Skip to main content

Parameterized Model Checking of Rendezvous Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8704))

Abstract

A standard technique for solving the parameterized model checking problem is to reduce it to the classic model checking problem of finitely many finite-state systems. This work considers some of the theoretical power and limitations of this technique. We focus on concurrent systems in which processes communicate via pairwise rendezvous, as well as the special cases of disjunctive guards and token passing; specifications are expressed in indexed temporal logic without the next operator; and the underlying network topologies are generated by suitable Monadic Second Order Logic formulas and graph operations. First, we settle the exact computational complexity of the parameterized model checking problem for some of our concurrent systems, and establish new decidability results for others. Second, we consider the cases that model checking the parameterized system can be reduced to model checking some fixed number of processes, the number is known as a cutoff. We provide many cases for when such cutoffs can be computed, establish lower bounds on the size of such cutoffs, and identify cases where no cutoff exists. Third, we consider cases for which the parameterized system is equivalent to a single finite-state system (more precisely a Büchi word automaton), and establish tight bounds on the sizes of such automata.

The second, third, fourth and fifth authors were supported by the Austrian National Research Network S11403-N23 (RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science and Technology Fund (WWTF) through grants PROSEED, ICT12-059, and VRG11-005.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of token-passing systems. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 262–281. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many identical finite state processes. Inf. Comput. 81, 13–31 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decomposition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 276–291. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach. Encyclopedia of mathematics and its applications, vol. 138. Cambridge University Press (2012)

    Google Scholar 

  5. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput. Sci. 14(4), 527–550 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Esparza, J.: Keeping a crowd safe: On the complexity of parameterized verification. In: STACS (2014)

    Google Scholar 

  8. Fischer, E., Makowsky, J.A.: Linear recurrence relations for graph polynomials. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Trakhtenbrot/Festschrift. LNCS, vol. 4800, pp. 266–279. Springer, Heidelberg (2008)

    Google Scholar 

  9. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39(3), 675–735 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Counter attack on byzantine generals: Parameterized model checking of fault-tolerant distributed algorithms. CoRR abs/1210.3846 (2012)

    Google Scholar 

  11. Schmitz, S., Schnoebelen, P.: The Power of Well-Structured Systems. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 5–24. Springer, Heidelberg (2013)

    Google Scholar 

  12. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett. 28(4), 213–214 (1988)

    Article  MATH  Google Scholar 

  13. Vardi, M., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. Comput. Syst. Sci. 32(2), 182–221 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H. (2014). Parameterized Model Checking of Rendezvous Systems. In: Baldan, P., Gorla, D. (eds) CONCUR 2014 – Concurrency Theory. CONCUR 2014. Lecture Notes in Computer Science, vol 8704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44584-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44584-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44583-9

  • Online ISBN: 978-3-662-44584-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics