Skip to main content

A Dynamic Data Structure for MSO Properties in Graphs with Bounded Tree-Depth

  • Conference paper
  • 2138 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8737))

Abstract

Tree-depth is an important graph parameter which arose in the study of sparse graph classes. We present a dynamic data structure for representing a graph G with tree-depth at most D. The structure allows addition and removal of edges and vertices under assumption that the resulting graph still has tree-depth at most D, in time bounds depending only on D. A tree-depth decomposition of the graph is maintained explicitly.

This makes the data structure useful for dynamization of static algorithms for graphs with bounded tree-depth. As an example application, we give a dynamic data structure for MSO property testing.

Supported by KONTAKT II LH12095 and SVV 267313.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kapron, B.M., King, V., Mountjoy, B.: Dynamic graph connectivity in polylogarithmic worst case time. In: Khanna, S. (ed.) SODA, pp. 1131–1142. SIAM (2013)

    Google Scholar 

  2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. The MIT Press (2009)

    Google Scholar 

  3. Sleator, D.D., Endre Tarjan, R.: A data structure for dynamic trees. Journal of Computer and System Sciences 26, 362–391 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dvořák, Z., Tůma, V.: A dynamic data structure for counting subgraphs in sparse graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 304–315. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kreutzer, S., Tazari, S.: On brambles, grid-like minors, and parameterized intractability of monadic second-order logic. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 354–364. Society for Industrial and Applied Mathematics, Philadelphia (2010)

    Chapter  Google Scholar 

  7. Kreutzer, S., Tazari, S.: Lower bounds for the complexity of monadic second-order logic. In: 2010 25th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 189–198. IEEE (2010)

    Google Scholar 

  8. Dvořák, Z., Král’, D., Thomas, R.: Deciding first-order properties for sparse graphs. In: FOCS, pp. 133–142. IEEE Computer Society (2010)

    Google Scholar 

  9. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. CoRR abs/1311.3899 (2013)

    Google Scholar 

  10. Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms, vol. 28. Springer (2012)

    Google Scholar 

  11. Nešetřil, J., Ossona de Mendez, P.: Tree-depth, subgraph coloring and homomorphism bounds. European Journal of Combinatorics 27, 1022–1041 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lampis, M.: Model checking lower bounds for simple graphs. CoRR abs/1302.4266 (2013)

    Google Scholar 

  13. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, pp. 215–224. IEEE (2002)

    Google Scholar 

  14. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64, 19–37 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gajarsky, J., Hlineny, P.: Faster Deciding MSO Properties of Trees of Fixed Height, and Some Consequences. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012), Germany. Leibniz International Proceedings in Informatics (LIPIcs), vol. 18, pp. 112–123. Dagstuhl, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2012)

    Google Scholar 

  16. Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion I. decompositions. European Journal of Combinatorics 29, 760–776 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dvořák, Z., Kupec, M., Tůma, V. (2014). A Dynamic Data Structure for MSO Properties in Graphs with Bounded Tree-Depth. In: Schulz, A.S., Wagner, D. (eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44777-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44777-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44776-5

  • Online ISBN: 978-3-662-44777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics