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Representative Sets of Product Families
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Abstract

A subfamily F ′ of a set family F is said to q-represent F if for every A ∈ F and B
of size q such that A ∩ B = ∅ there exists a set A′ ∈ F ′ such that A′ ∩ B = ∅. In a
recent paper [SODA 2014] three of the authors gave an algorithm that given as input a
family F of sets of size p together with an integer q, efficiently computes a q-representative
family F ′ of F of size approximately

(
p+q

p

)
, and demonstrated several applications of this

algorithm. In this paper, we consider the efficient computation of q-representative sets for
product families F . A family F is a product family if there exist families A and B such
that F = {A ∪ B : A ∈ A, B ∈ B, A ∩ B = ∅}. Our main technical contribution is
an algorithm which given A, B and q computes a q-representative family F ′ of F . The
running time of our algorithm is sublinear in |F| for many choices of A, B and q which
occur naturally in several dynamic programming algorithms. We also give an algorithm for
the computation of q-representative sets for product families F in the more general setting
where q-representation also involves independence in a matroid in addition to disjointness.
This algorithm considerably outperforms the naive approach where one first computes F
from A and B, and then computes the q-representative family F ′ from F .

We give two applications of our new algorithms for computing q-representative sets for
product families. The first is a 3.8408knO(1) deterministic algorithm for the Multilinear
Monomial Detection (k-MlD) problem. The second is a significant improvement of
deterministic dynamic programming algorithms for “connectivity problems” on graphs of
bounded treewidth.
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1 Introduction

Let M = (E, I) be a matroid and let S = {S1, . . . , St} be a family of subsets of E of size p. A
subfamily Ŝ ⊆ S is q-representative for S if for every set Y ⊆ E of size at most q, if there is
a set X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with
X̂ ∪ Y ∈ I. By the classical result of Lovász [16], there exists a representative family Ŝ ⊆q

rep S

with at most
(p+q

p

)
sets. However, it is a very non-trivial question how to construct such a

representative family efficiently. It appeared already in the 1980’s that representative families
can be extremely useful in dynamic programming algorithms and that faster computation of
representative families leads to more efficient algorithms.

Recently, three of the authors in [10] showed that a q-representative family with at most(p+q
p

)
sets can be found in O

((p+q
p

)
tpω + t

(p+q
q

)ω−1
)

operations over the field representing the

matroid. Here, ω < 2.373 is the matrix multiplication exponent. For the special case of
uniform matroids on n elements, a faster algorithm computing a representative family in time
O((p+q

q )q · 2o(p+q) · t · log n) was given. The results of Fomin et al. [10] improved over previous
work by Monien [20] and Marx [17, 18], and led to the fastest known deterministic parameterized
algorithms for k-Path, k-Tree, and more generally, for k-Subgraph Isomorphism, where the
k-vertex pattern graph is of constant treewidth [10].

All currently known algorithms that use fast computation of representative sets as a subrou-
tine are based on dynamic programming. It is therefore very tempting to ask whether it is pos-
sible to compute representative sets faster for families that arise naturally in dynamic programs,
than for general families. A class of families which often arises in dynamic programs is the class of
product families; a family F is the product of A and B if F = {A∪B : A ∈ A, B ∈ B∧A∩B = ∅}.
Product families naturally appear in dynamic programs where sets represent partial solutions
and two partial solutions can be combined if they are disjoint. For an example, in the k-Path
problem partial solutions are vertex sets of paths starting at a particular root vertex v, and
two such paths may be combined to a longer path if and only if they are disjoint (except for
overlapping at v). Many other examples exist—essentially product families can be thought of
as a subset convolution [2, 3], and the wide applicability of the fast subset convolution technique
of Bjorklund et al [4] is largely due to the frequent demand to compute product families in
dynamic programs.

Our results. Our main technical contributions are two algorithms for the computation of
representative sets for product families, one for uniform, and one for linear matroids. For
uniform matroids we give an algorithm which given an integer q and families A, B of sets of
sizes p1 and p2 over the ground set of size n, computes a q-representative family F ′ of F . The
running time of our algorithm is sublinear in |F| for many choices of A, B and q which occur
naturally in several dynamic programming algorithms. For example, let q, p1, p2 be integers.
Let k = q + p1 + p2 and suppose that we have families A and B, which are (k − p1) and (k − p2)-
representative families. Then the sizes of these families are roughly |A| =

( k
p1

)
and |B| =

( k
p2

)
. In

particular, when p1 = p2 = ⌈k/2⌉ both families are of size roughly 2k, and thus the cardinality
of F is approximately 4k. On the other hand, for any choice of p1, p2, and k, our algorithm
outputs a (k − p1 − p2)-representative family of F of size roughly

( k
p1+p2

)
in time 3.8408knO(1).

For many choices of p1, p2 and q our algorithm runs significantly faster than 3.8408knO(1). The
expression capturing the running time dependence on p1, p2 and q can be found in Theorem 3.1
and Corollary 1.

Our second algorithm is for computing representative families of product families, when the
universe is also enriched with a linear matroid. More formally, let M = (E, I) be a matroid and
let A, B ⊆ I. Then let F = A • B = {A ∪ B : A ∪ B ∈ I, A ∈ A, B ∈ B and A ∩ B = ∅}. Just as
for uniform matroids, a naive approach for computing a representative familiy of F would be to
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compute the product A • B first and then compute a representative family of the product. The
fastest currently known algorithm for computing a representative family is by Fomin et al. [10]

and has running time approximately
(p+q

p

)ω−1
|F|. We give an algorithm that significantly out-

performs the naive approach. An appealing feature of our algorithm is that it works by reducing
the computation of a representative family for F to the computation of represesentative families
for many smaller families. Thus an improved algorithm for the computation of representative
sets for general families will automatically accelerate our algorithm for product families as well.
The expression of the running time of our algorithm can be found in Theorem 4.1.

Applications. Our first application is a deterministic algorithm for the following parameterized
version of multilinear monomial testing.

Multilinear Monomial Detection (k-MlD) Parameter: k
Input: An arithmetic circuit C over Z+ representing a polynomial P (X) over Z+.
Question: Does P (X) construed as a sum of monomials contain a multilinear monomial
of degree k?

This is the central problem in the algebraic approach of Koutis and Williams for designing
fast parameterized algorithms [13, 14, 15, 22]. The idea behind the approach is to translate a
given problem into the language of algebra by reducing it to the problem of deciding whether a
constructed polynomial has a multilinear monomial of degree k. As it is mentioned implicitly by
Koutis in [13], k-MlD can be solved in time (2e)knO(1), where n is the input length, by making
use of color coding. The color coding technique of Alon, Yuster and Zwick [1] is a fundamental
and widely used technique in the design of parameterized algorithms. It appeared that most of
the problems solvable by making use of color coding can be reduced to a multilinear monomial
testing. Williams [22] gave a randomized algorithm solving k-MlD in time 2knO(1). The
algorithms based on the algebraic method of Koutis-Williams provide a dramatic improvement
for a number of fundamental problems [6, 5, 9, 11, 13, 14, 15, 22].

The advantage of the algebraic approach over color coding is that for a number of parameter-
ized problems, the algorithms based on this approach have much better exponential dependence
on the parameter. On the other hand color coding based algorithms admit direct derandom-
ization [1] and are able to handle integer weights with running time overhead poly-logarithmic
in the weights. Obtaining deterministic algorithms matching the running times of the algebraic
methods, but sharing these nice features of color coding remain a challenging open problem. Our
deterministic algorithm for k-MlD is the first non-trivial step towards resolving this problem.
In fact, our algorithm solves a weighted version of k-MlD, where the elements of X are assigned
weights and the task is to find a k-multilinear term with minimum weight. The running time of
our deterministic algorithm is O(3.8408k2o(k)s(C)n log W log2 n), where s(C) is the size of the
circuit and W is the maximum weight of an element from X. We also provide an algorithm for
a more general version of multilinear monomial testing, where variables of a monomial should
form an independent set of a linear matroid.

The second application of our fast computation of representative families is for dynamic
programming algorithms on graph of bounded treewidth. It is well known that many intractable
problems can be solved efficiently when the input graph has bounded treewidth. Moreover,
many fundamental problems like Maximum Independent Set or Minimum Dominating
Set can be solved in time 2O(t)n. On the other hand, it was believed until very recently that
for some “connectivity” problems such as Hamiltonian Cycle or Steiner Tree no such
algorithm exists. In their breakthrough paper, Cygan et al. [8] introduced a new algorithmic
framework called Cut&Count and used it to obtain 2O(t)nO(1) time Monte Carlo algorithms
for a number of connectivity problems. Recently, Bodlaender et al. [7] obtained the first
deterministic single-exponential algorithms for these problems using two novel approaches. One
of the approaches of Bodlaender et al. is based on rank estimations in specific matrices and the
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second based on matrix-tree theorem and computation of determinants. In [10], Fomin et al.
used efficient algorithms for computing representative families of linear matroids to provide yet
another approach for single-exponential algorithms on graphs of bounded treewdith.

It is interesting to note that for a number of connectivity problems such as Steiner Tree
or Feedback Vertex Set the “bottleneck” of treewidth based dynamic programming al-
gorithms is the join operation. For example, as it was shown by Bodlaender et al. in [7],

Feedback Vertex Set and Steiner Tree can be solved in time O
(
(1 + 2ω)pwpwO(1)n

)

and O
(
(1 + 2ω+1)twtwO(1)n

)
, where pw and tw are the pathwidth and the treewidth of the

input graph. The reason for the difference in the exponents of these two algorithms is due to the
cost of the join operation, which is required for treewidth and does not occur for pathwidth. For
many computational problems on graphs of bounded treewidth in the join nodes of the decom-
position, the family of partial solutions is the product of the families of its children, and we wish
to store a representative set (for a graphic matroid) for this product family. Here our second
algorithm comes into play. By making use of this algorithm one can obtain faster deterministic
algorithms for many connectivity problems. We exemplify this by providing algorithms with

running time O
(
(1 + 2ω−1 · 3)twtwO(1)n

)
for Feedback Vertex Set and Steiner Tree.

Our methods. The engine behind our algorithm for the computation of representative sets
of product families is a new construction of pseudorandom coloring families. A coloring of a
universe U is simply a function f : U → {red, blue}. Consider a pair of disjoint sets A and
B, with |A| = p and |B| = q. A random coloring which colors each element in U red with
probability p

p+q and blue with probability q
p+q will color A red and B blue with probability

roughly 1

(p+q
p )

. Thus a family of slightly more than
(p+q

p

)
such random colorings will contain,

with high probability, for each pair of disjoint sets A and B, with |A| = p and |B| = q a
function which colors A red and B blue. The fast computation of representative sets of Fomin
et al. [10] deterministically constructs a collection of colorings which mimics this property of
random coloring families. The colorings in the family are used to witness disjointedness, since a
coloring which colors A red and B blue certifies that A and B are disjoint. In our setting we can
use such coloring families both for witnessing disjointedness in the computation of representive
sets, and in the computation of F = A • B. After all, each set in F is the disjoint union of
a set in A and a set in B. In order to make this idea work we need to make a deterministic
construction of coloring familes which mimics even more properties of random colorings than
the construction from [10]. We believe that the new construction of coloring families will find
applications beyond our algorithm. We demonstrate this by showing how the new construction
can be used to speed-up the deterministic algorithm for k-Path of Fomin et al. [10] from
O(2.851kn log2 n) to O(2.619kn log2 n).

For linear matroids, our algorithm computes a representative family F ′ of F = A • B as
follows. First the family F is broken up into many smaller families F1, . . . , Ft, then a represen-
tative family F ′

i is computed for each Fi. Finally F ′ is obtained by computing a representative
family of

⋃
i F ′

i using the algorithm of Fomin et al [10] for computing representative families.
The speedup over the naive method is due to the fact that (a)

⋃
i F ′

i is much smaller than F
and (b) that each Fi has a certain structure which ensures better upper bounds on the size of
F ′

i , and allows F ′
i to be computed faster.

2 Preliminaries

In this section we give various definitions which we make use of in the paper.

Graphs. Let G be a graph with vertex set V (G) and edge set E(G). A graph G′ is a subgraph
of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The subgraph G′ is called an induced subgraph of G

3



if E(G′) = {uv ∈ E(G) | u, v ∈ V (G′)}, in this case, G′ is also called the subgraph induced
by V (G′) and denoted by G[V (G′)]. For a vertex set S, by G \ S we denote G[V (G) \ S], and
by E(S) we denote the edge set E(G[S]). For an edge set E′, we denote G \ E′ to represent the
graph with vertex set V (G) and edge set E(G) \ E′.

Sets, Functions and Constants. Let [n] = {0, . . . , n−1} and
([n]

i

)
= {X | X ⊆ [n], |X| = i}.

Furthermore for any ground set U , we use 2U to denote the family of all subsets of U . We call
a function f : 2U → N, additive if for any subsets X and Y of U we have that f(X) + f(Y ) =
f(X ∪ Y ) − f(X ∩ Y ).

A monomial Z = xs1
1 · · · xsn

n of a polynomial P (x1, . . . , xn) is called multilinear if si ∈ {0, 1}
for all i ∈ {1, . . . , n}. We say a monomial Z = xs1

1 · · · xsn
n as k-multilinear term, if Z is multilinear

and
∑n

i=1 si = k. Throughout the paper we use ω to denote the matrix multiplication exponent.
The current best known bound on ω < 2.373 [23].

2.1 Matroids and Representative Family

In the next few subsections we give definitions related to matroids and representative family.
For a broader overview on matroids we refer to [21].

Definition 2.1. A pair M = (E, I), where E is a ground set and I is a family of subsets (called
independent sets) of E, is a matroid if it satisfies the following conditions:

(I1) φ ∈ I.

(I2) If A′ ⊆ A and A ∈ I then A′ ∈ I.

(I3) If A, B ∈ I and |A| < |B|, then ∃ e ∈ (B \ A) such that A ∪ {e} ∈ I.

The axiom (I2) is also called the hereditary property and a pair (E, I) satisfying only (I2)
is called hereditary family. An inclusion wise maximal set of I is called a basis of the matroid.
Using axiom (I3) it is easy to show that all the bases of a matroid have the same size. This
size is called the rank of the matroid M , and is denoted by rank(M). The uniform matroids are
among the simplest examples of matroids. A pair M = (E, I) over an n-element ground set E,
is called a uniform matroid if the family of independent sets is given by I = {A ⊆ E | |A| ≤ k},
where k is some constant. This matroid is also denoted as Un,k.

2.2 Linear Matroids and Representable Matroids

Let A be a matrix over an arbitrary field F and let E be the set of columns of A. Given A
we define the matroid M = (E, I) as follows. A set X ⊆ E is independent (that is X ∈ I) if
the corresponding columns are linearly independent over F. The matroids that can be defined
by such a construction are called linear matroids, and if a matroid can be defined by a matrix
A over a field F, then we say that the matroid is representable over F. That is, a matroid
M = (E, I) of rank d is representable over a field F if there exist vectors in Fd correspond to
the elements such that linearly independent sets of vectors correspond to independent sets of
the matroid. A matroid M = (E, I) is called representable or linear if it is representable over
some field F.

2.3 Graphic Matroids

Given a graph G, a graphic matroid M = (E, I) is defined by taking elements as edges of G
(that is E = E(G)) and F ⊆ E(G) is in I if it forms a spanning forest in the graph G. The
graphic matroid is representable over any field of size at least 2. Consider the matrix AM with
a row for each vertex i ∈ V (G) and a column for each edge e = ij ∈ E(G). In the column
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corresponding to e = ij, all entries are 0, except for a 1 in i or j (arbitrarily) and a −1 in the
other. This is a representation over reals. To obtain a representation over a field F, one simply
needs to take the representation given above over reals and simply replace all −1 by the additive
inverse of 1

Proposition 2.1 ([21]). Graphic matroids are representable over any field of size at least 2.

2.4 Representative Family

In this section we define q-representative family of a given family and state Theorems [10]
regarding its compuation.

Definition 2.2 (q-Representative Family [10]). Given a matroid M = (E, I) and a family
S of subsets of E, we say that a subfamily Ŝ ⊆ S is q-representative for S if the following holds:
for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y with X ∪ Y ∈ I,
then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. If Ŝ ⊆ S is q-representative for S
we write Ŝ ⊆q

rep S.

In other words if some independent set in S can be extended to a larger independent set by q
new elements, then there is a set in Ŝ that can be extended by the same q elements. A weighted
variant of q-representative families is defined as follows. It is useful for solving problems where
we are looking for objects of maximum or minimum weight.

Definition 2.3 (Min/Max q-Representative Family [10]). Given a matroid M = (E, I), a
family S of subsets of E and a non-negative weight function w : S → N we say that a subfamily
Ŝ ⊆ S is min q-representative (max q-representative) for S if the following holds: for every set
Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is
a set X̂ ∈ Ŝ disjoint from Y with

1. X̂ ∪ Y ∈ I; and

2. w(X̂) ≤ w(X) (w(X̂) ≥ w(X)).

We use Ŝ ⊆q
minrep S (Ŝ ⊆q

maxrep S) to denote a min q-representative (max q-representative)
family for S.

Definition 2.4. Given two families of independent sets L1 and L2 of a matroid M = (E, I),
we define

L1 • L2 = {X ∪ Y | X ∈ L1 ∧ Y ∈ L2 ∧ X ∩ Y = ∅ ∧ X ∪ Y ∈ I}.

For normal set families A and B (in uniform matroid), note that A • B = {X ∪ Y | X ∈
A ∧ Y ∈ B ∧ X ∩ Y = ∅}.

We say that a family S = {S1, . . . , St} of independent sets is a p-family if each set in S is
of size p. We state three lemmata providing basic results about representative family. These
lemmata works for weighted variant representative family.

