ L′′

2c. The successor of (a, b, x) is (a, b, y)
for c = 0, and is (a, b, z) for c 6= 0. We construct two unitary operators
corresponding to x:

Ux0 = Ia ⊗ Ib ⊗ Oxy and Ux1 = Ia ⊗ Ib ⊗Oxz,

where Oxy|x〉 = |y〉 and Oxz |x〉 = |z〉. Thus, Ux0 is used when c = 0, and
Ux1 is used when c 6= 0.

Now, we only need to specifically construct the unitary operator Oxy for

given x, y ∈ L. To this end, we construct for each l ∈ L a new quantum state |l̂〉
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to be the result of Oxy|l〉 (for x 6= l). Formally, we construct a new state space

ĤL = span{|l̂〉 : x ∈ L} and extend HL to

H2L = HL ⊕ ĤL = span{|l〉, |l̂〉|l ∈ L}.

Then Oxy is defined in H2L as

Oxy|x〉 = |y〉, Oxy|l〉 = |l̂〉 (∀l ∈ L, l 6= x),

Oxy|ŷ〉 = |x̂〉, Oxy|l̂〉 = |l〉 (∀l ∈ L, l 6= y).
(11)

Notably, Oxy satisfies the following property:

Oxy|z〉 ∈ ĤL, ∀z ∈ L and z 6= x. (12)

Finally, quantum automaton A is constructed as follows: the state space is
H = Ha ⊗Hb ⊗H2L, the unitary operators are {Uα|α ∈ Act}, where

Act = {x0, x1|x ∈ L2a ∪ L2b} ∪ L\(L2a ∪ L2b),

and the initial state is |ψ0〉 = |0〉|0〉|l0〉. From the construction of the unitary
operators, we see that the sequence σ0 of quantum states defined by Eq. (9) is
achievable in A.

4.4 Construction of V and W

This subsection is the last step to achieve Eq. (7): construction of subspaces V
and W . First, we find a way to distinguish σ0 from other paths of A. Specif-
ically, we consider a state |ψn〉 = |φan

〉|φbn〉|xn〉 in σ0 to be transformed by a
“mismatched” unitary operator in {Uα|α ∈ Act}; namely, this unitary operator
transforms |ψn〉 into a state |ψ′〉 other than |ψn+1〉. Each unitary operator in A
is of form Uy, Uy0, or Uy1, where y is the corresponding instruction. If y 6= xn,

then it is definitely mismatched. It follows from the Eq. (12) that |ψ′〉 ∈ V̂ ,
where V̂ = Ha ⊗Hb ⊗ ĤL.

Now we only need to consider the case of y = xn. We have xn ∈ L2a ∪
L2b, because there are two unitary operators corresponding to xn: the one
mismatched and the one not. For x ∈ L2a, there are two cases:

1. an = 0 and the mismatched unitary operator is Uxn1. From the definition
of Uxn1, we have

|ψ′〉 = Uxn1|0〉|φbn〉|xn〉 = |0〉|φbn〉|z〉,

where z ∈ L′′
2a. We write

V2a = span{|0〉} ⊗ Hb ⊗ span{|l〉 : l ∈ L′′
2a}.

Then |ψ′〉 ∈ V2a.
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2. an > 0 and the mismatched one is Uxn0. From the definition of Uxn0, we
have

|ψ′〉 = Uxn0|φan
〉|φbn〉|xn〉 = |φan

〉|φbn〉|y〉,
where y ∈ L′

2a. We write

V1a = Ha ⊗Hb ⊗ span{|l〉 : l ∈ L′
2a},

Wa = span{|0〉} ⊗ Hb ⊗ span{|l〉 : l ∈ L′
2a}.

Then |ψ′〉 ∈ V1a\Wa.

Similarly, for xn ∈ L2b we can prove that |ψ′〉 ∈ V2b for bn = 0 and |ψ′〉 ∈ V1b\Wb

for bn > 0, where

V1b = Ha ⊗Hb ⊗ span{|l〉 : l ∈ L′
2b},

V2b = Ha ⊗ span{|0〉} ⊗ span{|l〉 : l ∈ L′′
2b},

Wb = Ha ⊗ span{|0〉} ⊗ span{|l〉 : l ∈ L′
2b}.