Lemma 2.1 ([10]). Let M = (E, I) be a matroid and S be a family of subsets of E. If S ′ ⊆q
rep S

and Ŝ ⊆q
rep S ′, then Ŝ ⊆q

rep S.

Lemma 2.2 ([10]). Let M = (E, I) be a matroid and S be a family of subsets of E. If
S = S1 ∪ · · · ∪ Sℓ and Ŝi ⊆q

rep Si, then ∪ℓ
i=1Ŝi ⊆q

rep S.

Lemma 2.3 ([10]). Let M = (E, I) be a matroid of rank k and S1 be a p1-family of independent
sets, S2 be a p2-family of independent sets, Ŝ1 ⊆k−p1

rep S1 and Ŝ2 ⊆k−p2
rep S2. Then Ŝ1•Ŝ2 ⊆k−p1−p2

rep

S1 • S2.
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Theorem 2.1 ([10]). Let M = (E, I) be a linear matroid of rank p+q = k, S = {S1, . . . , St} be a
p-family of independent sets and w : S → N be a non-negative weight function. Then there exists
Ŝ ⊆q

minrep S (Ŝ ⊆q
maxrep S) of size

(p+q
p

)
. Moreover, given a representation AM of M over a field

F, we can find Ŝ ⊆q
minrep S (Ŝ ⊆q

maxrep S) of size at most
(p+q

p

)
in O

((p+q
p

)
tpω + t

(p+q
q

)ω−1
)

operations over F.

Theorem 2.2 ([10]). There is an algorithm that given a p-family A of sets over a universe U
of size n, an integer q, and a non-negative weight function w : A → N with maximum value

at most W , computes in time O
(
|A| ·

(
p+q

q

)q
· log n + |A| · log |A| · log W

)
a subfamily Â ⊆ A

such that |Â| ≤
(p+q

q

)
· 2o(p+q) · log n and Â ⊆q

minrep A (Â ⊆q
maxrep A)

3 Representative set computation for product families

In this section we design a faster algorithm to find q-representative family for product families.
Our main technical tool is a generalization of n-p-q-separating collection defined in [10] to
compute q-representative families of an arbitrary family. In fact we design a family of n-p-q-
separating collections of various sizes governed by a parameter 0 < x < 1. The construction of
generalized n-p-q-separating collection is similar to the proof given in [10]. However, the new
construction requires some additional ideas and the proof is slightly more involved. Finally,
we combine two n-p-q-separating collections obtained with different parameters to obtain the
desired algorithm for product families.

3.1 Generalized n-p-q-separating collection

We start with the formal definition of generalized n-p-q-separating collection.

Definition 3.1. A generalized n-p-q-separating collection C is a tuple (F , χ, χ′), where F is a
family of sets over a universe U of size n, χ is a function from

⋃
p′≤p

(U
p′

)
to 2F and χ′ is a

function from
⋃

q′≤q

(U
q′

)
to 2F such that the following properties are satisfied

1. for every A ∈
⋃

p′≤p

(U
p′

)
and F ∈ χ(A), A ⊆ F ,

2. for every B ∈
⋃

q′≤q

(U
q′

)
and F ∈ χ′(B), F ∩ B = ∅,

3. for every pairwise disjoint sets A1 ∈
(U

p1

)
, A2 ∈

(U
p1

)
, · · · , Ar ∈

(U
pr

)
and B ∈

(U
q

)
such that

p1 + · · · + pr = p, ∃F ∈ χ(A1) ∩ χ(A2) . . . χ(Ar) ∩ χ′(B).

The size of (F , χ, χ′) is |F|, the (χ, p′)-degree of (F , χ, χ′) for p′ ≤ p is maxA∈(U
p′) |χ(A)|, and

the (χ′, q′)-degree of (F , χ, χ′) for q′ ≤ q is maxB∈(U
q′) |χ′(B)|.

A construction of generalized separating collections is a data structure, that given n, p and
q initializes and outputs a family F of sets over the universe U of size n. After the initialization
one can query the data structure by giving it a set A ∈

⋃
p′≤p

(U
p′

)
or B ∈

⋃
q′≤q

(U
q′

)
, the

data structure then outputs a family χ(A) ⊆ 2F or χ′(B) ⊆ 2F respectively. Together the
tuple C = (F , χ, χ′) computed by the data structure should form a generalized n-p-q-separating
collection.

We call the time the data structure takes to initialize and output F the initialization time.
The (χ, p′)-query time, p′ ≤ p, of the data structure is the maximum time the data structure
uses to compute χ(A) over all A ∈

(U
p′

)
. Similarly, the (χ′, q′)-query time, q′ ≤ q, of the data

structure is the maximum time the data structure uses to compute χ′(B) over all B ∈
(U

q′

)
.

6



The initialization time of the data structure and the size of C are functions of n, p and q. The
initialization time is denoted by τI(n, p, q), size of C is denoted by ζ(n, p, q). The (χ, p′)-query
time and (χ, p′)-degree of C, p′ ≤ p, are functions of n, p′, p, q and is denoted by Q(χ,p′)(n, p, q)
and ∆(χ,p′)(n, p, q) respectively. Similarly, the (χ′, q′)-query time and (χ′, q′)-degree of C, q′ ≤ q,
are functions of n, q′, p, q and are denoted by Q(χ′,q′)(n, p, q) and ∆(χ′,q′)(n, p, q) respectively.
We are now ready to state the main technical tool of this subsection.

Lemma 3.1. Given a constant x such that 0 < x < 1, there is a construction of generalized
n-p-q- separating collection with the following parameters

• size, ζ(n, p, q) ≤ 2
O( p+q

log log log(p+q)
)

· 1
xp(1−x)q · (p + q)O(1) · log n

• initialization time, τI(n, p, q) ≤ 2
O( p+q

log log log(p+q)
)

· 1
xp(1−x)q · (p + q)O(1) · n log n

• (χ, p′)-degree, ∆(χ,p′)(n, p, q) ≤ 2
O( p+q

log log log(p+q)
)

· 1
xp−p′ (1−x)q

· (p + q)O(1) · log n

• (χ, p′)-query time, Q(χ,p′)(n, p, q) ≤ 2
O( p+q

log log log(p+q)
)

· 1
xp−p′(1−x)q

· (p + q)O(1) · log n

• (χ′, q′)-degree, ∆(χ′,q′)(n, p, q) ≤ 2
O( p+q

log log log(p+q)
)

· 1
xp(1−x)q−q′ · (p + q)O(1) · log n

• (χ′, q′)-query time, Q(χ′,q′)(n, p, q) ≤ 2
O( p+q

log log log(p+q)
)

· 1
xp(1−x)q−q′ · (p + q)O(1) · log n

We first give a road map to prove Lemma 3.1. The proof of Lemma 3.1 uses three auxiliary
lemmata.

(a.) Existential Proof (Lemma 3.2). This lemma shows that there is indeed a generalized
n-p-q-separating collection with the required sizes, degrees and query time. Essentially,
it shows that if we form a family F = {F1, . . . , Ft} of sets of U such that each Fi is a
random subset of U where each element is inserted into Fi with probability x, then F has
the desired sizes, degrees and query time. Thus, this also gives a brute force algorithm to
design the family F by just guessing the family of desired size and then checking whether
it is indeed a generalized n-p-q-separating collection.

(b.) Universe Reduction (Lemma 3.3). The construction obtained in Lemma 3.2 has only
one drawback that the initialization time is much larger than claimed in Lemma 3.1. To
overcome this lacuna, we do not apply the construction in Lemma 3.2 directly. We first
prove a Lemma 3.3 which helps us in reducing the universe size to (p + q)2. This is done
using the known construction of k-perfect hash families of size (p+q)O(1) log n. Lemma 3.3
alone can not reduce the universe size sufficiently, that we can apply the construction of
Lemma 3.2.

(c.) Splitting Lemma (Lemma 3.4). We give a splitter type construction in Lemma 3.4
that when applied with Lemma 3.3 makes the universe and other parameters small enough
that we can apply the construction given in Lemma 3.2. In this construction we consider
all the “consecutive partitions” of the universe into t parts, assume that the sets A ∪ B,
A = ∪r

i=1Ai, are distributed uniformly into t parts and then use this information to obtain
a construction of generalized separating collections in each part and then take the product
of these collections to obtain a collection for the original instance.

We start with an existential proof.

Lemma 3.2. Given 0 < x < 1, there is a construction of generalized n-p-q-separating collections
with

• size ζ(n, p, q) = O
(

1
xp(1−x)q · (p2 + q2 + 1) log n

)
,
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• initialization time τI(n, p, q) = O(
( 2n

ζ(n,p,q)

)
· 1

xp(1−x)q · nO(p+q)),

• (χ, p′)-degree for p′ ≤ p, ∆(χ,p′)(n, p, q) = O
(

1
xp−p′ · (p2+q2+1)

(1−x)q · log n
)

• (χ, p′)-query time Q(χ,p′)(n, p, q) = O( 1
xp(1−x)q · nO(1)).

• (χ′, q′)-degree ∆(χ′,q′)(n, p, q) = O
(

1
xp(1−x)q−q′ · (p2 + q2 + 1) · log n

)

• (χ′, q′)-query time Q(χ′,q′)(n, p, q) = O( 1
xp(1−x)q · nO(1)).

Proof. We start by giving a randomized algorithm that with positive probability constructs a
generalized n-p-q-separating collection C = (F , χ, χ′) with the desired size and degree parame-
ters. We will then discuss how to deterministically compute such a C within the required time
bound. Set t = 1

xp(1−x)q ·(p2 +q2 +1) log n and construct the family F = {F1, . . . , Ft} as follows.
Each set Fi is a random subset of U , where each element of U is inserted into Fi with probability
x. Distinct elements are inserted (or not) into Fi independently, and the construction of the
different sets in F is also independent. For each A ∈

⋃
p′≤p

(U
p′

)
we set χ(A) = {F ∈ F : A ⊆ F}

and for each B ∈
⋃

q′≤q

(U
q′

)
we set χ′(B) = {F ∈ F : F ∩ B = ∅}.

The size of F is within the required bound by construction. We now argue that with positive
probability (F , χ, χ′) is indeed a generalized n-p-q-separating collection, and that the degrees of
C is within the required bounds as well. For fixed sets A ∈

(U
p

)
, B ∈

(U\A
q

)
, and integer i ≤ t, we

consider the probability that A ⊆ Fi and B ∩ Fi = ∅. This probability is xp(1 − x)q. Since each
Fi is constructed independently from the other sets in F , the probability that no Fi satisfies
A ⊆ Fi and B ∩ Fi = ∅ is

(1 − xp(1 − x)q)t ≤ e−(p2+q2+1) log n =
1

np2+q2+1
.

For a fixed A1, A2, . . . , Ar and B (choices in condition 3), the probability that no Fi in χ(A1) ∩
χ(A2) ∩ · · · ∩ χ(Ar) ∩ χ′(B) is equal to the probability that no Fi in χ(A1 ∪ A2 · · · ∪ Ar) ∩ χ′(B)
(since χ(A′) contains all the sets in F that contains A′ and χ′(B) contains all the sets in F that
are disjoint from B). Hence the probability that condition 3 fails is upper bounded by

Y ·
1

np2+q2+1

where Y is the number of choices for A1, . . . , Ar and B in condition 3. We upper bound Y
as follows. There are

(n
p

)
choices for A1 ∪ · · · ∪ Ar and

(n
q

)
choices for B. For each choice of

A1 ∪ · · · ∪ Ar there are at most rp choices of making A1, . . . , Ar with some of them being empty
as well. Note that r ≤ p. Therefore the number of possible choices of sets A1, A2, . . . , Ar and
B in condition 3 is upper bounded by

(n
p

)(n
q

)
pp ≤ n2p+q ≤ np2+q2

. Hence the probability that

condition 3 in Definition 3.1 fails is at most 1
n .

We also need to upper bound the maximum degree of C. For every A ∈
(U

p′

)
, |χ(A)| is a

random variable. For a fixed A ∈
(U

p′

)
and i ≤ t the probability that A ⊆ Fi is exactly xp′

.
Hence |χ(A)| is the sum of t independent 0/1-random variables that each take value 1 with
probability xp′

. Hence the expected value of |χ(A)| is

E[|χ(A)|] = t · xp′

=
1

xp−p′(1 − x)q
· (p2 + q2 + 1) log n

For every B ∈
(U

q′

)
, |χ′(B)| is also a random variable. For a fixed B ∈

(U
q′

)
and i ≤ t the

probability that A ∩ Fi = ∅ is exactly (1 − x)q′
. Hence the expected value of |χ′(B)| is,

E[|χ′(B)|] = t · (1 − x)q′

=
1

xp(1 − x)q−q′ · (p2 + q2 + 1) log n.
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Standard Chernoff bounds [19, Theorem 4.4] show that the probability that for any A ∈
(U

p′

)
,

|χ(A)| is at least 6E[|χ(A)|] is upper bounded by 2−6E[|χ(A)|] ≤ 1
np2+q2+1

. Similarly the proba-

bility that for any B ∈
(U

q′

)
, |χ′(B)| is at least 6E[|χ′(B)|] is upper bounded by 2−6E[|χ′(B)|] ≤

1
np2+q2+1

. There are
∑

p′≤p

(n
p′

)
≤ np2

choices for A ∈
⋃

p′≤p

(U
p′

)
and

∑
q′≤q

(n
q′

)
≤ nq2

choices

for B ∈
⋃

q′≤q

(U
q′

)
. Hence the union bound yields that the probability that there exists

an A ∈
⋃

p′≤p

(U
p′

)
such that |χ(A)| > 6E[|χ(A)|] or there exists B ∈

⋃
q′≤q

(U
q′

)
such that

|χ′(B)| > 6E[|χ′(B)|] is upper bounded by 1
n . Thus C is a family of n-p-q-separating collections

with the desired size and degree parameters with probability at least 1− 2
n > 0. The degenerate

case that 1 − 2
n ≤ 0 is handled by the family F containing all (at most four) subsets of U .

To construct F within the stated initialization time bound, it is sufficient to try all families F
of size t and for each of the

( 2n

ζ(n,p,q)

)
guesses, test whether it is indeed a family of n-p-q-separating

collections in time O(t · nO(p+q)) = O( 1
xp(1−x)q · nO(p+q)).

For the queries, we need to give an algorithm that given A, computes χ(A) (or χ′(A)), under
the assumption that F has already has been computed in the initialization step. This is easily
done within the stated running time bound by going through every set F ∈ F , checking whether
A ⊆ F (or A ∩ F = ∅), and if so, inserting F into χ(A) (χ′(A)). This concludes the proof.

We will now work towards improving the time bounds of Lemma 3.2. To that end we will
need a construction of k-perfect hash functions by Alon et al. [1]

Definition 3.2. A family of functions f1, . . . , ft from a universe U of size n to a universe of
size r is a k-perfect family of hash functions if for every set S ⊆ U such that |S| = k there exists
an i such that the restriction of fi to S is injective.

Alon et al. [1] give very efficient constructions of k-perfect families of hash functions from a
universe of size n to a universe of size k2.

Proposition 3.1 ([1]). For any universe U of size n there is a k-perfect family f1, . . . , ft of
hash functions from U to [k2] with t = O(kO(1) · log n). Such a family of hash functions can be
constructed in time O(kO(1)n log n).

Lemma 3.3. If there is a construction of generalized n-p-q-separating collections (F̂ , χ̂, χ̂′) with
initialization time τI(n, p, q), size ζ(n, p, q), (χ̂, p′)-query time Q(χ̂,p′)(n, p, q), (χ̂′, q′)-query time
Q(χ̂′,q′)(n, p, q), (χ̂, p′)-degree ∆(χ̂,p′)(n, p, q), and (χ̂′, q′)-degree ∆(χ̂′,q′)(n, p, q) then there is a
construction of generalized n-p-q-separating collections with following parameters.

• ζ ′(n, p, q) ≤ ζ
(
(p + q)2, p, q

)
· (p + q)O(1) · log n,

• τ ′
I(n, p, q) = O

(
τI
(
(p + q)2, p, q

)
+ ζ

(
(p + q)2, p, q

)
· (p + q)O(1) · n log n

)
,

• ∆′
(χ,p′)(n, p, q) ≤ ∆(χ̂,p′)

(
(p + q)2, p, q

)
· (p + q)O(1) · log n,

• Q′
(χ,p′)(n, p, q) = O

((
Q(χ̂,p′)

(
(p + q)2, p, q

)
+ ∆(χ̂,p′)

(
(p + q)2, p, q

))
· (p + q)O(1) · log n

)
,

• ∆′
(χ′,q′)(n, p, q) ≤ ∆(χ̂′,q′)

(
(p + q)2, p, q

)
· (p + q)O(1) · log n,

• Q′
(χ′,q′)(n, p, q) = O

((
Q(χ̂′,q′)

(
(p + q)2, p, q

)
+ ∆(χ̂′,q′)

(
(p + q)2, p, q

))
· (p + q)O(1) · log n

)

Proof. We give a construction of generalized n-p-q-separating collections with initialization time,
query time, size and degree τ ′

I , Q′, ζ ′ and ∆′ respectively using the construction with initializa-
tion time, query time, size and degree τI , Q, ζ and ∆ as a black box.
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We first describe the initialization of the data structure. Given n, p, and q, we construct
using Proposition 3.1 a (p + q)-perfect family f1, . . . ft of hash functions from the universe U to
[(p + q)2]. The construction takes time O((p + q)O(1)n log n) and t ≤ (p + q)O(1) · log n. We will
store these hash functions in memory. We use the following notations.

• For a set S ⊆ U and T ⊆ [(p + q)2],
fi(S) = {fi(s) : s ∈ S} and f−1

i (T ) = {s ∈ U : f(s) ∈ T }.

• For a family Z of sets over U and family W of sets over [(p + q)2],
fi(Z) = {fi(S) : S ∈ Z} and f−1

i (W) = {f−1
i (T ) : T ∈ W}.

We first use the given black box construction for (p+q)2-p-q-separating collections (F̂ , χ̂, χ̂′)
over the universe [(p + q)2]. We run the initialization algorithm of this construction and store
the family F̂ in memory. We then set

F =
⋃

i≤t

f−1
i (F̂).

We spent O((p + q)O(1)n log n) time to construct a (p + q)-perfect family of hash functions,
O(τI((p+q)2, p, q)) to construct F̂ of size ζ((p+q)2, p, q), and O(ζ((p+q)2, p, q)·(p+q)O(1)·n log n)
time to construct F from F̂ and the family of perfect hash functions. Thus the upper bound on
τ ′

I(n, p, q) follows. Furthermore, |F| ≤ |F̂| · (p + q)O(1) · log n, yielding the claimed bound for ζ ′.
We now define χ(A) for every A ∈

⋃
p′≤p

(U
p′

)
and describe the query algorithm. For every

A ∈
⋃

p′≤p

(U
p′

)
we let

χ(A) =
⋃

i≤t
|fi(A)|=|A|

f−1
i (χ̂(fi(A))).

Since ∀ F̂ ∈ χ̂(fi(A)), fi(A) ⊆ F̂ , it follows that A ⊆ F for every F ∈ χ(A). Furthermore we
can bound |χ(A)| for any A ∈

⋃
p′≤p

(U
p′

)
, as follows

|χ(A)| ≤
∑

i≤t
|fi(A)|=|A|

|χ̂(fi(A))| ≤ ∆(χ̂,p′)((p + q)2, p, q) · (p + q)O(1) · log n.

Thus the claimed bound for ∆′
(χ,p′) follows. Similar way we define χ′(B) for every B ∈

⋃
q′≤q

(U
q′

)

as

χ′(B) =
⋃

i≤t
|fi(A)|=|A|

f−1
i (χ̂′(fi(A))).

|χ′(B)| ≤
∑

i≤t
|fi(A)|=|A|

|χ̂′(fi(A))| ≤ ∆(χ̂′,q′)((p + q)2, p, q) · (p + q)O(1) · log n.

To compute χ(A) for any A ∈
⋃

p′≤p

(U
p′

)
, we go over every i ≤ t and check whether fi is injective

on A. This takes time O((p+q)O(1) · log n). For each i such that fi is injective on A, we compute
fi(A) and then χ̂(fi(A)) in time O(Q(χ,p′)((p + q)2, p, q)). Then we compute f−1

i (χ̂(fi(A))) in

time O(|χ̂(fi(A))| · (p + q)O(1)) = O(∆(χ,p′)((p + q)2, p, q) · (p + q)O(1)) and add this set to χ(A).

As we need to do this O((p + q)O(1) · log n) times, the total time to compute χ(A) is upper
bounded by O((Q(χ,p′)((p + q)2, p, q) + ∆(χ,p′)((p + q)2, p, q)) · (p + q)O(1) · log n), yielding the
claimed upper bound on Q′

(χ,p′). Similar way we can bound Q′
(χ′,q′).
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It remains to argue that (F , χ, χ′) is in fact a generalized n-p-q-separating collection. For any
r, consider pairwise disjoint sets A1 ∈

(U
p1

)
, . . . , Ar ∈

(U
pr

)
, and B ∈

(U
q

)
such that p1+. . .+pr = p.

We need to show that ∃F ∈ χ(A1)∩· · ·∩χ(Ar)∩χ′(B). Since f1, . . . , ft is a (p+q)-perfect family
of hash functions, there is an i such that fi is injective on A1 ∪ · · · ∪ Ar ∪ B. Since (F̂ , χ̂, χ̂′) is a
(p+q)2-p-q-separating collection, ∃F̂ ∈ χ̂(fi(A1))∩· · · χ̂(fi(Ar))∩χ̂′(fi(B)). Since fi is injective
on A1, . . . , Ar and B, f−1

i (F̂ ) ∈ χ(A1) ∩ · · · χ(Ar) ∩ χ′(B). This concludes the proof.

We now give a splitting lemma, which allows us to reduce the problem of finding generalized
n-p-q-separating collections to the same problem, but with much smaller values for p and q. To
that end we need some definitions.

Definition 3.3. A partition of U is a family UP = {U1, U2, . . . Ut} of sets over U such that
∀i 6= j, Ui ∩ Uj = ∅ and U =

⋃
i≤t Ui. Each of the sets Ui are called the parts of the partition.

A consecutive partition of {1, . . . , n} is a partition UP = {U1, U2, . . . Ut} of {1, . . . , n} such that
for every integer i ≤ t and integers 1 ≤ x ≤ y ≤ z, if x ∈ Ui and z ∈ Ui then y ∈ Ui as well.

Proposition 3.2. Let Pn
t denote the collection of all consecutive partitions of {1, . . . , n} with

exactly t parts. Let Zp
s,t be the set of all t-tuples (p1, p2, . . . , pt) of integers such that

∑
i≤t pi = p

and 0 ≤ pi ≤ s for all i. Then for every t, |Pn
t | =

(n+t−1
t−1

)
and |Zp

s,t| ≤
(p+t−1

t−1

)
.

Lemma 3.4. For any p, q let s = ⌊(log(p + q))2⌋ and t = ⌈p+q
s ⌉. If there is a construc-

tion of generalized n-p-q-separating collections with initialization time τI(n, p, q), query times
Q(χ,p′)(n, p, q) and Q(χ′,q′)(n, p, q), producing a generalized n-p-q-separating collection with size
ζ(n, p, q), (χ, p′)-degree ∆(χ,p′)(n, p, q) and (χ′, q′)-degree ∆(χ′,q′)(n, p, q) then there is a construc-
tion of generalized n-p-q-separating collection with following parameters

• ζ ′(n, p, q) ≤ |Pn
t | ·

∑
(p1,...,pt)∈Zp

s,t

∏
i≤t ζ(n, pi, s − pi),

• τ ′
I(n, p, q) = O

((∑
p̂≤s τI(n, p̂, s − p̂)

)
+ ζ ′(n, p, q) · nO(1)

)
,

• ∆′
(χ,p′)(n, p, q) ≤ |Pn

t | · |Zp
s,t| · max (p1,...,pt)∈Zp

s,t

p′
1≤p1,...,p′

t≤pt

p′
1+...+p′

t=p′

∏
i≤t ∆(χ,p′

i
)(n, pi, s − pi),

• ∆′
(χ′,q′)(n, p, q) ≤ |Pn

t | · |Zp
s,t| · max (p1,...,pt)∈Zp

s,t

q′
1≤s−p1,...,q′

t≤s−pt

q′
1+...+q′

t=q′

∏
i≤t ∆(χ′,q′

i
)(n, pi, s − pi),

• Q′
(χ,p′)(n, p, q) = O

(
∆′

(χ,p′)(n, p, q)·nO(1) +|Pn
t |·|Zp

s,t|·t·
(∑

p̂′≤p̂≤s
p̂−p̂′≤p−p′

s−p̂≤q

Q(χp̂,p̂′)(n, p̂, s− p̂)
))

• Q′
(χ′,q′)(n, p, q) = O

(
∆′

(χ,p′)(n, p, q)·nO(1) +|Pn
t |·|Zp

s,t|·t·
(∑

q̂′≤q̂≤s
q̂−q̂′≤q−q′

s−q̂≤p

Q(χq̂,q̂′)(n, s− q̂, q̂)
))

Proof. Set s = ⌊(log(p + q))2⌋, t = ⌈p+q
s ⌉ and q̃ = st − p. We will give a construction of

generalized n-p-q̃-separating collections with initialization time, query time, size and degree
within the claimed bounds above. In the construction we will be using the construction with
initialization time τI , query times Q(χ,p′) and Q(χ′,q′), size ζ, and degrees ∆(χ,p′) and ∆(χ′,q′) as
a black box. Since q̃ ≥ q, a n-p-q̃-separating collection is also a n-p-q-separating collection. We
may assume without loss of generality that U = {1, . . . , n}.

Our algorithm runs for every 0 ≤ p̂ ≤ s, the initialization of the given construction of
generalized n-p̂-(s − p̂)-separating collections. We will refer by (Fp̂, χp̂, χ′

p̂) to the generalized
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separating collection constructed for p̂. For each p̂ the initialization of the construction outputs
the family Fp̂.

We need to define a few operations on families of sets. For families of sets A, B over U and
subset U ′ ⊆ U we define

A ⊓ U ′ = {A ∩ U ′ : A ∈ A}

A ◦ B = {A ∪ B : A ∈ A ∧ B ∈ B}

We now define F as follows.

F =
⋃

{U1,...,Ut}∈Pn
t

(p1,...,pt)∈Zp
s,t

(F̂p1 ⊓ U1) ◦ (F̂p2 ⊓ U2) ◦ . . . ◦ (F̂pt ⊓ Ut) (1)

It follows directly from the definition of F that |F| is within the claimed bound for ζ ′(n, p, q).

For the initialization time, the algorithm spends O
(∑

p̂≤s τI(n, p̂, s − p̂)
)

time to initialize the

constructions of the generalized n-p̂-(s − p̂)-separating collections for all p̂ ≤ s together. Now
the algorithm can output the entries of F one set at a time by using (1), spending nO(1) time
per output set. Hence the time bound for τ ′

I(n, p, q) follows.
For every set A ∈

⋃
p′≤p

(U
p′

)
we define χ(A) as follows.

χ(A) =
⋃

{U1,...,Ut}∈Pn
t

(p1,...,pt)∈Zp
s,t such that

∀Ui : |Ui∩A|≤pi

[
(χp1(A ∩ U1) ⊓ U1) ◦ (χp2(A ∩ U2) ⊓ U2) ◦ . . . (2)

... ◦ (χpt(A ∩ Ut) ⊓ Ut)
]

Now we show that χ(A) ⊆ F . From the definition of generalized n-pi-(s − pi)-separating
collections (F̂pi

, χpi
, χ′

pi
), each family χpi

(A ∩ Ui) in (2) is a subset of F̂pi
. This implies that

χpi
(A ∩ Ui) ⊓ Ui ⊆ F̂pi

⊓ Ui. Hence χ(A) ⊆ F . Similar way we can define χ′(B) for any
B ∈

⋃
q′≤q

(U
q′

)
as

χ′(B) =
⋃

{U1,...,Ut}∈Pn
t

(p1,...,pt)∈Zp
s,t such that

∀Ui : |Ui∩B|≤s−pi

[
(χ′

p1
(B ∩ U1) ⊓ U1) ◦ (χ′

p2
(B ∩ U2) ⊓ U2) ◦ . . . (3)

... ◦ (χ′
pt

(B ∩ Ut) ⊓ Ut)
]

Similar to the proof of χ(A) ⊆ F , we can show that χ′(B) ⊆ F . It follows directly from the def-
inition of χ(A) and χ′(B) that |χ(A)| and |χ′(B)| is within the claimed bound for ∆′

(χ,p′)(n, p, q)

and ∆′
(χ′,q′)(n, p, q) respectively. We now describe how queries χ(A) can be answered, and ana-

lyze how much time it takes. Given A we will compute χ(A) using (2). Let |A| = p′. For each
{U1, . . . , Ut} ∈ Pn

t and (p1, . . . , pt) ∈ Zp
s,t such that p′

i = |Ui ∩A| ≤ pi for all i ≤ t, we proceed as
follows. First we compute χpi

(A∩Ui) for each i ≤ t, spending in total O(
∑

i≤t Q(χpi
,p′

i
)(n, pi, s−

pi)) time. Now we add each set in (χp1(A∩U1)⊓U1)◦(χp2(A∩U2)⊓U2)◦ . . .◦(χpt(A∩Ut)⊓Ut)
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to χ(A), spending nO(1) time per set that is added to χ(A), yielding the bound below,

Q′
(χ,p′)(n, p, q) ≤ O

(
∆′

(χ,p′)(n, p, q) · nO(1) +
∑

{U1,...,Ut}∈Pt

(p1,...,pt)∈Zp
s,t such that

∀Ui : p′
i
=|Ui∩A|≤pi

[∑

i≤t

Qχpi
,p′

i
(n, pi, s − pi)

])

≤ O
(
∆′

(χ,p′)(n, p, q) · nO(1) + |Pn
t | · |Zp

s,t| · max
(p1,...,pt)∈Zp

s,t

p′
1≤p1,··· ,p′

t≤pt such that
p′

1+···+p′
t=p′

(∑

i≤t

Q(χpi
,p′

i
)(n, pi, s − pi)

))

≤ O
(
∆′

(χ,p′)(n, p, q) · nO(1) + |Pn
t | · |Zp

s,t| · t ·
( ∑

p̂′≤p̂≤s
p̂−p̂′≤p−p′

s−p̂≤q

Q(χp̂,p̂′)(n, p̂, s − p̂)
))

By doing similar analysis, we get required bound for Q′
(χ′,q′). We now need to argue that

(F , χ, χ′) is in fact a generalized n-p-q̃-separating collection. For any r, consider pairwise disjoint
sets A1 ∈

(U
p1

)
, . . . , Ar ∈

(U
pr

)
and B ∈

(U
q̃

)
such that p1 + · · · + pr = p. Let A = A1 ∪ · · · ∪ Ar.

There exists a consecutive partition {U1, . . . , Ut} ∈ Pn
t of U such that for every i ≤ t we

have that |(A ∪ B) ∩ Ui| = p+q̃
t = s. For each i ≤ t set pi = |A ∩ Ui| and qi = |B ∩ Ui| =

s − pi. For every i ≤ t the tuple (Fpi
, χpi

, χ′
pi

) form a n-pi-qi-separating collection. Hence
∃Fi ∈ χpi

(A1 ∩ Ui) ∩ . . . ∩ χpi
(Ar ∩ Ui) ∩ χ′

pi
(B ∩ Ui) because |A1 ∩ Ui| + . . . + |Ar ∩ Ui| = pi,

|B ∩ Ui| = qi and (Fpi
, χpi

, χ′
pi

) is a n-pi-qi-separating collection. That is Fi ∈ χpi
(Aj ∩ Ui) for

all j ≤ r and Fi ∈ χ′
pi

(B ∩Ui). Let F =
⋃

i≤t Fi ∩Ui. By construction of χ and χ′, F ∈ χ(Aj) for
all j ≤ r and F ∈ χ′(B). Hence F ∈ χ(A1) ∩ . . . ∩ χ(Ar) ∩ χ′(B). This completes the proof

Now we are ready to prove the Lemma 3.1. We restate the lemma for easiness of presentation.

Lemma 3.1 Given a constant x such that 0 < x < 1, there is a construction of generalized
n-p-q- separating collection with the following parameters

• size, ζ(n, p, q) ≤ 2
O( p+q

log log log(p+q)
)

· 1
xp(1−x)q · (p + q)O(1) · log n

• initialization time, τI(n, p, q) ≤ 2
O( p+q

log log log(p+q)
)

· 1
xp(1−x)q · (p + q)O(1) · n log n

• (χ, p′)-degree, ∆(χ,p′)(n, p, q) ≤ 2
O( p+q

log log log(p+q)
)

· 1
xp−p′(1−x)q

· (p + q)O(1) · log n

• (χ, p′)-query time, Q(χ,p′)(n, p, q) ≤ 2
O( p+q

log log log(p+q)
)

· 1
xp−p′(1−x)q

· (p + q)O(1) · log n

• (χ′, q′)-degree, ∆(χ′,q′)(n, p, q) ≤ 2
O( p+q

log log log(p+q)
)

· 1
xp(1−x)q−q′ · (p + q)O(1) · log n

• (χ′, q′)-query time, Q(χ′,q′)(n, p, q) ≤ 2
O( p+q

log log log(p+q)
)

· 1
xp(1−x)q−q′ · (p + q)O(1) · log n

Proof. The structure of the proof is as follows. We first create a collection using Lemma 3.1.
Then we apply Lemma 3.3 and obtain another construction. From here onwards we keep
applying Lemma 3.4 and Lemma 3.3 in phases until we achieve the required bounds on size,
degree, query and intializitaion time.

We first apply Lemma 3.2 and get a construction of n-p-q-twin separating collections with
the following parameters.

• size, ζ1(n, p, q) = O
(

1
xp(1−x)q · (p2 + q2 + 1) log n

)
,
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• initialization time, τ1
I (n, p, q) = O(

( 2n

ζ(n,p,q)

)
· 1

xp(1−x)q · nO(p+q)),

• (χ, p′)-degree for p′ ≤ p, ∆1
(χ,p′)(n, p, q) = O

(
1

xp−p′ · (p2+q2+1)
(1−x)q · log n

)

• (χ, p′)-query time Q1
(χ,p′)(n, p, q) = O( 1

xp(1−x)q · nO(1)) = O(2nnO(1))

• (χ′, q′)-degree for q′ ≤ q, ∆1
(χ′,q′)(n, p, q) = O

(
1

xp(1−x)q−q′ · (p2 + q2 + 1) · log n
)

• (χ′, q′)-query time, Q1
(χ′,q′)(n, p, q) = O( 1

xp(1−x)q · nO(1)) = O(2nnO(1))

We apply Lemma 3.3 to this construction to get a new construction with the following parameter.