We have actually proved that a state

|ψ′〉 ∈ V̂ ∪ (V1a\Wa) ∪ (V1b\Wb) ∪ V2a ∪ V2b (13)

is always reachable in computation paths of A other than σ0. On the other
hand, it is also easy to verify that such a state cannot be in σ0. So σ0 can be
distinguished by this reachability property.

Now we put

V = V0 + V̂ + V1a + V1b + V2a + V2b,

W =Wa +Wb,

where V0 is defined by Eq. (10). Then we have:

Lemma 4.2 For all paths p in A with state sequences σ(p) 6= σ0, we have
σ(p) |= F(V ∧ ¬W ).

Proof: We only need to note that the union of five sets in Eq. (13) is included in
{0}∪ (V \W ), and then this result is straightforward from our discussion above.
�

Moreover, we have the following result:

Lemma 4.3 σ0 |= F(V ∧ ¬W ) iff σ0 |= FV0.

Proof: It suffices to prove that for any state |ψn〉 in σ0,

|ψn〉 ∈ V \W iff |ψn〉 ∈ V0.

The “if” part is obvious since V0 ⊆ V and V0 ∩W = {0}. We now prove the
“only if” part. As |ψn〉 = |φan

〉|φbn〉|xn〉 is a state in σ0, (an, bn, xn) is a state
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in σM and thus xn ∈ L. From the definition of L and Eq. (6), |ψn〉 is checked
in the following cases of xn:

xn ∈ L1a ∪ L1b ∪ L2a ∪ L2b, thus |ψn〉 6∈ V ;

xn ∈ L′
1a ⇒ an = 0, thus |ψn〉 ∈ Wa;

xn ∈ L′
1b ⇒ bn = 0, thus |ψn〉 ∈ Wb;

xn ∈ L′′
2a ⇒ an 6= 0, thus |ψn〉 /∈ V ;

xn ∈ L′′
2b ⇒ bn 6= 0, thus |ψn〉 /∈ V.

None of them satisfies |ψn〉 ∈ V \W . So the only possibility is xn = lm, and
then |ψn〉 ∈ V0. �

Finally, we obtain Eq. (7) by simply combining Lemmas 4.1, 4.2 and 4.3.
Undecidability of A |= Ff is so proved, even for the simple form of f = V ∧¬W .

5 Decidable Results

We prove Theorem 2.2 in this section. We write f in the disjunctive normal
form. As it contains no negation, for each conjunctive clause fi of f , ‖fi‖ is a
subspace of H. We write Vi = ‖fi‖ ∈ AP , then f can be equivalently written
as f =

∨m

i=1 Vi and ‖f‖ =
⋃m

i=1 Vi is a union of finitely many subspaces of the
state Hilbert space H of quantum automaton A.

To decide whether or not A |= ∆f , we need to compute the set of all pre-
decessor states with respect to a reachability property. Formally, for any given
quantum automaton A = (H, Act, {Uα|α ∈ Act},Hini) and any |ψ〉 ∈ H, we
consider the automatonA(ψ) = (H, Act, {Uα|α ∈ Act}, span{|ψ〉}) for the paths
starting in |ψ〉. Then for any ∆ ∈ {G,U, I}, |ψ〉 is called a (∆, f)−predecessor
state if A(ψ) |= ∆f , and we write the set of all predecessor states as

Y (A,∆, f) = {|ψ〉 ∈ H|A(ψ) |= ∆f}.

Then A |= ∆f can be decided by checking whether or not Hini ⊆ Y (A,∆, f).

5.1 Decidability of A |= If for Single Unitary Operator

We will prove the decidability of A |= If by constructing the set Y (A, I, f). In
this subsection, we do this for a special case in which |Act| = 1 and m = 1, i.e.,
A contains only a single unitary operator, and f = V is a subspace. It should
be pointed out that the result for this special case was proved in [5] as the
decidability of finiteness Skolem’s problem in the single matrix form. Here, we
present our new proof as it would be useful for us to obtain a general result for
finitely many unitary operators in next subsection. For convenience, we simply
write Y for Y (A, I, f) in these two subsections.