• size, ζ2(n, p, q) = O
(

1
xp(1−x)q · (p + q)O(1) · log n

)

• initialization time,

τ2
I (n, p, q) = O

(
τ1

I

(
(p + q)2, p, q

)
+ ζ1

(
(p + q)2, p, q

)
· (p + q)O(1) · n log n

)

= O


 22(p+q)2

xp(1 − x)q
· (p + q)O(p+q) +

(
1

xp(1 − x)q
· (p + q)O(1) · n log n

)


= O

(
(p + q)O(p+q)

xp(1 − x)q

(
22(p+q)2

+ n log n

))

• (χ, p′)-degree, ∆2
(χ,p′)(n, p, q) = O

(
1

xp−p′(1−x)q
· (p + q)O(1) · log n

)

• (χ, p′)-query time, Q2
(χ,p′)(n, p, q) = O

((
2(p+q)2

+ 1
xp−p′ (1−x)q

)
(p + q)O(1) · log n

)

• (χ′, q′)-degree, ∆2
(χ′,q′)(n, p, q) = O

(
1

xp(1−x)q−q′ · (p + q)O(1) · log n
)

• (χ, q′)-query time, Q2
(χ′,q′)(n, p, q) = O

((
2(p+q)2

+ 1
xp(1−x)q−q′

)
(p + q)O(1) · log n

)

We apply Lemma 3.4 to this construction. Recall that in Lemma 3.4 we set s = ⌊(log(p + q))2⌋
and t = ⌈p+q

s ⌉.

ζ3(n, p, q) ≤ |Pn
t | ·

∑

(p1,...,pt)∈Zp
s,t

∏

i≤t

ζ2(n, pi, s − pi)

≤ nO(t) · |Zp
s,t| · max

(p1,...,pt)∈Zp
s,t

∏

i≤t

ζ2(n, pi, s − pi)

≤ nO(t) · (p + q)O(t) ·
1

xp(1 − x)q+s
· sO(t) · (log n)O(t)

≤ n
O( p+q

log2(p+q)
)

·
1

xp(1 − x)q

(
Because

(
1

1 − x

)s

∈ nO(t).

)

τ3
I (n, p, q) = O




∑

p̂≤s

τ2
I (n, p̂, s − p̂)


+ ζ3(n, p, q) · nO(1)




= O




∑

p̂≤s

sO(s)

xp̂(1 − x)s−p̂

(
22s2

+ n log n

)
+ ζ3(n, p, q) · nO(1)




= O

(
(log(p + q))O(log2(p+q))

xp(1 − x)q

(
22log4(p+q)

+ n log n

)
+ n

O( p+q

log2(p+q)
)

·
1

xp(1 − x)q

)
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∆3
(χ,p′)(n, p, q) ≤ |Pn

t | · |Zp
s,t| · max

(p1,...,pt)∈Zp
s,t

p′
1≤p1,...,p′

t≤pt

p′
1+...+p′

t=p′

∏

i≤t

∆2
(χ,p′)(n, pi, s − pi)

≤ nO(t) · (p + q)O(t) ·
1

xp−p′
(1 − x)q+s

· sO(t) · (log n)O(t)

≤ n
O( p+q

log2(p+q)
)

·
1

xp−p′(1 − x)q

∆3
(χ′,q′)(n, p, q) ≤ |Pn

t | · |Zp
s,t| · max

(p1,...,pt)∈Zp
s,t

q′
1≤s−p1,...,q′

t≤s−qt

q′
1+...+q′

t=q′

∏

i≤t

∆2
(χ′,q′

i
)(n, pi, s − pi)

≤ nO(t) · (p + q)O(t) ·
1

xp(1 − x)q+s−q′ · sO(t) · (log n)O(t)

≤ n
O( p+q

log2(p+q)
)

·
1

xp(1 − x)q−q′

Q3
(χ,p′)(n, p, q) ≤ O




∆3
(χ,p′)(n, p, q) · nO(1) + |Pn

t | · |Zp
s,t| · t ·

∑

p̂′≤p̂≤s
p̂−p̂′≤p−p′

s−p̂≤q

Q2
(χ,p̂′)(n, p̂, s − p̂)




≤ O




∆3
(χ,p′)(n, p, q) · nO(1) + nO(t) ·

∑

p̂′≤p̂≤s
p̂−p̂′≤p−p′

s−p̂≤q

(
2s2

+
1

xp̂−p̂′(1 − x)s−p̂

)
sO(1) log n




≤ O


 n

O( p+q

log2(p+q)
)

xp−p′(1 − x)q
+ nO(t) · sO(1) · log n

(
2s2

+
1

xp−p′(1 − x)q

)


≤ O


 n

O( p+q

log2(p+q)
)

xp−p′(1 − x)q




Similar way we can bound Q3
(χ′,q′) as,

Q3
(χ′,q′)(n, p, q) ≤ O


 n

O( p+q

log2(p+q)
)

xp(1 − x)q−q′




We apply Lemma 3.3 to this construction to get a new construction with the following
parameters.

• size, ζ4(n, p, q) ≤ 2
O( p+q

log(p+q)
)

· 1
xp(1−x)q · (p + q)O(1) · log n,

• initialization time,

τ4
I (n, p, q) ≤ O

(
τ3

I

(
(p + q)2, p, q

)
+ ζ3

(
(p + q)2, p, q

)
· (p + q)O(1) · n log n

)

≤ 22log4(p+q)
·

(log(p + q))O(log2(p+q))

xp(1 − x)q
+

2
O( p+q

log(p+q)
)

xp(1 − x)q
· (p + q)O(1)n log n
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• (χ, p′)-degree,

∆4
(χ,p′)(n, p, q) ≤ ∆3

(χ,p′)

(
(p + q)2, p, q

)
· (p + q)O(1) · log n

≤
2

O( p+q

log(p+q)
)

xp−p′(1 − x)q
· (p + q)O(1) · log n

• (χ′, q′)-degree,

∆4
(χ′,q′)(n, p, q) ≤ ∆3

(χ′,q′)

(
(p + q)2, p, q

)
· (p + q)O(1) · log n

≤
2

O( p+q

log(p+q)
)

xp(1 − x)q−q′ · (p + q)O(1) · log n

• (χ, p′)-query time,

Q4
(χ,p′)(n, p, q) ≤ O

((
Q3

(χ,p′)

(
(p + q)2, p, q

)
+ ∆3

(χ,p′)

(
(p + q)2, p, q

))
· (p + q)O(1) · log n

)

≤
2

O( p+q

log(p+q)
)

xp−p′(1 − x)q
· (p + q)O(1) log n

• (χ′, q′)-query time,

Q4
(χ′,q′)(n, p, q) ≤

2
O( p+q

log(p+q)
)

xp(1 − x)q−q′ · (p + q)O(1) log n

We apply Lemma 3.4 to this construction by setting s = ⌊(log(p + q))2⌋ and t = ⌈p+q
s ⌉.

• size,

ζ5(n, p, q) ≤ |Pn
t | ·

∑

(p1,...,pt)∈Zp
s,t

∏

i≤t

ζ4(n, pi, s − pi)

≤ nO(t) · (p + q)O(t) · sO(t) · 2O( st
log s

) · (log n)O(t) ·
1

xp(1 − x)q+s

≤ n
O( p+q

log2(p+q)
)

· 2
O( p+q

log log(p+q)
) 1

xp(1 − x)q

• initialization time,

τ5
I (n, p, q) ≤ O




∑

p̂≤s

τ4
I (n, p̂, s − p̂)


+ ζ5(n, p, q) · nO(1)




≤ O


s

22log4 s

· (log s)O(log2 s)

xp(1 − x)q
+

2
O( s

log s
)

xp(1 − x)q
· n log n + n

O( p+q

log2(p+q)
)

·
2

O( p+q

log log(p+q)
)

xp(1 − x)q




≤ O


s

22log4 s

· (log s)O(log2 s)

xp(1 − x)q
+ n

O( p+q

log2(p+q)
)

·
2

O( p+q

log log(p+q)
)

xp(1 − x)q




≤ O


22log4 s

· (s)O(s)

xp(1 − x)q
+ n

O( p+q

log2(p+q)
)

·
2

O( p+q

log log(p+q)
)

xp(1 − x)q




≤ O


22(2 log log(p+q))4

· (log(p + q))O((log(p+q))2)

xp(1 − x)q
+ n

O( p+q

log2(p+q)
)

·
2

O( p+q

log log(p+q)
)

xp(1 − x)q
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• (χ, p′)-degree,

∆5
(χ,p′)(n, p, q) ≤ |Pn

t | · |Zp
s,t| · max

(p1,...,pt)∈Zp
s,t

p′
1≤p1,...,p′

t≤pt

p′
1+...+p′

t=p′

∏

i≤t

∆4
(χ,p′

i
)(n, pi, s − pi)

≤ nO(t) · (p + q)O(t) ·
2

O( st
log s

)

xp−p′(1 − x)q+s
· sO(t) · (log n)O(t)

≤ n
O( p+q

log2(p+q)
)

· 2
O( p+q

log log(p+q)
)

·
1

xp−p′
(1 − x)q

• (χ′, q′)-degree,

∆5
(χ′,q′)(n, p, q) ≤ n

O( p+q

log2(p+q)
)

· 2
O( p+q

log log(p+q)
)

·
1

xp(1 − x)q−q′

• (χ, p′)-query time,

Q5
(χ,p′)(n, p, q) ≤ O

(
∆5

(χ,p′)(n, p, q) · nO(1) + |Pn
t | · |Zp

s,t| · max
p̂′≤p̂≤s

Q4
(χ,p̂′)(n, p̂, s − p̂)

)

≤ n
O( p+q

log2(p+q)
)

· 2
O( p+q

log log(p+q)
)

·
1

xp−p′(1 − x)q

• (χ′, q′)-query time,

Q5
(χ′,q′)(n, p, q) ≤ n

O( p+q

log2(p+q)
)

· 2
O( p+q

log log(p+q)
)

·
1

xp(1 − x)q−q′

We apply Lemma 3.3 to this construction to get a new construction with the following param-
eters.

• size,

ζ6(n, p, q) ≤ ζ5
(
(p + q)2, p, q

)
· (p + q)O(1) · log n

≤ 2
O( p+q

log log(p+q)
)

·
(p + q)O(1)

xp(1 − x)q
· log n

• initialization time,

τ6
I (n, p, q) ≤ O

(
τ5

I

(
(p + q)2, p, q

)
+ ζ5

(
(p + q)2, p, q

)
· (p + q)O(1) · n log n

)

= O


22(2 log log(p+q))4

· (log(p + q))O((log(p+q))2)

xp(1 − x)q
+ 2

O( p+q

log log(p+q)
)

·
(p + q)O(1)

xp(1 − x)q
· n log n




• (χ, p′)-degree,

∆6
(χ,p′)(n, p, q) ≤ ∆5

(χ,p′)

(
(p + q)2, p, q

)
· (p + q)O(1) · log n

≤ O

(
2

O( p+q

log log(p+q)
)

·
1

xp−p′
(1 − x)q

· (p + q)O(1) · log n

)
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• (χ, p′)-query time,

Q6
(χ,p′)(n, p, q) ≤ O

((
Q5

(χ,p′)

(
(p + q)2, p, q

)
+ ∆5

(χ,p′)

(
(p + q)2, p, q

))
· (p + q)O(1) · log n

)

≤ O

(
2

O( p+q

log log(p+q)
)

·
1

xp−p′(1 − x)q
· (p + q)O(1) · log n

)

• (χ′, q′)-degree,

∆6
(χ′,q′)(n, p, q) = ∆5

(χ′,q′)

(
(p + q)2, p, q

)
· (p + q)O(1) · log n

≤ O

(
2

O( p+q

log log(p+q)
)

·
1

xp(1 − x)q−q′ · (p + q)O(1) · log n

)

• (χ′, q′)-query time,

Q6
(χ′,q′)(n, p, q) = O

((
Q5

(χ′,q′)

(
(p + q)2, p, q

)
+ ∆5

(χ′,q′)

(
(p + q)2, p, q

))
· (p + q)O(1) · log n

)

≤ O

(
2

O( p+q

log log(p+q)
)

·
1

xp(1 − x)q−q′ · (p + q)O(1) · log n

)

We apply Lemma 3.4 to this construction by setting s = ⌊(log(p + q))2⌋ and t = ⌈p+q
s ⌉.

• size,

ζ7(n, p, q) ≤ |Pn
t | ·

∑

(p1,...,pt)∈Zp
s,t

∏

i≤t

ζ6(n, pi, s − pi)

≤ nO(t) · (p + q)O(t) · sO(t) · 2
O( st

log log s
) · (log n)O(t) ·

1

xp(1 − x)q+s

≤ n
O( p+q

log2(p+q)
)

· 2
O( p+q

log log log(p+q)
) 1

xp(1 − x)q

• initialization time,

τ7
I (n, p, q) ≤ O




∑

p̂≤s

τ6
I (n, p̂, s − p̂)


+ ζ7(n, p, q) · nO(1)




≤ 22(2 log log(s))4

·
(log s)O(log2(s))

xp(1 − x)q
+ n

O( p+q

log2(p+q)
)

· 2
O( p+q

log log log(p+q)
) 1

xp(1 − x)q

≤ n
O( p+q

log2(p+q)
)

· 2
O( p+q

log log log(p+q)
) 1

xp(1 − x)q

(∵ 22(2 log log s)4

, (log s)O(log2(s)) ≤ 2
O( p+q

log log log(p+q)
)
. This inequality holds because log log 22(2 log log s)4

is upper bounded by a polynomial function in log log log(p+q) where as log log 2
O( p+q

log log log(p+q)
)

is lower bounded by a polynomial function in log(p + q). Similarly log(log s)O(log2(s)) is

upper bounded by a polynomial function in log(p+q) where as log 2
O( p+q

log log log(p+q)
)

is lower
bounded by a polynomial function in (p + q))

• (χ, p′)-degree,

∆7
(χ,p′)(n, p, q) ≤ |Pn

t | · |Zp
s,t| · max

(p1,...,pt)∈Zp
s,t

p′
1≤p1,...,p′

t≤pt

p′
1+...+p′

t=p′

∏

i≤t

∆6
(χ,p′

i
)(n, pi, s − pi)

≤ nO(t) · (p + q)O(t) · sO(t) · 2
O( st

log log s
) · (log n)O(t) ·

1

xp−p′(1 − x)q+s

≤ n
O( p+q

log2(p+q)
)

· 2
O( p+q

log log log(p+q)
)

·
1

xp−p′(1 − x)q
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• (χ′, q′)-degree,

∆7
(χ′,q′)(n, p, q) ≤ n

O( p+q

log2(p+q)
)

· 2
O( p+q

log log log(p+q)
)

·
1

xp(1 − x)q−q′

• (χ, p′)-query time,

Q7
(χ,p′)(n, p, q) ≤ O

(
∆7

(χ,p′)(n, p, q) · nO(1) + |Pn
t | · |Zp

s,t| · t · max
p̂′≤p̂≤s

Q6
(χ,p̂′)(n, p̂, s − p̂)

)

≤ n
O( p+q

log2(p+q)
)

· 2
O( p+q

log log log(p+q)
)

·
1

xp−p′(1 − x)q
log n

• (χ′, q′)-query time,

Q7
(χ′,q′)(n, p, q) ≤ n

O( p+q

log2(p+q)
)

· 2
O( p+q

log log log(p+q)
)

·
1

xp(1 − x)q−q′ log n

We apply Lemma 3.3 to this construction to get a new construction with the following param-
eters.

• size,

ζ8(n, p, q) ≤ ζ7
(
(p + q)2, p, q

)
· (p + q)O(1) · log n

≤ 2
O( p+q

log log log(p+q)
)

·
1

xp(1 − x)q
· (p + q)O(1) · log n

• initialization time,

τ8
I (n, p, q) ≤ O

(
τ7

I

(
(p + q)2, p, q

)
+ ζ7

(
(p + q)2, p, q

)
· (p + q)O(1) · n log n

)

≤ 2
O( p+q

log log log(p+q)
)

·
1

xp(1 − x)q
· (p + q)O(1) · n log n

• (χ, p′)-degree,

∆8
(χ,p′)(n, p, q) ≤ ∆7

(χ,p′)

(
(p + q)2, p, q

)
· (p + q)O(1) · log n

≤ 2
O( p+q

log log log(p+q)
)

·
1

xp−p′(1 − x)q
· (p + q)O(1) · log n

• (χ, p′)-query time,

Q8
(χ,p′)(n, p, q) ≤ O

((
Q7

(χ,p′)

(
(p + q)2, p, q

)
+ ∆7

(χ,p′)

(
(p + q)2, p, q

))
· (p + q)O(1) · log n

)

≤ 2
O( p+q

log log log(p+q)
)

·
1

xp−p′(1 − x)q
· (p + q)O(1) · log n

• (χ′, q′)-degree,

∆8
(χ′,q′)(n, p, q) = ∆7

(χ′,q′)

(
(p + q)2, p, q

)
· (p + q)O(1) · log n

≤ 2
O( p+q

log log log(p+q)
)

·
1

xp(1 − x)q−q′ · (p + q)O(1) · log n

• (χ′, q′)-query time,

Q8
(χ′,q′)(n, p, q) = O

((
Q7

(χ′,q′)

(
(p + q)2, p, q

)
+ ∆7

(χ′,q′)

(
(p + q)2, p, q

))
· (p + q)O(1) · log n

)

≤ 2
O( p+q

log log log(p+q)
)

·
1

xp(1 − x)q−q′ · (p + q)O(1) · log n

The final construction satisfies all the claimed bounds. This concludes the proof.
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3.2 Representative Sets for Product Families

We are ready to give the main theorem about product families using the constructions of gen-
eralized n-p-q-separating collections.

Theorem 3.1. Let L1 be a p1-family of sets and L2 be a p2-family of sets over a universe U of
size n. Let w : 2U → N be an additive weight function. Let L = L1•L2 and p = p1+p2. For any

0 < x1, x2 < 1, there exist L̂ ⊆k−p1−p2
minrep L of size 2

O( k
log log log(k)

)
· 1

xp
1(1−x1)k−p ·kO(1) log n and it can

be computed in time O

(
z(n, k, W ) ·

(
1

xp
1(1−x1)q + 1

x
p1
2 (1−x2)p2

+ |L1|

x
p2
1 (1−x1)q(1−x2)p2

+ |L2|

x
p1
1 (1−x1)qx

p1
2

))
,

where z(n, k, W ) = 2
O( k

log log log(k)
)
kO(1)n log n log W and W is the maximum weight defined by

w.

Proof. We set p = p1 + p2 and q = k − p. To obtain the desired construction we first define
an auxiliary graph and then use it to obtain the q-representative for the product family L. We
first obtain two families of separating collections.

• Apply Lemma 3.1 for 0 < x1 < 1 and construct a n-p-q-separating collection (F , χF , χ′
F )

of size 2
O( p+q

log log log(p+q)
)

· 1
xp

1(1−x1)q · (p + q)O(1) log n in time linear in the size of F .

• Apply Lemma 3.1 for 0 < x2 < 1 and construct a n-p1-p2-separating collection (H, χH, χ′
H)

of size 2
O(

p1+p2
log log log(p1+p2)

)
· 1

x
p1
2 (1−x2)p2

· (p1 + p2)O(1) log n in time linear in the size of H.

Now we construct a graph G = (V, E) where the vertex set V contains a vertex each for sets
in F ⊎ H ⊎ L1 ⊎ L2. For clarity of presentation we name the vertices by the corresponding set.
Thus, the vertex set V = F ⊎ H ⊎ L1 ⊎ L2. The edge set E = E1 ⊎ E2 ⊎ E3 ⊎ E4, where each
Ei for i ∈ {1, 2, 3, 4} is defined as follows (see Figure 1).

E1 =
{

(A, F )
∣∣∣ A ∈ L1, F ∈ χF (A)

}

E2 =
{

(B, F )
∣∣∣ B ∈ L2, F ∈ χF (B)

}

E3 =
{

(A, H)
∣∣∣ A ∈ L1, H ∈ χH(A)

}

E4 =
{

(B, F )
∣∣∣ B ∈ L2, F ∈ χ′

H(B)
}

Thus G is essentially a 4-partite graph.

Algorithm. The construction of L̂ is as follows. For a set F ∈ F , we call a pair of sets (A, B)
cyclic, if A ∈ L1, B ∈ L2 and there exists H ∈ H such that FAHB forms a cycle of length four
in G. Let J (F ) denote the family of cyclic pairs for a set F ∈ F and

wF = min
(A,B)∈J (F )

w(A) + w(B).

We obtain the family L̂ by adding A ∪ B for every set F ∈ F such that (A, B) ∈ J (F ) and
w(A) + w(B) = wF . Indeed, if the family J (F ) is empty then we do not add any set to L̂
corresponding to F . The procedure to find the smallest weight A ∪ B for any F is as follows.
We first mark the vertices of NG(F ) (the neighbors of F ). Now we mark the neighbors of
P = (NG(F )∩L1) in H. For every marked vertex H ∈ H, we associate a set A of minimum weight
such that A ∈ (P ∩ NG(H)). This can be done sequentially as follows. Let P = {S1, . . . , Sℓ}.
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F F1 · · · Fr · · ·

L1

A1 · · · Ai · · ·

L2

B1 · · · Bj · · ·

HH1 · · · Hℓ · · ·

F r
∈

χF
(A

i)

F
r ∈

χ
F (B

j )

H
ℓ ∈

χ
H (A

i )

H ℓ
∈

χ
′

H
(B

j
)

Figure 1: Graph constructed from L1, L2, F and H

Now iteratively visit the neighbors of Si in H, i ∈ [ℓ], and for each vertex of H store the smallest
weight vertex S ∈ P it has seen so far. After this we have a marked set of vertices in H such
that with each marked vertex H in H we stored a smallest weight marked vertex in L1 which
is a neighbor of H. Now for each marked vertex B in L2, we go through the neighbors of B in
the marked set of vertices in H and associate (if possible) a second vertex (which is a minimum
weighted marked neighbor from L2) with each marked vertex in H. We obtain a pair of sets
(A, B) ∈ J (F ) such that w(A) + w(B) = wF . This can be easily done by keeping a variable
that stores a minimum weighted A ∪ B seen after every step of marking procedure. Since for
each F ∈ F we add at most one set to L̂, the size of L̂ follows.

Correctness. We first show that L̂ ⊆ L. Towards this we only need to show that for every
A∪B ∈ L̂ we have that A∩B = ∅. Observe that if A∪B ∈ L̂ then there exists a F ∈ F , H ∈ H
such that FAHB forms a cycle of length four in the graph G. So H ∈ χH(A) and H ∈ χ′

H(B).
This means A ⊆ H and B ∩ H = ∅. So we conclude A and B are disjoint and hence L̂ ⊆ L. We
also need to show that if there exist pairwise disjoint sets A ∈ L1, B ∈ L2, C ∈

(U
q

)
, then there

exist Â ∈ L1, B̂ ∈ L2 such that Â ∪ B̂ ∈ L̂, Â, B̂, C are pairwise disjoint and w(Â) + w(B̂) ≤
w(A) + w(B). By the property of separating collections (F , χF , χ′

F ) and (H, χH, χ′
H), we know

that there exists F ∈ χF (A) ∩ χF (B) ∩ χ′
F (C), H ∈ χH(A) ∩ χ′

H(B). This implies that FAHB
forms a cycle of length four in the graph G. Hence in the construction of L̂, we should have
chosen Â ∈ L1 and B̂ ∈ L2 corresponding to F such that w(Â) + w(B̂) ≤ w(A) + w(B) and
added to L̂. So we know that F ∈ χF (Â) ∩ χF (B̂). Now we claim that Â, B̂ and C are pairwise
disjoint. Since Â ∪ B̂ ∈ L̂, Â ∩ B̂ = ∅. Finally, since F ∈ χF (Â) ∩ χF (B̂) and F ∈ χ′

F (C), we
get Â, B̂ ⊆ F and F ∩ C = ∅ which implies C is disjoint from Â and B̂. This completes the
correctness proof.

Running Time Analysis. We first consider the time TG to construct the graph G. We can

construct F in time 2
O( p+q

log log log(p+q)
)
· 1

xp
1(1−x1)q · (p + q)O(1) · n log n. We can construct H in time

2
O(

p1+q

log log log(p1+p2)
)

· 1
x

p1
2 (1−x2)p2

· (p1 + p2)O(1) · n log n. Now to add edges in the graph we do as

follows. For each vertex in L1 ∪ L2, we query the data structure created, spending the query
time mentioned in Lemma 3.1, and add edges to the vertices in F ∪ H from it. So the running
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time to construct G is,

TG ≤ 2
O( k

log log log(k)
)
kO(1)n log n

( 1

xp
1(1 − x1)q

+
1

xp1
2 (1 − x2)p2

+
|L1|

xp2
1 (1 − x1)q

+
|L2|

xp1
1 (1 − x1)q

+
|L1|

(1 − x2)p2
+

|L2|

xp1
2

)
.

Now we bound the time TC taken to construct L̂ from G. To do the analysis we see how may
times a vertex A in L1 ∪ L2 is visited. It is exactly equal to the product of the degree of A to
F (denoted by degreeF (A)) and the degree of A to H (denoted by degreeH(A)). Also note that
two weights can be compared in O(log W ) time. Then

TC ≤ log W


 ∑

A∈L1

degreeF (A) · degreeH(A) +
∑

A∈L2

degreeF (A) · degreeH(A)




≤ log W


 ∑

A∈L1

∆(χF ,p1)(n, p, q) · ∆(χH,p1)(n, p1, p2) +
∑

A∈L2

∆(χF ,p2)(n, p, q) · ∆(χ′
H

,p2)(n, p1, p2)




≤ 2
O( k

log log log(k)
)
kO(1) log2 n log W

(
|L1|

xp2
1 (1 − x1)q(1 − x2)p2

+
|L2|

xp1
1 (1 − x1)qxp1

2

)
.

So the total running time T is,

T = TG + TC

≤ 2
O( k

log log log(k)
)
kO(1)n log n · log W

( 1

xp
1(1 − x1)q

+
1

xp1
2 (1 − x2)p2

+
|L1|

xp2
1 (1 − x1)q(1 − x2)p2

+
|L2|

xp1
1 (1 − x1)qxp1

2

)
.

This completes the proof of the theorem.

Now we give a ready to use corollary for Theorem 3.1.

Corollary 1. Let L1 be a p1-family of sets and L2 be a p2-family of sets over a universe U of
size n. Furthermore, let w : 2U → N be an additive weight function, |L1| =

( k
p1

)
, |L2| =

( k
p2

)
,

L = L1 • L2, p = p1 + p2 and q = k − p. There exists L̂ ⊆k−p1−p2
minrep L of size

(k
p

)
· 2o(k) · log n and

it can be computed in time

min
0<x1,x2<1

O


 z(n, k, W )

xp1
2 (1 − x2)p2

+

( k
p1

)
· z(n, k, W )

xp2
1 (1 − x1)q(1 − x2)p2

+

( k
p2

)
· z(n, k, W )

xp1
1 (1 − x1)qxp1

2

+
(k

q )q · z(n, k, W )

xp
1(1 − x1)q


 .

Here z(n, k, W ) = 2
O( k

log log log(k)
)
kO(1)n log n · log W and W is the maximum weight defined by

w.

Proof. We apply Theorem 3.1 for 0 < x1, x2 < 1 and find L′ ⊆k−p1−p2
minrep L of size 2

O( k
log log log(k)

)
·

1
xp

1(1−x1)k−p ·kO(1) log n in time T1 = O( z(n,k,W )
xp

1(1−x1)q + z(n,k,W )

x
p1
2 (1−x2)p2

+ z(n,k,W )·|L1|

x
p2
1 (1−x1)q(1−x2)p2

+ z(n,k,W )·|L2|

x
p1
1 (1−x1)qx

p1
2

).

Now we apply Theorem 2.2 and get L̂ ⊆k−p1−p2
minrep L′ of size

(k
p

)
2o(k) log n in time T2 =

O
((

k
q

)q
2o(k) · 1

xp
1(1−x1)k−p · kO(1) log2 n · log W

)
. Due to Lemma 2.1, L̂ ⊆k−p1−p2

minrep L. Now we

choose x1, x2 such that T1 + T2 is minimized. So the total running time T to construct L̂ is,

T = min
x1,x2

(T1 + T2)

= min
x1,x2

O


 z(n, k, W )

xp1
2 (1 − x2)p2

+
z(n, k, W ) · |

( k
p1

)
|

xp2
1 (1 − x1)q(1 − x2)p2

+
z(n, k, W ) · |

( k
p2

)
|

xp1
1 (1 − x1)qxp1

2

+
z(n, k, W ) · (k

q )q

xp
1(1 − x1)q


 .
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This completes the proof.

4 Representative set computation for product families of a lin-

ear matroid

In this section we give an algorithm to compute q-representative for product families of a linear
matroid. That is, given a matroid M = (E, I), families of independent sets A and B of sets of
sizes p1 and p2 respectively, and a positive integer q, we compute F̂ ⊆q

rep F , where, F = A • B,

of size
(p1+p2+q

p1+p2

)
efficiently. We compute q-representative for F in two steps. In the first step

we compute an intermediate family of q-representative and then apply Theorem 2.1 to compute
q-representative of the desired size. The intermediate family of q-representative is obtained by
computing q-representative of slices, A • {B} for all B ∈ B, and then take its union. We start
with the following lemma that will be central to our faster algorithm for computing the desired
q-representative for product families of a linear matroid.

Lemma 4.1 (Slice Computation Lemma). Let M = (E, I) be a linear matroid of rank k, L be
a p1-family of independent sets of M and S ∈ I of size p2. Furthermore, let w : L •{S} → N

be a non-negative weight function. Then given a representation AM of M over a field F, we

can find L̂ • {S} ⊆k−p1−p2
minrep L • {S} of size at most

(k−p2

p1

)
in O

((k−p2

p1

)
|L|pω

1 + |L|
(k−p2

p1

)ω−1)

operations over F.

Proof. Observe that L • {S} is a p1 + p2-family of independent sets of M and all sets in L • {S}
contain S as a subset. Let AM the matrix representing the matroid M over a field F. Without
loss of generality we can assume that the first p2 columns of AM correspond to the elements
in S. Furthermore, we can also assume that the first p2 columns and p2 rows form an identity
matrix Ip2×p2 . That is, if S denotes the first p2 columns and Z denotes the first p2 rows then
the submatrix AM [Z, S] is Ip2×p2. The reason for the last assertion is that if the matrix is not
in the required form then we can apply elementary row operations and obtain the matrix in the
desired form. This also allows us to assume that the number of rows in AM is k. So AM have
the following form. (

Ip2×p2 A

0 B

)

Let AM/S be the matrix obtained after deleting first p2 rows and first p2 columns from
AM . That is, AM/S= B. Let M/S = (Es, Is) be the matriod represented by the AM/S on
the underlying ground set Es = E \ S. Observe that the rank(M/S)=rank(B)= k − p2, else
the rank(AM ) would become strictly smaller than k. Let e1, e2, . . . , ep2 be the first p2 column
vectors of AM , i.e., they are columns corresponding to the elements of S. For a column vector
v in AM , v̄ is used to denote the column vector restricted to the matrix AM/S (i.e., v̄ contains
the last k − p2 entries of v).

Now consider the set L(S) = {X | X ∪ S ∈ L • {S}}. We also define a new weight function
w′ : L(S) → N as follows: w′(X) = w(X ∪ S). We would like to compute k − p2 representative
for L(S). Towards that goal we first show that L(S) is a p1-family of independent sets of M/S.
Let X ∈ L(S). We know that X ∪ S ∈ I. Let v1, v2, . . . , vp1 be the column vectors in AM

corresponding to the elements in X. Suppose X /∈ Is. Then there exist coefficients λ1, . . . , λp1
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such that λ1v̄1 + λ2v̄2 + · · · + λp1 v̄p1 = ~0 and at least one of them is non-zero. Then

λ1v1 + λ2v2 + · · · + λp1vp1 =




a1
...

ap2

0
...
0




This implies that −a1e1 − a2e2 − · · · − ap2ep2 + λ1v1 + λ2v2 + · · · + λp1vp1 = ~0, which contradicts
the fact that S ∪ X ∈ I. Hence X ∈ Is and L(S) is a p1-family of independent sets of M/S.

Now we apply Theorem 2.1 and find L̂(S) ⊆k−p1−p2
minrep L(S) of size

(k−p2

p1

)
, by considering L(S)

as a p1-family of independent sets of the matroid M/S. We claim that L̂(S) • {S} ⊆k−p1−p2
minrep

L•{S}. Let X ∪S ∈ L•{S} and Y ⊆ E \(X ∪S) such that |Y | = k−p1 −p2 and X ∪S ∪Y ∈ I.

We need to show that there exists a X̂ ∈ L̂(S) such that X̂ ∪S∪Y ∈ I and w(X̂ ∪S) ≤ w(X∪S).
We start by showing that that X ∪ Y ∈ Is. Let v1, v2, . . . , vk−p2 be the column vectors in AM

corresponding to the elements of X ∪ Y . Suppose X ∪ Y /∈ Is. Then there exist coefficients
λ1, . . . , λk−p2 such that λ1v̄1 + λ2v̄2 + · · · + λk−p2v̄k−p2 = ~0 and at least one of them is non-zero.
Then we have the following.

λ1v1 + λ2v2 + · · · + λk−p2vk−p2 =




b1
...

bp2

0
...
0




However this implies that −b1e1 − b2e2 −· · · − bp2ep2 +λ1v1 +λ2v2 + · · · +λk−p2vk−p2 = ~0, which

contradicts the fact that S ∪ X ∪ Y ∈ I. Hence X ∪ Y ∈ Is. Since L̂(S) ⊆k−p1−p2
minrep L(S), there

exists a set X̂ ∈ L(S), with w′(X̂) ≤ w′(X) (i.e w(X̂ ∪ S) ≤ w(X ∪ S)) and X̂ ∪ Y ∈ Is. We
claim that X̂ ∪ S ∪ Y ∈ I. Let u1, u2, . . . , uk−p2 be the column vectors in AM corresponding

to the elements of X̂ ∪ Y . Suppose X̂ ∪ S ∪ Y /∈ I. Then there exist coefficients α1, . . . , αk

such that α1e1 + α2e2 + · · · + αp2ep2 + αp2+1u1 + · · · + αkuk−p2 = ~0 and at least one of the
coefficients is non-zero. This implies that αp2+1ū1 + · · · + αkūk−p2 = ~0, where ūj are restrictions

of uj to the last k − p2 entries. This contradicts our assumption that X̂ ∪ Y ∈ Is. Thus we

have shown that X̂ ∪ Y ∪ S ∈ I. The size of L̂(S) • {S} is
(k−p2

p1

)
and it can be found in

O
((k−p2

p1

)
|L|pω

1 + |L|
(k−p2

p1

)ω−1
)

operations over F.

Now we are ready to prove the main theorem of this section by using Lemma 4.1.

Theorem 4.1. Let M = (E, I) be a linear matroid of rank k, L1 be a p1-family of inde-
pendent sets of M and L2 be a p2-family of independent sets of M . Given a representation
AM of M over a field F, we can find L̂1 • L2 ⊆k−p1−p2

minrep L1 • L2 of size at most
( k

p1+p2

)
in

O
(
|L2||L1|

(k−p2
p1

)ω−1
pω

1 + |L2|
(k−p2

p1

)( k
p1+p2

)ω−1
(p1 + p2)ω

)
operations over F.

Proof. Let L2 = {S1, S2, . . . , Sℓ}. Then we have

L1 • L2 =
ℓ⋃

i=1

L1 • {Si}.
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By Lemma 2.2,

L =
ℓ⋃

i=1

̂L1 • {Si} ⊆k−p1−p2
minrep L1 • L2.