Let Act = {α}, and the string αn is simply represented by n. By an algo-
rithm, we show that Y is a union of finitely many subspaces Y0, Y1, · · · , Yp−1

which forms a cycle graph under the unitary transformation, namely Yr+1 =
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UαYr for all 0 ≤ r ≤ p − 2 and Y0 = UαYp−1. Then Y can be written as

Y =
⋃p−1

r=0 U
r
αY0 and Y0 = Up

αY0. The following lemma is required for proving
correctness of our algorithm.

Lemma 5.1 For any unitary operator U on H, there exists a positive integer
p such that for any subspace K of H, UpK = K provided UnK = K for some
integer n. We call this integer p the period of U .

We put the technical proof of the above lemma into Appendix A. Now Y can
be computed by Algorithm 1. Step 1) can be done as described in the proof of

Algorithm 1:

1. Compute the period p of Uα;

2. Compute the maximal subspace K of V such that Up
αK = K;

3. Y =
⋃p−1

r=0 U
r
αK.

Lemma 5.1. Step 2) can be done as follows: initially put K0 = V , repeatedly
compute Kn+1 = Kn∩Up

αKn until Kn+1 = Kn, and then K = Kn. Sometimes,
we write K as K(Uα, V ) to show dependence of K on Uα and V . Correctness
of this algorithm is proved in Appendix B.

5.2 Decidability of A |= If for General Case

Now, we construct Y = Y (A, I, f) for a general input: A and f =
∨m

i=1 Vi. Like
the case of single unitary operator, we can prove that Y is a union of finitely
many subspaces. The result can be specifically described as follows:

Lemma 5.2 Let X = {Y1, Y2, · · · , Yq} be a set of subspaces of H satisfying the
following three conditions:

1. For any Yi and α ∈ Act, there exists Yj such that UαYi = Yj . In other
words, under the unitary transformations, these subspaces form a more
general directed graph than a simple cycle graph in the case of single uni-
tary operator.

2. For any simple loop (namely Yri 6= Yrj for different i and j in the loop)

Yr0
Uα0→ Yr1

Uα1→ · · ·
Uαk−2→ Yrk−1

Uαk−1→ Yr0 ,

there exists some i ∈ {0, 1, · · · , k − 1} and j ∈ {1, 2, · · · ,m} such that
Yri ⊆ Vj .

3. Y ⊆ Y1 ∪ Y2 ∪ · · · ∪ Yq.
Then Y = Y1 ∪ Y2 ∪ · · · ∪ Yq.
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Proof: From condition 3), it suffices to prove that if X satisfies the first two
conditions, then ∪X ⊆ Y . We only need to prove that for any |ψ0〉 ∈ ∪X , we
have |ψ0〉 ∈ Y , namely, A(ψ0) |= If . From the definition, it suffices to prove
that

∀w = α0α1 · · · ∈ Actω
∞

∃n ≥ 0 s.t. |ψn〉 ∈ ‖f‖,
where |ψn+1〉 = Uαn

|ψn〉 for n = 0, 1, · · · .
Now we choose Yr0 ∈ X such that |ψ0〉 ∈ Yr0 . According to the first condi-

tion, let Yrn+1
= Uαn

Yrn , n = 0, 1, · · · . Then |ψn〉 ∈ Yrn . Consider any pairs of
ri and rj such that i < j, ri = rj , and ri, ri+1, · · · , rj−1 are pairwise different.
Applying the second condition in the simple loop

Yri
Uαi→ Yri+1

Uαi+1→ · · ·
Uαj−2→ Yrj−1

Uαj−1→ Yri ,

there exists some n such that i ≤ n < j and Yrn ⊆ ‖f‖. Then |ψn〉 ∈ ‖f‖.
As we can choose infinitely many pairs (ri, rj) in the sequence w, we can find
infinitely many n’s. Thus |ψ0〉 ∈ Y . �

Therefore, to construct Y we only need to find an algorithm for construct-
ing a set of subspaces X = {Y1, Y2, · · · , Yq} satisfying the three conditions of
Lemma 5.2. To this end, we invoke a lemma which is proved in [16]:

Lemma 5.3 Suppose that Xk is the union of a finite number of subspaces of H
for all k ≥ 0. If X0 ⊇ X1 ⊇ · · · ⊇ Xk ⊇ · · · , then there exists n ≥ 0 such that
Xk = Xn for all k ≥ n.