Using Lemma 4.1, for all 1 ≤ i ≤ ℓ, we find ̂L1 • {Si} ⊆k−p1−p2
minrep L1 • {Si} of size

(k−p2

p1

)

in O
((k−p2

p1

)
|L1|pω

1 + |L1|
(k−p2

p1

)ω−1
)

= O
(
|L1|

(k−p2
p1

)ω−1
pω

1

)
operations over F. Now |L| =

|
⋃ℓ

i=1
̂L1 • {Si}| ≤ |L2|

(k−p2

p1

)
. Now we apply Theorem 2.1 and find L̂ ⊆k−p1−p2

minrep L of size
( k

p1+p2

)
. The number of operations, denoted by T1, over F to find L̂ from L is

T1 = O



(

k

p1 + p1

)
|L2|

(
k − p2

p1

)
(p1 + p2)ω + |L2|

(
k − p2

p1

)(
k

p1 + p2

)ω−1



= O


|L2|

(
k − p2

p1

)(
k

p1 + p2

)ω−1

(p1 + p2)ω


 .

By Lemma 2.1, L̂ ⊆k−p1−p2
minrep L1 • L2. The number of operations, denoted by T , over F to find L̂

from L1 and L2 is

T = |L2| · O


|L1|

(
k − p2

p1

)ω−1

pω
1


+ T1

= O


|L2||L1|

(
k − p2

p1

)ω−1

pω
1 + |L2|

(
k − p2

p1

)(
k

p1 + p2

)ω−1

(p1 + p2)ω


 .

This completes the proof of the theorem.

The following form of Theorem 4.1 will be directly useful in some applications.

Corollary 2. Let M = (E, I) be a linear matroid of rank k, L1 and L2 be two families of
independent sets of M and the number of sets of size p in L1 and L2 be at most

(k+c
p

)
. Here, c

is a fixed constant. Let Lr,i be the set of independent sets of size exactly i in Lr for r ∈ {1, 2}.

Then for all the pairs i, j ∈ [k], we can find ̂L1,i • L2,j ⊆k−i−j
minrep L1,i • L2,j of size

( k
i+j

)
, in total

of O
(
kω (2ω + 2)k + kω2k(ω−1)3k

)
operations over F.

Proof. By using Theorem 4.1 we can find ̂L1,i • L2,j ⊆k−i−j
minrep L1,i •L2,j of size

( k
i+j

)
for any i, j ∈

[k] in O
((k+c

j

)(k+c
i

)(k−j
i

)ω−1
iω +

(k+c
j

)(k−j
i

)( k
i+j

)ω−1
(i + j)ω

)
operations over F. Let k′ = k + c.
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So the total number of operations, denoted by T , over F to find ̂L1,i • L2,j for all i, j ∈ [k] is,

T = O






k∑

i=0

k∑

j=0

(
k′

j

)(
k′

i

)(
k − j

i

)ω−1

iω


+




k∑

i=0

k∑

j=0

(
k′

j

)(
k − j

i

)(
k

i + j

)ω−1

(i + j)ω






= O




kω

k∑

i=0

(
k′

i

)
k∑

j=0

(
k′

j

)
2(k−j)(w−1)


+


kω

k∑

j=0

(
k′

j

) k−j∑

i=0

(
k − j

i

)(
k

i + j

)ω−1





= O



(

kω2k(ω−1)
k∑

i=0

(
k′

i

)(
1 +

1

2(ω−1)

)k′
)

+


kω2k(w−1)

k∑

j=0

(
k′

j

) k−j∑

i=0

(
k − j

i

)




= O



(

kω2k′
(
2(ω−1) + 1

)k
)

+


kω2k(w−1)

k∑

j=0

(
k′

j

)
2k−j






= O

(
kω2k

(
2(ω−1) + 1

)k
+ kω2k(ω−1)3k

)

= O
(
kω (2ω + 2)k + kω2k(ω−1)3k

)
.

The above simplification completes the proof.

5 Application I: Multilinear Monomial Testing

In this section we first design a faster algorithm for a weighted version of k-MlD and then
give an algorithm for an extension of this to a matroidal version. In the weighted version of
k-MlD in addition to an arithmetic circuit C over variables X = {x1, x2, . . . , xn} representing
a polynomial P (X) over Z+, we are also given an additive weight function w : 2X → N. The
task is that if there exists a k-multilinear term then find one with minimum weight. We call
the weighted variant by k-wMlD. We start with the definition of an arithmetic circuit.

Definition 5.1. An arithmetic circuit C over a commutative ring R is a simple labelled directed
acyclic graph with its internal nodes are labeled by + or × and leaves (in-degree zero nodes) are
labeled from X ∪R, where X = {x1, x2, . . . , xn}, a set of variables. There is a node of out-degree
zero, called the root node or the output gate. The size of C, s(C) is the number of vertices in
the graph.

It is well known that we can replace any arithmetic circuit C with an equivalent circuit with
fan-in two for all the internal nodes with quadratic blow up in the size. For an example, by
replacing each node of in-degree greater than 2, with at most s(C) many nodes of the same
label and in-degree 2, we can convert a circuit C to a circuit C ′ of size s(C ′) = s(C)2. So from
now onwards we always assume that we are given a circuit of this form. We assume W be the
maximum weight defined by w.

Theorem 5.1. k-wMlD can be solved in time O(3.8408k2o(k)s(C)n log2 n · log W ).

Proof. An arithmetic circuit C over Z+ with all leaves labelled from X ∪Z+ will represent sum
of monomials with positive integer coefficients. With each multilinear term Πℓ

j=1xij
we associate

a set {xi1 , . . . , xil
} ⊆ X. With any polynomial we can associate a family of subsets of X which

corresponds to the set of multilinear terms in it. Since C is a directed acyclic graph, there
exists a topological ordering π = v1, . . . , vn, such that all the nodes corresponding to variables
appear before any other gate and for every directed arc uv we have that u <π v. For a node vi

of the circuit let Pi(X) be the multivariate polynomial represented by the subcircuit containing
all the nodes w such that w ≤π vi. At every node we keep a family F j

vi
of j-multilinear term,
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where j ∈ {1, . . . , k}. Let Fvi
= ∪k

x=1Fx
vi

. Given a circuit C, if we compute associated family
of subsets of X for each node we can answer the question of having a k-multilinear term of
minimum weight in the polynomial computed by C. But the size of the family of subsets could
be exponential in n, the number of variables. That is, the size of F j

vi
could be

(n
j

)
. So instead of

storing all subsets, we store a representative family for the associated family of subsets of each

node. That is, we store F̂ j
vi ⊆k−j

minrep F j
vi

. The correctness of this step follows from the definition
of k − j-representative family.

We make a dynamic programming algorithm to detect a multilinear monomial of order k as
follows. Our algorithm goes from left to right following the ordering given by π and computes Fvi

from the families previously computed. The algorithm computes an appropriate representative
family corresponding to each node of C. We show that we can compute a representative family
Fv associated with any node v, where the number of subsets with p elements in Fv is at most(k

p

)
2o(k) log n. When v is an input node then the associated family contains only one set. That

is, if v is labelled with xi then Fv = {{xi}} and if v is labelled from Z+ then Fv = {∅}. When
v is not an input node, then we have two cases.

Addition Gate. v = v1 + v2

Due to the left to right computation in the topological order, we have a representative
families Fv1 and Fv2 for v1 and v2 respectively, where the number of subsets with p
elements in Fv1 as well as in Fv2 will be at most

(k
p

)
2o(k) log n. So the representative

family corresponding to v will be the representative family of Fv1 ∪ Fv2 . We partition
Fv1 ∪ Fv2 based on the size of subsets in it. Let Fv1 ∪ Fv2 =

⊎
p≤k Hp, where Hp contains

all subsets of size p in Fv1 ∪Fv2 . Note that |Hp| ≤ 2
(k

p

)
2o(k) log n. Now using Theorem 2.2,

we can compute all Ĥp ⊆k−p
minrep Hp in time

O


2o(k) log2 n · log W ·

∑

p<k

{
2

(
k

p

)
·

(
k

k − p

)k−p
}


where W is the maximum weight defined by weight function w. The above running time
is upper bounded by O(2.851k2o(k) log2 n log W ), by the similar analysis done for the k-
Path problem in [10]. We output

⋃
p≤k Ĥp as the representative family corresponding to

the node v.

Multiplication Gate. v = v1 × v2

Similar to the previous case we have a representative families Fv1 and Fv2 for v1 and v2

respectively, where the number of subsets with p elements in Fv1 as well as in Fv2 , is at most(k
p

)
2o(k) log n. Here, the representative family corresponding to v will be the representative

family of Fv1 • Fv2 . The idea is that we first get an intermediate representative family
using Corollary 1 and then find its representative of this using Theorem 2.2 to get our
final family. We have that

Fv1 • Fv2 =
⋃

p1,p2

Fp1
v1

• Fp2
v2

,

where Fpi
vi

contains all the subsets of size pi in Fvi
. We know that |Fpi

vi
| ≤

( k
pi

)
2o(k) log n.

Now by using a variant of Corollary 1, we compute ̂Fp1
v1 • Fp2

v2 ⊆k−p1−p2
minrep Fp1

v1
• Fp2

v2
of size( k

p1+p2

)
· 2o(k) · log n for all p1, p2 such that p1 + p2 ≤ k. Let q = k − p1 − p2, then all these

computation can be done in time

∑

p1,p2

min
x1,x2

O
( z′(n, k, W )

xp1
2 (1 − x2)p2

+
z′(n, k, W ) · |

( k
p1

)
|

xp2
1 (1 − x1)q(1 − x2)p2

+
z′(n, k, W ) · |

( k
p2

)
|

xp1
1 (1 − x1)qxp1

2

+
z′(n, k, W ) · (k

q )q

xp
1(1 − x1)q

)
.
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Here, z′(n, k, W ) = 2
O( k

log log log(k)
)
kO(1)n log2 n · log W . The above running time is upper

bounded by O(3.8408k2o(k)kO(1)n log2 n · log W )

Now let F =
⋃

p1,p2

̂Fp1
v1 • Fp2

v2 = ⊎pHp, where ⊎pHp is the partition of F based on size

of subsets. It is easy to see that |Hp| ≤ k
(k

p

)
2o(k) log n. Now using Theorem 2.2 we can

compute Ĥp ⊆k−p
minrep Hp for all p ≤ k together in time

O


k2 · 2o(k) log2 n · log W ·

∑

p≤k

{(
k

p

)
·

(
k

k − p

)k−p
}
 .

The above running time is upper bounded by O(2.851k2o(k)k2 log2 n · log W ). We output⋃
p≤k Ĥp as the representative family corresponding to the node v.

Now we output Yes and a minimum weight set of size k (if exists) among the representative
family corresponding to the root node. Since there are s(C) nodes in C, the total running time
is bounded by O(3.8408k2o(k)s(C)n log2 n · log W ). This completes the proof.

5.1 Matroidal Multilinear Monomial Detection

In this section we extend the k-wMlD problem to a matroidal version and design an algorithm
for this. The problem is defined as follows.

Matroidal Multilinear Monomial Detection (k-wMMlD) Parameter: k
Input: An arithmetic circuit C over variables X = {x1, x2, . . . , xn} representing a poly-
nomial P (X) over Z, a linear matroid M = (E, I) where the ground set E = X with its
representation matrix AM and an additive weight function w : 2X → N.
Question: Does P (X) construed as a sum of monomials contains a multilinear monomial
Z of degree k such that Z ∈ I? If yes find a minimum weighted such Z.

Our main theorem of this section is as follows. The proof of this theorem is along the lines
of Theorem 5.1. The only difference is that we compute representative with respect to the given
matroid.

Theorem 5.2. k-wMMlD can be solved in time O(7.7703kkωs(C)).

Proof. We outline a proof here. Let π = v1, . . . , vn be a topological ordering of C such that all
the nodes corresponding to variables appear before any other gate and for every directed arc uv
we have that u <π v. As in Theorem 5.1, at every node we keep a family F j

vi
of j-multilinear

term that are also members of I, where j ∈ {1, . . . , k}. Let Fvi
= ∪k

x=1Fx
vi

. So Fv ⊆ I. We

process the nodes from left to right and keep F̂ j
vi ⊆k−j

minrep F j
vi

of size
(k

p

)
.

When v is an input node then the associated family contains only one set. That is, if v is
labelled with xi and {xi} ∈ I then Fv = {{xi}} and if v is labelled from Z+ then Fv = {∅}.
When v is not an input node, then we have two cases.

Addition Gate. v = v1 + v2

Due to the left to right computation in the topological order, we have a representative
families Fv1 and Fv2 for v1 and v2 respectively, where the number of subsets with p elements
in Fv1 as well as in Fv2 will be at most

(k
p

)
. So the representative family corresponding to

v will be the representative family of Fv1 ∪Fv2 . We partition Fv1 ∪Fv2 based on the size of
subsets in it. Let Fv1 ∪Fv2 =

⊎
p≤k Hp, where Hp contains all subsets of size p in Fv1 ∪Fv2 .
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Note that |Hp| ≤ 2
(k

p

)
. Now using Theorem 2.1 we can compute all Ĥp ⊆k−p

minrep Hp in
time

O


2

∑

p≤k





(
k

p

)(
k

p

)
pω +

(
k

p

)(
k

p

)ω−1





 .

The above running time is upper bounded by O(4kpωk + 2ωkk). We output
⋃

p≤k Ĥp as
the representative family corresponding to the node v.

Multiplication Gate. v = v1 × v2

Similar to the previous case we have a representative families Fv1 and Fv2 for v1 and v2

respectively, where the number of subsets with p elements in Fv1 as well as in Fv2 , is at
most

(k
p

)
. Here, the representative family corresponding to v will be the representative

family of Fv1 • Fv2 . We have that

Fv1 • Fv2 =
⋃

p1,p2

Fp1
v1

• Fp2
v2

,

where Fpi
vi

contains all the subsets of size pi in Fvi
. We know that |Fpi

vi
| ≤

( k
pi

)
. Now by

using Corollary 2, we can compute ̂Fp1
v1 • Fp2

v2 ⊆k−p1−p2
minrep Fp1

v1
• Fp2

v2
of size

( k
p1+p2

)
for all

p1, p2 together in time O

(
kω2k

(
2(ω−1) + 1

)k
+ kω2k(ω−1)3k

)
.

Now let F =
⋃

p1,p2

̂Fp1
v1 • Fp2

v2 = ⊎pHp, where ⊎pHp is the partition of F based on the size

of subsets. It is easy to see that |Hp| ≤ k
(k

p

)
. Now using Theorem 2.1 we can compute

Ĥp ⊆k−p
minrep Hp for all p ≤ k together in time

O


k

∑

p≤k





(
k

p

)(
k

p

)
pω +

(
k

p

)(
k

p

)ω−1







The above running time is upper bounded by O(4kk2pω + 2ωkk2). We output
⋃

p≤k Ĥp as
the representative family corresponding to the node v.

Now we output Yes and a minimum weight set of size k (if exists) among the representative
family corresponding to the root node. Since there are s(C) nodes in C, the total running time

is bounded by O

(
kω2k

(
2(ω−1) + 1

)k
s(C) + kω2k(ω−1)3ks(C)

)
. This completes the proof.

6 Application II: Dynamic Programming over graphs of bounded

treewidth

In this section we discuss deterministic algorithms for “connectivity problems” such as Steiner
Tree, Feedback Vertex Set parameterized by the treewidth of the input graph. The
algorithms are based on Theorem 2.1 and Corollary 2. The idea of designing deterministic
algorithms for connectivity problems parameterized by the treewidth of the input graph based
on fast computation of representative families was outlined in [10]. Here, we show how we can
speed the method described in [10] using the fast computation of representative families for
product families coming from a graphic matroid. The method described in this section gives
the fastest known deterministic algorithms for most the connectivity problems parameterized
by the treewidth. We exemplify the methods on Steiner Tree and Feedback Vertex Set.

29



6.1 Treewidth

Let G be a graph. A tree-decomposition of a graph G is a pair (T, X = {Xt}t∈V (T)) such that

• ∪t∈V (T)Xt = V (G),

• for every edge xy ∈ E(G) there is a t ∈ V (T) such that {x, y} ⊆ Xt, and

• for every vertex v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt} is connected.

The width of a tree decomposition is maxt∈V (T) |Xt|−1 and the treewidth of G is the minimum
width over all tree decompositions of G and is denoted by tw(G).

A tree decomposition (T, X ) is called a nice tree decomposition if T is a tree rooted at some
node r where Xr = ∅, each node of T has at most two children, and each node is of one of the
following kinds:

1. Introduce node: a node t that has only one child t′ where Xt ⊃ Xt′ and |Xt| = |Xt′ |+1.

2. Forget node: a node t that has only one child t′ where Xt ⊂ Xt′ and |Xt| = |Xt′ | − 1.

3. Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .

4. Base node: a node t that is a leaf of T, is different than the root, and Xt = ∅.

Notice that, according to the above definition, the root r of T is either a forget node or a join
node. It is well known that any tree decomposition of G can be transformed into a nice tree
decomposition maintaining the same width in linear time [12]. We use Gt to denote the graph
induced by the vertex set ∪t′Xt′ , where t′ ranges over all descendants of t, including t. By E(Xt)
we denote the edges present in G[Xt]. We use Ht to denote the graph on vertex set V (Gt) and
the edge set E(Gt) \ E(Xt). For clarity of presentation we use the term nodes to refer to the
vertices of the tree T.

6.2 Steiner Tree parameterized by treewidth

The problem we study in this section is defined below.

Steiner Tree
Input: An undirected graph G with a set of terminals T ⊆ V (G), and a weight

function w : E(G) → N.
Task: Find a subtree in G of minimum weight spanning all vertices of T .

Let G be an input graph of the Steiner Tree problem. Throughout this section, we say
that E′ ⊆ E(G) is a solution if the subgraph induced on this edge set is connected and it
contains all the terminal vertices. We call E′ ⊆ E(G) an optimal solution if E′ is a solution of
the minimum weight. Let S be a family of edge subsets such that every edge subset corresponds
to an optimal solution. That is,

S = {E′ ⊆ E(G) | E′ is an optimal solution}.

Observe that any edge set in S induces a forest. We start with few definitions that will be useful
in explaining the algorithm. Let (T, X ) be a tree decomposition of G of width tw. Let t be a node
of V (T). By St we denote the family of edge subsets of E(Ht), {E′ ⊆ E(Ht) | G[E′] is a forest},
that satisfies the following properties.

• Either E′ is a solution tree (that is, the subgraph induced on this edge set is connected
and it contains all the terminal vertices); or

30



• every vertex of (T ∩ V (Gt)) \ Xt is incident with some edge from E′, and every connected
component of the graph induced by E′ contains a vertex from Xt.

We call St a family of partial solutions for t. We denote by Kt a complete graph on the
vertex set Xt. For an edge subset E∗ ⊆ E(G) and bag Xt corresponding to a node t, we define
the following.

1. Set ∂t(E∗) = Xt ∩ V (E∗), the set of endpoints of E∗ in Xt.

2. Let G∗ be the subgraph of G on the vertex set V (G) and the edge set E∗. Let C ′
1, . . . , C ′

ℓ

be the connected components of G∗ such that for all i ∈ [ℓ], C ′
i ∩Xt 6= ∅. Let Ci = C ′

i ∩Xt.
Observe that C1, . . . , Cℓ is a partition of ∂t(E∗). By F (E∗) we denote a forest {Q1, . . . , Qℓ}
where each Qi is an arbitrary spanning tree of Kt[Ci]. For an example, since Kt[Ci] is a
complete graph we could take Qi as a star. The purpose of F (E∗) is to keep track for the
vertices in Ci whether they were in the same connected component of G∗.

3. We define w(F (E∗)) = w(E∗).

Let A and B be two family of edge subsets of E(G), then we define

A ⋄ B = {E1 ∪ E2 | E1 ∈ A ∧ E2 ∈ B ∧ E1 ∩ E2 = ∅ ∧ G[E1 ∪ E2] is a forest}.

With every node t of T, we associate a subgraph of G. In our case it will be Ht. For every
node t, we keep a family of partial solutions for the graph Ht. That is, for every optimal solution
L ∈ S and its intersection Lt = E(Ht) ∩ L with the graph Ht, we have some partial solution in
the family that is “as good as Lt”. More precisely, we have some partial solution, say L̂t in our
family such that L̂t ∪ LR is also an optimum solution for the whole graph, where LR = L \ Lt.
As we move from one node t in the decomposition tree to the next node t′ the graph Ht changes
to Ht′ , and so does the set of partial solutions. The algorithm updates its set of partial solutions
accordingly. Here matroids come into play: in order to bound the size of the family of partial
solutions that the algorithm stores at each node we employ Theorem 2.1 and Corollary 2 for
graphic matroids. More details are given in the proof of the following theorem, which is the
main result of this section.

Theorem 6.1. Let G be an n-vertex graph given together with its tree decomposition of with

tw. Then Steiner Tree on G can be solved in time O
((

1 + 2ω−1 · 3
)tw

twO(1)n
)
.

Proof. For every node t of T and subset Z ⊆ Xt, we store a family of edge subsets Ŝt[Z] of Ht

satisfying the following correctness invariant.

Correctness Invariant: For every L ∈ S we have the following. Let Lt = E(Ht)∩
L, LR = L \ Lt, and Z = ∂t(L). Then there exists L̂t ∈ Ŝt[Z] such that w(L̂t) ≤
w(Lt), L̂ = L̂t ∪ LR is a solution, and ∂t(L̂) = Z. Observe that since w(L̂t) ≤ w(Lt)
and L ∈ S , we have that L̂ ∈ S .

We process the nodes of the tree T from base nodes to the root node while doing the dynamic
programming. Throughout the process we maintain the correctness invariant, which will prove
the correctness of the algorithm. However, our main idea is to use representative sets to obtain
Ŝt[Z] of small size. That is, given the set Ŝt[Z] (as a product of two families A and B, i.e
Ŝt[Z] = A ⋄ B) that satisfies the correctness invariant, we use Corollary 2 to obtain a subset
Ŝ ′

t[Z] of Ŝt[Z] that also satisfies the correctness invariant and has size upper bounded by 2|Z| in
total. More precisely, the number of partial solutions with i connected components in Ŝ ′

t[Z] is

upper bounded by
( |Z|

|Z|−i

)
=
(|Z|

i

)
. Thus, we maintain the following size invariant.
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Size Invariant: After node t of T is processed by the algorithm, for every Z ⊆ Xt

we have that |Ŝt[Z, i]| ≤
(|Z|

i

)
, where Ŝt[Z, i] is the partial solutions with i connected

components in Ŝt[Z].

The main ingredient of the dynamic programming algorithm for Steiner Tree is the use of
Theorem 2.1 and Corollary 2 to compute Ŝt[Z] maintaining the size invariant. The next lemma
shows how to implement it.

Lemma 6.1 (Product Shrinking Lemma). Let t be a node of T, and let Z ⊆ Xt be a set of
size k. Let P and Q be two family of edge sets of Ht. Furthermore, let Ŝt[Z] = P ⋄ Q be
the family of edge subsets of Ht satisfying the correctness invariant. If the number of edge
sets with i connected components in P as well as in Q is bounded by

(k+c
i

)
where c is some

fixed constant, then in time O
(
kω (2ω + 2)k n + kω2k(ω−1)3kn

)
we can compute Ŝ ′

t[Z] ⊆ Ŝt[Z]

satisfying correctness and size invariants.

Proof. We start by associating a matroid with node t and the set Z ⊆ Xt as follows. We consider
a graphic matroid M = (E, I) on Kt[Z]. Here, the element set E of the matroid is the edge set
E(Kt[Z]) and the family of independent sets I consists of forests of Kt[Z].

Let P = {At
1, . . . , At

ℓ} and Q = {Bt
1, . . . , Bt

ℓ′}. Let L1 = {F (At
1), . . . , F (At

ℓ)} and L2 =
{F (Bt

1), . . . , F (Bt
ℓ′)} be the set of forests in Kt[Z] corresponding to the edge subsets in P and

Q respectively. For i ∈ {1, . . . , k − 1} and r ∈ {1, 2}, let Lr,i be the family of forests of Lr with

i edges. Now we apply Corollary 2 and find ̂L1,i • L2,j ⊆k−1−i−j
minrep L1,i • L2,j of size

(k−1
i+j

)
for

all i, j ∈ [k]. Let Ŝ ′
t[Z, k − d] ⊆ Ŝt[Z, k − d] be such that for every Et ∈ Ŝ ′

t[Z, k − d] we have

that F (Et) ∈
⋃

i+j=d
̂L1,i • L2,j. (Note that F (Et) has d edges if and only if G[Et] have k − d

connected components). Let Ŝ ′
t[Z] = ∪k

j=1Ŝ ′
t[Z, j]. By Corollary 2, |Ŝ ′

t[Z, k − d]| ≤ k
(k−1

d

)
≤( k

k−d

)
, and hence Ŝ ′

t[Z] maintains the size invariant. Now we show that the Ŝ ′
t[Z] maintains the

correctness invariant.
Let L ∈ S and let Lt = E(Ht) ∩ L, LR = L \ Lt and Z = ∂t(L). Then there exists

Et
j ∈ Ŝt[Z] such that w(Et

j) ≤ w(Lt), L̂ = Et
j ∪ LR is an optimal solution and ∂t(L̂) = Z.

Since Ŝt[Z] = P ⋄ Q, there exists At
j1

∈ P and Bt
j2

∈ Q such that Et
j = At

j1
∪ Bt

j2
. Observe

that G[Et
j ], G[At

j1
] and G[Bt

j2
] form forests. Consider the forests F (At

j1
) and F (Bt

j2
). Suppose

|F (At
j1

)| = i1 and |F (Bt
j2

)| = i2, then F (Et
j) ∈ L1,i1 • L1,i2. This is because, if F (Et

j) contain a
cycle, then corresponding to that cycle we can get a cycle in G[Et

j ], which is a contradiction. Now

let F (LR) be the forest corresponding to LR with respect to the bag Xt. Since L̂ is a solution, we

have that F (Et
j) ∪ F (LR) is a spanning tree in Kt[Z]. Since ̂L1,i1 • L2,i2 ⊆k−1−i1−i2

minrep L1,i1 • L2,i2 ,

we have that there exists a forest F (Et
h) ∈ ̂L1,i1 • L2,i2 such that w(F (Et

h)) ≤ w(F (Et
i )) and

F (Et
h)∪F (LR) is a spanning tree in Kt[Z]. Thus, we know that Et

h ∪LR is an optimum solution
and Et

h ∈ Ŝ ′
t[Z]. This proves that Ŝ ′

t[Z] maintains the correctness invariant.
The running time to compute Ŝ ′

t[Z] is,

O
(
kω (2ω + 2)k n + kω2k(ω−1)3kn

)
.

For a given edge set we also need to compute the forest and that can take O(n) time.

We now return to the dynamic programming algorithm over the tree-decomposition (T, X )
of G and prove that it maintains the correctness invariant. We assume that (T, X ) is a nice
tree-decomposition of G. By Ŝt we denote ∪Z⊆XtŜt[Z] (also called a representative family of
partial solutions). We show how Ŝt is obtained by doing dynamic programming from base node
to the root node.
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Base node t. Here the graph Ht is empty and thus we take Ŝt = ∅.

Introduce node t with child t′. Here, we know that Xt ⊃ Xt′ and |Xt| = |Xt′ | + 1. Let
v be the vertex in Xt \ Xt′ . Furthermore observe that E(Ht) = E(Ht′) and v is degree zero
vertex in Ht. Thus the graph Ht only differs from Ht′ at a isolated vertex v. Since we have not
added any edge to the new graph, the family of solutions, which contains edge-subsets, does not
change. Thus, we take Ŝt = Ŝt′ . Formally, we take Ŝt[Z] = Ŝt′ [Z \ {v}]. Since, Ht and Ht′ have
same set of edges the invariant is vacuously maintained.

Forget node t with child t′. Here we know Xt ⊂ Xt′ and |Xt| = |Xt′ | − 1. Let v be the
vertex in Xt′ \ Xt. Let Ev[Z] denote the set of edges between v and the vertices in Z ⊆ Xt.
Observe that E(Ht) = E(Ht′) ∪ Ev[Xt]. Before we define things formally, observe that in this
step the graphs Ht and Ht′ differ by at most tw edges - the edges with one endpoint in v and
the other in Xt. We go through every possible way an optimal solution can intersect with these
newly added edges. Let Pv [Z] = {Y | Y ⊆ Ev[Z]}. Then the new set of partial solutions is
defined as follows.

Ŝt[Z] = Ŝt′ [Z ∪ {v}] ⋄ Pv[Z].

Now we show that Ŝt maintains the invariant of the algorithm. Let L ∈ S .

1. Let Lt = E(Ht) ∩ L and LR = L \ Lt. Furthermore, edges of Lt can be partitioned into
Lt′ = E(Ht′) ∩ L and Lv = Lt \ Lt′ . That is, Lt = Lt′ ⊎ Lv.

2. Let Z = ∂t(L) and Z ′ = ∂t′
(L).

By the property of Ŝt′ , there exists a L̂t′ ∈ Ŝt′ [Z ′] such that

L ∈ S ⇐⇒ Lt′ ⊎ Lv ⊎ LR ∈ S

⇐⇒ L̂t′ ⊎ Lv ⊎ LR ∈ S (4)

and ∂t′
(L) = ∂t′

(L̂t′ ⊎ Lv ⊎ LR) = Z ′.

We put L̂t = L̂t′ ∪ Lv and L̂ = L̂t ∪ LR. We now show that L̂t ∈ Ŝt[Z]. Towards this just note
that since Z ′ = Z or Z ′ = Z ∪ {v}, we have that Ŝt[Z] contains Ŝt′ [Z ′] ⋄ {Lv}. By (4), L̂ ∈ S .
Finally, we need to show that ∂t(L̂) = Z. Towards this just note that ∂t(L̂) = Z ′ \ {v} = Z.
This concludes the proof for the fact that Ŝt maintains the correctness invariant.

Join node t with two children t1 and t2. Here, we know that Xt = Xt1 = Xt2 . Also we
know that the edges of Ht is obtained by the union of edges of Ht1 and Ht2 which are disjoint.
Of course they are separated by the vertices in Xt. A natural way to obtain a family of partial
solutions for Ht is that we take the union of edges subsets of the families stored at nodes t1 and
t2. This is exactly what we do. Let

Ŝt[Z] = Ŝt1 [Z] ⋄ Ŝt2 [Z].

Now we show that Ŝt maintains the invariant. Let L ∈ S .

1. Let Lt = E(Ht)∩L and LR = L\Lt. Furthermore edges of Lt can be partitioned into those
belonging to Ht1 and those belonging to Ht2. Let Lt1 = E(Ht1)∩L and Lt2 = E(Ht2)∩L.
Observe that since E(Ht1) ∩ E(Ht2) = ∅, we have that Lt1 ∩ Lt2 = ∅. Also observe that
Lt = Lt1 ⊎ Lt2 and G[Lt1 ], G[Lt1 ] form forests.

2. Let Z = ∂t(L). Since Xt = Xt1 = Xt2 this implies that Z = ∂t(L) = ∂t1(L) = ∂t2(L).
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Now observe that

L ∈ S ⇐⇒ Lt1 ⊎ Lt2 ⊎ LR ∈ S

⇐⇒ L̂t1 ⊎ Lt2 ⊎ LR ∈ S (by the property of Ŝt1 we have that L̂t1 ∈ Ŝt1 [Z])

⇐⇒ L̂t1 ⊎ L̂t2 ⊎ LR ∈ S (by the property of Ŝt2 we have that L̂t2 ∈ Ŝt2 [Z])

We put L̂t = L̂t1 ∪ L̂t2 . By the definition of Ŝt[Z], we have that L̂t1 ∪ L̂t2 ∈ Ŝt[Z]. The
above inequalities also show that L̂ = L̂t ∪ LR ∈ S . It remains to show that ∂t(L̂) = Z.
Since ∂t1(L) = Z, we have that ∂t1(L̂t1 ⊎ Lt2 ⊎ LR) = Z. Now since Xt1 = Xt2 we have that
∂t2(L̂t1 ⊎ Lt2 ⊎ LR) = Z and thus ∂t2(L̂t1 ⊎ L̂t2 ⊎ LR) = Z. Finally, because Xt2 = Xt, we
conclude that ∂t(L̂t1 ⊎ L̂t2 ⊎LR) = ∂t(L̂) = Z. This concludes the proof of correctness invariant.

Root node r. Here, Xr = ∅. We go through all the solution in Ŝr[∅] and output the one with
the minimum weight. This concludes the description of the dynamic programming algorithm.

Computation of Ŝt. Now we show how to implement the algorithm described above in the
desired running time by making use of Lemma 6.1. For our discussion let us fix a node t and
Z ⊆ Xt of size k. While doing dynamic programming algorithm from the base nodes to the
root node we always maintain the size invariant.

Base node t. Trivially, in this case we have maintained size invariant.

Introduce node t with child t′. Here, we have that Ŝt[Z] = Ŝt′ [Z \{v}] and thus the number
of partial solutions with i connected components in Ŝt[Z] is bounded

(k
i

)

Forget node t with child t′. In this case,

Ŝt[Z] = Ŝt′ [Z ∪ {v}] ⋄ Pv[Z].

It is easy to see that the number of edge subsets with i connected components in Ŝt′ [Z ∪{v}]
and Pv[Z] is upper bounded by

(k+1
i

)
So we apply Lemma 6.1 and obtain Ŝ ′

t[Z] that maintains

the correctness and size invariants. We update Ŝt[Z] = Ŝ ′
t[Z].

The running time T to compute Ŝt (that is, across all subsets of Xt) is

T = O

(
tw+1∑

i=1

(
tw + 1

i

)(
iω (2ω + 2)i n + iω2i(ω−1)3in

))

= O

(
twωn (2ω + 3)tw + twωn

(
1 + 2ω−1 · 3

)
tw
)

Join node t with two children t1 and t2. Here we defined

Ŝt[Z] = Ŝt1 [Z] ⋄ Ŝt2 [Z].

The number of edge subsets with i connected components in Ŝt1 [Z] and Ŝt2 [Z] by
(k

i

)
. Now,

we apply Lemma 6.1 and obtain Ŝ ′
t[Z] that maintains the correctness invariant and has size at

most 2k. We put Ŝt[Z] = Ŝ ′
t[Z]. The running time to compute Ŝt is

O

(
twωn (2ω + 3)tw + twωn

(
1 + 2ω−1 · 3

)
tw
)

.
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Thus the whole algorithm takes O
(
twωn2 (2ω + 3)tw + twωn2

(
1 + 2ω−1 · 3

)tw
)

= O(8.7703twn2)

as the number of nodes in a nice tree-decomposition is upper bounded by O(n). However, ob-
serve that we do not need to compute the forests and the associated weight at every step of the
algorithm. The size of the forest is at most tw + 1 and we can maintain these forests across
the bags during dynamic programming in time twO(1). This will lead to an algorithm with the
claimed running time. This completes the proof.

6.3 Feedback Vertex Set parameterized by treewidth

In this section we study the Feedback Vertex Set problem which is defined as follows.

Feedback Vertex Set
Input: An undirected graph G and a weight function w : V (G) → N.
Task: Find a minimum weight set Y ⊆ V (G) such that G[V (G) \ Y ] is a forest.