Now the set X can be computed by Algorithm 2. Step 2) is the key step

Algorithm 2:

1. Initially put X ← {H} then jump to step 2);

2. If X satisfies condition 1) and condition 2) of Lemma 5.2, then return X ;
otherwise construct a new set X ′ of subspaces of H satisfying
Y ⊆ ∪X ′ ⊂ ∪X , and put X ← X ′, then repeat step 2). Here notation
“⊂” is for “proper subset”.

in the algorithm, in which X can be replaced by a “smaller” one X ′ if it is not
available. Due to Lemma 5.3, this step can only be executed a finite number of
times and thus an output X satisfying condition 1) and condition 2) of Lemma
5.2 should be returned by the algorithm. We also note that condition 3) of
Lemma 5.2 is always satisfied by X during the execution. So this output is just
what we need.

Now we give a detailed description of step 2). It can be properly formalized
as a lemma:

Lemma 5.4 Given a set X = {Y1, Y2, · · · , Yq} of subspaces in which any two
subspaces Yi and Yj do not include each other, if X satisfies condition 3) but
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does not satisfy condition 1) or condition 2) of Lemma 5.2, then we can algo-
rithmically find some Yi ∈ X and its proper subspaces W1,W2, · · · ,Wl, such
that

Y ∩ Yi ⊆W1 ∪W2 ∪ · · · ∪Wl. (14)

The proof of the above lemma is postponed to Appendix C. From this lemma,
we can construct X ′ for any given X as follows. First, we eliminate all such
Yi from X that Yi ⊂ Yj for some Yj ∈ X . Then from Lemma 5.4 we can find
some Yi ∈ X and its subspaces W1,W2, · · · ,Wl satisfying Eq. (14). We put
X ′ = X ∪ {Wk|1 ≤ k ≤ l}\{Yi}, and then ∪X ′ ⊂ ∪X . As Y ⊆ ∪X , we also
have Y ⊆ ∪X ′ from Eq. (14).

5.3 Decidability of A |= Gf and A |= Uf

We now prove Theorem 2.2 for ∆ ∈ {G,U}. We first prove the decidability of
A |= Gf by computing Y = Y (A,G, f). According to clause 3) in Lemma 2.1,
we have

Y = {|ψ〉 ∈ H|L(A(ψ), f) = Act∗}
= {|ψ〉 ∈ H|Us|ψ〉 ∈ ‖f‖, ∀s ∈ Act∗}.

(15)

Then we obtain ∀α ∈ Act, UαY ⊆ Y ⊆ ‖f‖. In fact, Y can be computed by
Algorithm 3, and thus Y is the maximal one of sets satisfying ∀α ∈ Act, UαY =
Y ⊆ ‖f‖.

Algorithm 3:

1. Y ← V1 ∪ V2 ∪ · · · ∪ Vm;

2. If UαY 6= Y , for some α ∈ Act, then Y ← U−1
α Y ∩ Y ; otherwise return Y .

Correctness of Algorithm 3: We write Y0, Y1, · · · for the instances of Y during
the execution of the algorithm. Then Y0 = V1 ∪ V2 ∪ · · · ∪ Vm and Yn+1 =
U−1
α Yn ∩ Yn for some α ∈ Act. It can be proved by induction on n that each Yn

is a union of finitely many subspaces of H. Note that Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · is a
descending chain. According to Lemma 5.3, this chain would terminates at some
n, and the algorithm output is Yn. We have UαYn = Yn for all α ∈ Act. Now we
prove Yn = Y . First, since Y ⊆ ‖f‖ = Y0 and Y ⊆ U−1

α Y for all α ∈ Act, it can
be proved by induction on k that Y ⊆ Yk for all k, and particularly, Y ⊆ Yn.
On the other hand, As UsYn = Yn ⊆ ‖f‖ for all s ∈ Act∗, we have Yn ⊆ Y from
the definition of Y . So Yn = Y . �

Next we prove the decidability of A |= Uf . Indeed, we can prove the
following lemma from which it follows that Y (A,U, f) = Y (A,G, f).

Lemma 5.5 A |= Uf iff Hini ⊆ Y (A,G, f).
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Proof: The “if” part can be verified by observation of

A |= Gf ⇒ A |= Uf.

So we only need to prove the “only if” part. We assume A |= Uf . Then for any
|ψ0〉 ∈ Hini, we have A(ψ0) |= Uf . According to clause 4) of Lemma 2.1, we
know that Act∗ − L(A(ψ0), f) is finite. Then there exists some integer N ≥ 0
such that s ∈ L(A(ψ0), f) whenever |s| ≥ N . We choose s = αN . Then
UN
α |ψ0〉 ∈ Y for any α ∈ Act. Note that UαY = Y , we have |ψ0〉 ∈ U−N

α Y = Y .
�

6 Conclusion

We have investigated the decision problem of quantum reachability: decide
whether or not a set of quantum states is reachable by a quantum system mod-
elled by a quantum automaton. The reachable sets considered in this paper
are defined as boolean combinations of (or described by classical propositional
logical formula over) the set of (closed) subspaces of the state Hilbert space of
the system. Four types of reachability properties have been studied: eventually
reachable, globally reachable, ultimately forever reachable, and infinitely often
reachable. Our major contribution is the (un)decidable results:

• All of these four reachability properties are undecidable even for a certain
class of the reachable sets which are formalized by logical formulas of a
simple form;

• Whenever the reachable set is a union of finitely many subspaces, the
problem is decidable for globally reachable, ultimately forever reachable
and infinitely often reachable. In particular, it is decidable when the
reachable set contains only finitely many quantum states.

One of our main proof techniques is to demonstrate that quantum reachabil-
ity problem is a generalization of the Skolem’s problem for unitary matrices.
The undecidable results for global reachability, ultimately forever reachability
and infinitely often reachability have been derived directly by employing the
undecidability of a relevant emptiness problem. Nevertheless, the celebrated
Skolem-Mahler-Lech theorem has been applied to the development of algorithms
showing the decidable results. Another technique we have employed is to en-
code a 2-counter Minsky machine using a quantum automaton. It was used
to prove undecidability of the eventually reachable property. This approach is
interesting, since it provides a new way to demonstrate quantum undecidability
other than reduction from the PCP that has been the main technique for the
same purpose in previous works.

The problem whether or not A |= Ff is decidable for ‖f‖ being a finite
union of subspaces has been left unsolved. In fact, this problem is difficult even
for a very special case where |Act| = 1 and ‖f‖ is a single subspace. We have
shown that such a reachability problem is equivalent to the emptiness Skolem’s
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problem 3.1 for {an}∞n=0 defined by Eq. (4) with M being a unitary operator.
Unfortunately, the emptiness Skolem’s problem is still open even for n = 5 [22].

The model of quantum systems used in this paper is quantum automata. An-
other problem for further studies is (un)decidability of the reachability proper-
ties considered in this paper for a more general model, namely quantum Markov
chains [28] where actions can be not only unitary transformations but also super-
operators.
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Appendix

A. Proof of Lemma 5.1

We algorithmically construct a positive integer p satisfying the following con-
dition: for any two eigenvalues λ and µ of Uα, if (λ/µ)

n = 1 for some integer
n, then (λ/µ)p = 1. Note that all roots of the characteristic polynomial f(x)
of U ⊗ U † are exactly all quotients λ/µ of two eigenvalues of U . If for some
quotient and integer n, (λ/µ)n = 1, we let n be the minimal positive integer
number satisfying this condition. Then λ/µ should also be a root of the nth cy-
clotomic polynomial Φn(x). Thus Φn(x) should be a divisor of f(x) since Φn(x)
is irreducible. Therefore, all of such n’s can be obtained by checking whether
or not Φn(x)|f(x). Finally, we put p to be the least common multiple of them.
It is easy to verify that (λ/µ)p = 1 for all such quotients.