Let G be an input graph of the Feedback Vertex Set problem. In this section instead
of saying feedback vertex set Y ⊆ V (G) is a solution, we say that V (G) \ Y is a solution, i.e,
our objective is to find a maximum weight set V ′ ⊆ V (G) such that G[V ′] is a forest. We call
V ′ ⊆ V (G) is an optimal solution if V ′ is a solution with maximum weight. Let S be a family
of vertex subsets such that every vertex subset corresponds to an optimal solution. That is,

S = {V ′ ⊆ V (G) | V ′ is an optimal solution}.

Let (T, X ) be a tree decomposition of G of width tw. For each tree node t and Z ⊆ Xt, we
define St[Z], family of partial solutions as follows.

St[Z] = {U ⊆ V (Gt) | U ∩ Xt = Z and Gt[U ] is a forest }

We denote by Kt a complete graph on the vertex set Xt. Let G∗ be subgraph of G. Let
C ′

1, . . . , C ′
ℓ be the connected components of G∗ that have nonempty intersection with Xt. Let

Ci = C ′
i ∩ Xt. By F (G∗) we denote the a forest {Q1, . . . , Qℓ} where each Qi is an arbitrary

spanning tree of Kt[Ci].
For two family of vertex subsets P and Q of a graph G, we denote

P ⊗ Q = {U1 ∪ U2 | U1 ∈ P, U2 ∈ Q and Gt[U1 ∪ U2] is a forest }.

Now we are ready to state the main theorem.

Theorem 6.2. Let G be an n-vertex graph given together with its tree decomposition of with

tw. Then Feedback Vertex Set on G can be solved in time O
((

1 + 2ω−1 · 3
)tw

twO(1)n
)
.

Proof. For every node t of T and Z ⊆ Xt, we store a family of vertex subsets Ŝt[Z] of V (Gt)
satisfying the following correctness invariant.

Correctness Invariant: For every L ∈ S we have the following. Let Lt = V (Gt)∩
L, LR = L \Lt and L ∩ Xt = Z. Then there exists L̂t ∈ Ŝt[Z] such that L̂ = L̂t ∪ LR

is an optimal solution, i.e G[L̂t ∪ LR] is a forest with w(L̂t) ≥ w(Lt) Thus we have
that L̂ ∈ S .

We process the nodes of the tree T from base nodes to the root node while doing the dynamic
programming. Throughout the process we maintain the correctness invariant, which will prove
the correctness of the algorithm. However, our main idea is to use representative sets to obtain
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Ŝt[Z] of small size. That is, given the set Ŝt[Z] that satisfies the correctness invariant, we
use representative set tool to obtain a subset Ŝ ′

t[Z] of Ŝt[Z] that also satisfies the correctness
invariant and has size upper bounded by 2|Z| in total. More precisely, the number of partial
solutions in Ŝ ′

t[Z] that have i connected components with nonempty intersection with Xt is
upper bounded by

(|Z|
i

)
. Thus, we maintain the following size invariant.

Size Invariant: After node t of T is processed by the algorithm, we have that
|Ŝt[Z, i]| ≤

(|Z|
i

)
, where Ŝt[Z, i] is the set of partial solutions that have i connected

components with nonempty intersection with Xt.

Lemma 6.2 (Product Shrinking Lemma). Let t be a join node of T with children t1 and t2. Let
Z ⊆ Xt be a set of size k. Let Ŝt1 [Z] and Ŝt2 [Z] be two family of vertex subsets of V (Gt1) and
V (Gt1) satisfying the size and correctness invariants. Furthermore, let Ŝt[Z] = Ŝt1 [Z] ⊗ Ŝt2 [Z]
be the family of vertex subsets of V (Gt) satisfying the correctness invariant. Then in time

O
(
kω (2ω + 2)k n + kω2k(ω−1)3kn

)
we can compute Ŝ ′

t[Z] ⊆ Ŝt[Z] satisfying correctness and
size invariants.

Proof. We start by associating a matroid with node t and the set Z ⊆ Xt as follows. We consider
a graphic matroid M = (E, I) on Kt[Z]. Here, the element set E of the matroid is the edge set
E(Kt[Z]) and the family of independent sets I consists of spanning forests of Kt[Z]. Here our
objective is to find a small subfamily of Ŝt[Z] = Ŝt1 [Z] ⊗ Ŝt2 [Z] satisfying correctness and size
invariants using efficient computation of representative family in the graphic matroid M . For an
independent set U ∈ Ŝt1 [Z] ∪ Ŝt2 [Z], for U1 ∈ Ŝt1 [Z] and U2 ∈ Ŝt2 [Z], it is natural to associate
F (G[U1]) ∪ F (G[U2]) as the corresponding independent set in the graphic matroid. However,
F (G[U1])∪F (G[U2]) may not form a forest even if G[U1 ∪U2] is a forest. This happens precisely
when there exists an edge in Z. To overcome this difficulty we associate F (G[U ] \ E(Z)) with
any U ∈ Ŝt2 [Z]. We can observe that for any U1 ∈ Ŝt1 [Z] and U2 ∈ Ŝt2 [Z], G[U1 ∪ U2] is a forest
if and only if F (G[U1]) ∪ F (G[U2] \ E(Z)) is a forest in Kt[Z].

Let Ŝt1 [Z] = {A1, . . . , Aℓ} and Ŝt2 [Z] = {B1, . . . , Bℓ′}. Let L1 = {F (G[A1]), . . . , F (G[Aℓ])}
and L2 = {F (G[B1] \ E(Z)), . . . , F (G[Bℓ′ ] \ E(Z))} be the set of forests in Kt[Z] correspond-
ing to the vertex subsets in Ŝt1 [Z] and Ŝt2 [Z] respectively. For each F (G[Ai]) ∈ L1 we set
w(F (G[Ai])) = w(Ai), and for each F (G[Bj ] \ E(Z)) we set w(F (G[Bj ] \ E(Z))) = w(Bj \ Z).
For i ∈ [k] and r ∈ {1, 2}, let Lr,i be the family of forests of Lr with i edges. Now we apply

Theorem 2.1 and compute L̂2,j ⊆k−1−j
maxrep L2,j for all j, of size

(k−1
j

)
in time O(2k

(k
j

)w−1
) (because

|L2,j| ≤ 2k). Now we apply Corollary 2 and find ̂L1,i • L̂2,j ⊆k−1−i−j
maxrep L1,i • L2,j of size

(k−1
i+j

)
for

all i, j ∈ [k]. Let Ŝ ′
t[Z, k−m] ⊆ Ŝt[Z, k−m] be such that for every U1 ∪U2 ∈ Ŝ ′

t[Z, k−m] we have

that F (G[U1]) ∪ F (G[U2] \ Z) ∈ ∪i+j=m
̂L1,i • L̂2,j. Let Ŝ ′

t[Z] = ∪k
j=0Ŝ ′

t[Z, j]. By Corollary 2,

|Ŝ ′
t[Z, k − m]| ≤ k

(k−1
m

)
≤
( k

k−m

)
, and hence Ŝ ′

t[Z] maintains the size invariant.

Now we show that the Ŝ ′
t[Z] maintains the correctness invariant. Let L ∈ S and let

Lt = V (Gt)∩L, LR = L\Lt and Z = L∩Xt. Since Ŝt[Z] satisfy correctness invariant, there exists
L̂t ∈ Ŝt[Z] such that w(L̂t) ≥ w(Lt), L̂ = L̂t ∪ LR is an optimal solution and L̂ ∩ Xt = Z. Since
Ŝt[Z] = Ŝt1 [Z]⊗Ŝt2 [Z], there exists U1 ∈ Ŝt1 [Z] and U2 ∈ Ŝt2 [Z] such that L̂t = U1∪U2. Observe
that G[U1 ∪ U2] form a forest. Consider the forests F (G[U1]) and F (G[U2] \ E(Z)). Suppose
|F (G[U1])| = i1 and |F (G[U2] \ E(Z))| = i2, then F (G[U1]) ∪ F (G[U2] \ E(Z)) ∈ L1,i1 • L1,i2 .
This is because, if F (G[U1])∪F (G[U2]\E(Z)) contain a cycle, then corresponding to that cycle
we can get a cycle in G[U1 ∪ U2], which is a contradiction. Now let E′ = F (G[LR ∪ Z] \ E(Z))
be the forest corresponding to LR ∪Z with respect to the bag Xt. Since L̂ is a solution, we have

that F (G[U1]) ∪ F (G[U2] \ E(Z)) ∪ E′ is a spanning tree in Kt[Z]. Since ̂L1,i1 • L̂2,i2 ⊆k−1−i1−i2
maxrep

L1,i1 • L2,i2, we have that there exists a forest F (G[U ′
1]) ∪ F (G[U ′

2] \ E(Z)) ∈ ̂L1,i1 • L̂2,i2 such
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that w(F (G[U ′
1]) ∪ F (G[U ′

1] \ E(Z)) ≥ w(F (G[Lt])) and F (G[U ′
1]) ∪ F (G[U ′

2] \ E(Z)) ∪ E′ is a
spanning tree in Kt[Z]. Thus, we can conclude that U1 ∪ U2 ∪ LR is an optimal solution and
U1 ∪ U2 ∈ Ŝ ′

t[Z]. This proves that Ŝ ′
t[Z] maintains the correctness invariant.

Since we are applying Corollary 2 the running time to compute Ŝ ′
t[Z] is upper bounded by,

O
(
kω (2ω + 2)k n + kω2k(ω−1)3kn

)
.

We now explain the dynamic programming algorithm over the tree-decomposition (T, X )
of G and prove that it maintains the correctness invariant. We assume that (T, X ) is a nice
tree-decomposition of G. By Ŝt we denote ∪Z⊆XtŜt[Z] (also called a representative family of
partial solutions). We show how Ŝt is obtained by doing dynamic programming from base node
to the root node.

Base node t. Here the graph Gt is empty and thus we take Ŝt = ∅.

Introduce node t with child t′. Here, we know that Xt ⊃ Xt′ and |Xt| = |Xt′ | + 1. Let v
be the vertex in Xt \ Xt′ . The graph Gt = Gt′ \ {v}. So each partial solution in Gt′ is a partial
solution in Gt or it differs at vertex v from a partial solution in Gt, i.e,

Ŝt[Z] =

{
Ŝt′ [Z] if v /∈ Z{

U ∪ {v} | U ∈ Ŝt′ [Z \ {v}] and G[U ∪ {v}] is a forest
}

if v ∈ Z

When v /∈ Z, Ŝt[Z] satisfies correctness and size invariant. When v ∈ Z, |Ŝt[Z, i]| ≤ 2k and we
can apply Theorem 2.1 by associating a family of independent sets in Kt[Z] (like in Lemma 6.2)

and find Ŝ ′
t[Z, i] ⊆ Ŝt[Z, i] satisfies correctness and size invariant in time O(2k

(k
i

)w−1
).

Forget node t with child t′. Here we know Xt ⊂ Xt′ , |Xt| = |Xt′ | − 1 and Gt = Gt′ . Let
X ′

t \Xt = {v}. So for any Z ⊆ Xt we have Ŝt[Z] = Ŝt′ [Z]∪Ŝt′ [Z ∪{v}]. The number of elements
in Ŝt[Z] with i number of connected components intersecting with Xt is upper bounded by(k+1

i

)
+
(k+1

i+1

)
≤
(k+2

i

)
. Again by applying Theorem 2.1 we can find Ŝ ′

t[Z, i] ⊆ Ŝt[Z, i] satisfies

correctness and size invariant in time O(
(k+2

i

)(k
i

)w−1
).

Join node t with two children t1 and t2. Here, we know that Xt = Xt1 = Xt2 . The
natural way to get a family of partial solutions for Xt is the union of vertex sets of two families
stored at node t1 and t2 which form a forest, i.e,

Ŝt[Z] = {U1 ∪ U2 | U1 ∈ Ŝt1 [Z], U2 ∈ Ŝt2 [Z], G[U1 ∪ U2] is a forest}

= Ŝt1 [Z] ⊗ Ŝt2 [Z]

Now we show that Ŝt maintains the invariant. Let L ∈ S . Let Lt = V (Gt) ∩ L, Lt1 =
V (Gt1) ∩ L, Lt2 = V (Gt2 ) ∩ L and LR = L \ Lt. Let Z = L ∩ Xt Now observe that

L ∈ S ⇐⇒ Lt1 ∪ Lt2 ∪ LR ∈ S

⇐⇒ L̂t1 ∪ Lt2 ∪ LR ∈ S (by the property of Ŝt1 we have that L̂t1 ∈ Ŝt1 [Z])

⇐⇒ L̂t1 ∪ L̂t2 ∪ LR ∈ S (by the property of Ŝt2 we have that L̂t2 ∈ Ŝt2 [Z])

We put L̂t = L̂t1 ∪ L̂t2 . By the definition of Ŝt[Z], we have that L̂t1 ∪ L̂t2 ∈ Ŝt[Z]. The above
inequalities also show that L̂ = L̂t ∪ LR ∈ S . Note that (L̂t ∪ LR) ∩ Xt = Z This concludes the
proof of correctness invariant.

We apply Lemma 6.2 and find Ŝ ′
t[Z] ⊆ Ŝt[Z] satisfies correctness and size invariant in time

O
(
kω (2ω + 2)k n + kω2k(ω−1)3kn

)
.
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Root node r. Here, Xr = ∅. We go through all the solution in Ŝr[∅] and output the one with
the maximum weight.

In worst case, in every tree node t, for all subset Z ⊆ Xt, we apply Lemma 6.2. So by doing
the same run time analysis as in the case of Steiner Tree, the total running time will be upper

bounded by O
((

(2ω + 3)tw +
(
1 + 2ω−1 · 3

)tw
)

twO(1)n
)

.

7 k-Path

In this section we outline a parameterized algorithm for the k-Path problem with running time
2.619knO(1). The complete details of a 2.619kn log2 n time algorithm will appear in the full
version of [10]. The algorithm is basically an adaptation of the k-Path algorithm of Fomin et
al. [10], but using generalized separating collections, rather than separating collections, in order
to make a trade-off between the size of computed representative families and the time it takes
to compute them. We start by giving a brief recolloection of the algorithm of Fomin et al. [10].

Given as input a graph G and integer k we add a source vertex s and make s adjacent to
all vertices in the input graph G, call the resulting graph G′. Every path of length k in G
corresponds to a path rooted at s of length k + 1 in G′, and vice versa. Thus we look for such
a path in G′. For a vertex v ∈ V (G) define

Pi
v =

{
X
∣∣∣ X ⊆ V (G′), v, s ∈ X, |X| = i and there is a path from s to v of length i

in G′ with all the vertices belonging to X.
}

It is easy to see that the following recurrence holds for the sets Pi
v:

Pi
v =

⋃

u∈NG(v)

[
Pi−1

u • {v}
]

.

The correctness of this recurrence is formally proved in [10]. The aim now is to compute,
for every v ∈ V (G) and i ≤ k + 1 a (k + 1 − i)-representative family P̂i

v ⊆ Pi
v. Fomin et

al. [10] show that if for every v, P̂i−1
v is a (k + 2 − i)-representative family of Pi−1

v and P̂i
v is a

(k + 1 − i)-representative family of

P̃i
v =

⋃

u∈NG(v)

[
P̂i−1

u • {v}
]

,

then P̂i
v is a (k+1− i)-representative family of Pi

v. The algorithm first sets P̂2
v = P2

v = {{s, v}}.
Then, for each i ≥ 3 in increasing order, the algorithm first computes P̃i

v using the recurrence
above and then computes a (k + 1 − i) representative family P̂i

v of P̃i
v of size

(k+1
i

)
. Finally it

is easy to see that G′ has a path of length k + 1 rooted at s if and only if some family P̂k+1
v is

non-empty.
The dependence on k in the running time is determined by the running time of the step

where a representative family P̂i
v of P̃i

v is computed. This running time, in turn, depends on
|P̃i

v|, which is upper bounded by n · maxu |P̂i−1
u |. In the algorithm of Fomin et al [10] each

family P̂i−1
u is a (k + 2 − i)-representative family of size approximately

(k+1
i−1

)
. Simple calculus

shows that for any i the running time of the algorithm of Fomin et al [10] is upper bounded by
2.851knO(1).

Our new algorithm proceeds in exactly the same manner, but with one crucial difference.
For each i ≤ k the algorithm appropriately selects a probability variable xi between 0 and 1.
When the algorithm computes a (k + 1 − i)-representative family P̂i

v of P̃i
v, in the place where

the algorithm of Fomin et al. constructs a (n, i, k + 1)-separating collection, our algorithm uses
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a generalized (n, i, k +1− i)-separating collection with constant xi instead. This has two effects.
First, the running time for computing P̂i

v is decreased to roughly |P̃i
v | · (1 − xi)

−(k−i). Second,
the size of the family P̂i

v is increased to approximately x−i
i (1 − xi)

−(k−i). The increase in the
size of the output family then affects the running time of the next iteration of the algorithm,
since it increases the size of P̃i+1

v . However, it is possible to show that one can choose xi for
every i such that the savings in the running time outweigh the loss caused due to the increased
size of the representative family. Specifically setting

xi =
i

k+1−i

2 − i
k+1−i

yields an upper bound of 2.619knO(1) for the total running time.

8 Conclusion

In this paper we gave algorithms for finding representative sets for product families that are
faster that the naive computation for these families. We showed their applicability by designing
the best known deterministic algorithms for k-wMlD, k-wMMlD and for “connectivity prob-
lems” parameterized by treewidth. One of the main technical components of our algorithm is
the deterministic construction of generalized separating collections. We believe that this pseudo-
random object, as well as our algorithms for computing representative sets of product families,
will be useful to accelerate other algorithms. We conclude with several interesting problems.

1. What are the other natural set families for which we can find representative sets faster
than by directly applying the results of Fomin et al. [10]?

2. Can we find representative sets for a uniform matroid in time linear in the input size?

3. Does there exist a deterministic algorithm for k-wMlD running in time 2knO(1) log W ?
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