Now we prove that p is really what we want. Suppose UnK = K, then there
exists a basis of K such that all states of this basis are eigenstates of Un. It
suffices to prove that any eigenstate of Un is also an eigenstate of Up. Now we
prove it by showing that any eigenspace W of Un is also an eigenspace of Up.
Since all eigenstates of U are eigenstates of Un, we can choose a set of eigenstates
of U to form a basis of W . Consider any two of these states, written as |ψ〉 and
|φ〉, and written as λ and µ, respectively, for the corresponding eigenvalues of
U . Then we have (λ/µ)n = 1, and according to our choice of p, (λ/µ)p = 1. So
|ψ〉 and |φ〉 are in the same eigenspace of Up. As these two states are arbitrarily
chosen, it implies that all of states in this basis of W are in the same eigenspace
of Up. Thus W is an eigenspace of Up. �

B. Correctness of Algorithm 1

For any q ∈ N, we writeKq as the maximal subspace of V such that U q
αKq = Kq.

Then Kp = K = K(Uα, V ). We prove that Kq can be characterized as the
following set of sates:

{|ψ〉 ∈ V |∀n ∈ N, U qn
α |ψ〉 ∈ V }.
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In fact, it is easy to verify that any state in Kq is also in this set. On the other
hand, for any state |ψ〉 in this set, span{U qn

α |ψ〉|n = 0, 1, · · · } is both a subspace
of V and an invariant subspace of U q

α, so it is a subspace of Kq according to the
maximality of Kq. Then |ψ〉 ∈ Kq. Therefore Kq is equal to the set.

Now for each |ψ〉 ∈ H, according to clause 2) in Lemma 2.1, A(ψ) |= IV iff
L(A(ψ), V ) = {n ≥ 0|Un

α |ψ〉 ∈ V } satisfies liveness condition Eq. (1), namely
it is infinite in this case. Note that Un

α |ψ〉 ∈ V iff tr(PV ⊥Un(ψ)) = 0, where
ψ is the density operator of |ψ〉, PV ⊥ is the projection operator of V ⊥ and U
is the super-operator of Uα. Since {tr(PV ⊥Un(ψ))}∞n=0 is a linear recurrence
sequence, according to Theorem 3.1, L(A(ψ), V ) is semi-linear, and thus it is
infinite if and only if it contains an arithmetic progression {qn+ r}∞n=0. Then

Y = {|ψ〉|L(A(ψ), V ) is infinite}
= {|ψ〉|∃q, r ∈ N.∀n ∈ N. U qn+r

α |ψ〉 ∈ V }
= {|ψ〉|∃q, r ∈ N.U r

α|ψ〉 ∈ Kq}
= {|ψ〉|∃q, r ∈ N.|ψ〉 ∈ U q−r

α Kq}

=
⋃

q,r≥0

U r
αKq =

∞
⋃

r=0

U r
αKp =

p−1
⋃

r=0

U r
αK.

(16)

The last two equalities in Eq. (16) come from the following observation. For
each integer q, since U q

αKq = Kq, by Lemma 5.1 we have Up
αKq = Kq. Thus

Kq ⊆ Kp = K follows from maximality of K. �

C. Proof of Lemma 5.4

We need to consider the two following cases:

• Case 1. Condition 1) in Lemma 5.2 is not satisfied by X .

• Case 2. Condition 1) in Lemma 5.2 is satisfied by X but condition 2) is
not.

Proof for case 1: Since condition 1) is not satisfied, we can find all Yi and
α ∈ Act such that UαYi is not any Yj . We choose Yi with the maximal dimension
and claim that for any α ∈ Act, UαYi can not be included in any Yj . Otherwise,
UαYi is a proper subspace of some Yj , and dimYj > dimYi. It is easy to
prove by induction on n that all the subspaces Un

αYj (n = 0, 1, · · · ) are in
{Y1, Y2, · · · , Ym}. So, there exists some n1 and n2 such that n2 > n1 and
Un1
α Yj = Un2

α Yj . Then Yi is a proper subset of U−1
α Yj = Un2−n1−1

α Yj , which is
in {Y1, Y2, · · · , Ym}. This contradicts to the assumption that any two subspaces
in {Y1, Y2, · · · , Ym} do not include each other.

Now we choose Wj = Yi ∩ U−1
α Yj (j = 1, 2, · · ·m) for Yi. All of these are

proper subspaces of Yi. On the other hand, from the definition of Y , one can
easily verify that Uα|ψ〉 ∈ Y for all |ψ〉 ∈ Y and for all α ∈ Act. Then for any
state |ψ〉 ∈ Y ∩ Yi, we know that Uα|ψ〉 ∈ Y ⊆ ∪X . So |ψ〉 is in some U−1

α Yj ,
and thus |ψ〉 ∈ Yi ∩ U−1

α Yj =Wj . Then Eq. (14) holds. �
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To prove Lemma 5.4 for case 2, we need the following:

Lemma 6.1 For any |ψ0〉 ∈ Y and α1, α2, · · · , αk ∈ Act, there exists some
r ∈ {0, · · · , k − 1}, some t ∈ {1, 2, · · · ,m}, and some n ∈ N, such that

|ψ0〉 ∈ U−1
α1
U−1
α2
· · ·U−1

αr
T nK(T, Vt), (17)

where T = Uαr+1
· · ·Uαk

Uα1
· · ·Uαr

, and K(T, Vt) is defined as in Algorithm 1.

Proof: We consider the path p of repeatedly performing Uα1
, Uα2

, · · · , Uαk
from

the initial state |ψ0〉:

p =|ψ0〉
Uα1→ |ψ1〉

Uα2→ · · ·
Uαk−1→ |ψk−1〉

Uαk→

|ψk〉
Uα1→ |ψk+1〉

Uα2→ · · ·
Uαk−1→ |ψ2k−1〉

Uαk→
· · · .

(18)

Then |ψkn+r+1〉 = Uαr+1
|ψkn+r〉, for all n ∈ N and r ∈ {0, · · · , k − 1}. Since

σ(p) |= If , we have |ψn〉 ∈ ‖f‖ for infinitely many n. This further implies that
there exists some r ∈ {0, 1, · · · , k − 1} and some t ∈ {1, 2, · · · ,m} such that
|ψkn+r〉 ∈ Vt for infinitely many n. We put T = Uαr+1

· · ·Uαk
Uα1
· · ·Uαr

. Then
the set {n|T n|ψr〉 ∈ Vt} is infinite. According to the result of single unitary
case, we have |ψr〉 ∈ T nK(T, Vt). This is exactly Eq. (17). �

Now we are able to prove Lemma 5.4 for case 2.
Proof for case 2: Since the condition 1) is satisfied but condition 2) is not,

we can find a simple loop

Yr0
Uα1→ Yr1

Uα2→ · · ·
Uαk−1→ Yrk−1

Uαk→ Yr0 ,

such that Yri * Vt for all i ∈ {0, 1, · · · , k − 1} and all t ∈ {1, 2, · · · ,m}. We
choose Yr0 and construct W1,W2, · · · ,Wl to be proper subspaces of it. In fact,
for each i, we write Ti = Uαi+1

· · ·Uαk
Uα1
· · ·Uαi

. It holds that T n
i Yri = Yri *

Vt, and Yri * T n
i K(Ti, Vt) for all integer n. Put

Ri,t,n = U−1
α1
U−1
α2
· · ·U−1

αi
T n
i K(Ti, Vt),

then it actually means Yr0 * Ri,t,n. Note that T pi

i K(Ti, Vt) = K(Ti, Vt) for
the period pi of Ti. So the set {Ri,t,n|n = 0,±1,±2, · · · } is a finite set for
any i = 0, 1, · · · , k − 1 and any t = 1, 2, · · · ,m. Therefore, we can choose
W1,W2, · · · ,Wl to be all of the Yr0 ∩Ri,t,n’s. The condition of Eq. (14) can be
easily verified, since for any state |ψ〉 ∈ Y ∩ Yr0 , we have |ψ〉 is in some Ri,t,n

according to Lemma 6.1. �
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