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how to compute a local minimum of the partial-matching RMS-distance
under translation, in polynomial time.
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1 Introduction

Let A and B be two finite sets of points in the plane, of respective cardinalities n
and m. We are interested in measuring the similarity between A and B, under a
suitable proximity measure. We consider two such measures where the proximity
is the sum of the squared distances between pairs of points. In the first, we assume
that n > m and we want to match all the points of B (a specific pattern that
we want to identify), in a one-to-one manner, to a subset of A (a larger picture
that “hides” the pattern) of size |B|. This is motivated by situations where we
want a one-to-one matching between A and B [9,15,16]. In the second, each
point is assigned to its nearest neighbor in the other set. See [1] for a similar
generalization of the Hausdorff distance.

We refer to the measured distance between the sets, in both versions, as the
RMS distance. In the former setup the measure is called the partial-matching
RMS-distance, and in the latter we call it the Hausdorff RMS-distance. In both
variants the sets A and B are in general not aligned, so we seek a translation of
one of them that will minimize the appropriate RMS-distance, partial matching
or Hausdorff.

The partial-matching RMS-distance problem. Let A = {ay,...,a,} and
B ={by,...,bn} be two sets of points in the plane. Here we assume that m < n,
and we seek a minimum-weight maximum-cardinality matching of B into A. This
is a subset M of edges of the complete bipartite graph with edge set B x A, so
that each b € B appears in exactly one edge of M, and each a € A appears in
at most one edge. The weight of an edge (b,a) is ||b — al|?, and the weight of a
matching is the sum of the weights of its edges.

A maximum-cardinality matching can be identified as an injective assignment
7 of B into A. With a slight abuse of notation, we denote by a,; the point
a; that 7 assigns to b;. In this notation, the minimum RMS partial-matching
problem (for fixed locations of the sets) is to compute

m

M(B,A) = min Z||bi—a7r(i)||2.

m:B— A injective 4 7
1=

Allowing the pattern B to be translated, we obtain the problem of the minimum
partial-matching RMS-distance under translation, defined as

m

. . 2
Mr(B,A) = min M(B+t,A) = tERQ?;?g%A’ Zl 10+t — ax || -
7 injective =

The function F(t) := M(B+t, A) induces a subdivision of R?, where two points
t1,ts € R? are in the same region if the minimum of F at ¢; and at ¢, is attained
by the same assignment m : B — A. We refer to this subdivision, following
Rote [12], as the partial-matching subdivision and denote it by Dp 4. We say
that a matching is optimal if it attains F(t) for some t € R?.



The Hausdorff RMS distance problem. Let Na(z) (resp., Ng(x)) denote
the nearest neighbor in A (resp., in B) of a point x € R2. The unidirectional
(Hausdorff) RMS distance between B and A is defined as

RMS(B,A) = |lb— Na(v)|*

beB

We also consider bidirectional RMS distances, in which we also measure distances
from the points of A to their nearest neighbors in B. We consider two variants
of this notion. The first variant is the Li-bidirectional RMS distance between A
and B, which is defined as

RMS, (B, A) = RMS(A, B) + RMS(B, A).

The second variant is the L. -bidirectional RMS distance between A and B, and
is defined as

RMS. (B, A) = max {RMS(A, B), RMS(B, A)}.

Allowing one of the sets (say, B) to be translated, we define the minimum uni-
directional RMS distance under translation to be

RMSr(B,A) = min RMS(B +t,A) = min Y [[b+t — Na(b+1))||°,
teR? teR? beB

where B+t = {by +t,...,by, + t}. Similarly, we define the minimum L,- and
Lo -bidirectional RMS distances under translation to be

RMS7.1(B, A) = min RMS (B +1,A)  and

RMSr,(B,A) = min RMS.o(B +t,A).

Background. A thorough initial study of the minimum RMS partial-matching
distance under translations is given by Rote [12]; see also [5, 13] for two follow-
up studies, another study in [11], and an abstract of an earlier version of parts
of this paper [8]. The resulting subdivision Dg 4, as defined above, is shown in
[12] to be a convex subdivision. Rote’s main contribution for the analysis of the
complexity of Dp 4 was to show that a line crosses only O(mn) regions of the
subdivision (see Theorem 1 below). However, obtaining sharp bounds for the
complexity of Dp 4 is still an open issue, where the best known upper bounds
are exponential.

The problem of Hausdorff RMS minimization under translation has been
considered in the literature (see, e.g., [1] and references therein), although only
scarcely so. If A and B are sets of points on the line, the complexity of the
Hausdorftf RMS function, as a function of ¢, is O(mn) (and this bound is tight
in the worst case). Moreover, the function can have many local minima (up
to ©(mn) in the worst case). Hence, finding a translation that minimizes the
Hausdorff RMS distance can be done in brute force, in O(mnlog(mn)) time,



but a worst-case near linear algorithm is not known. In practice, though, there
exists a popular heuristic technique, called the ICP (Iterated Closest Pairs)
algorithm, proposed by Besl and McKay [3] and analyzed in Ezra et al. [7].
Although the algorithm is reported to be efficient in practice, it might perform
O(mn) iterations in the worst case. Moreover, each iteration takes close to linear
time (to find the nearest neighbors in the present location).

The situation is worse in the plane, where the complexity of the RMS function
is O(m?n?), a bound which is worst-case tight, and the bounds for the perfor-
mance of the ICP algorithm, are similarly worse. Similar degradation shows up
in higher dimensions too; see, e.g., [7].

Our results. In this paper we study these two fairly different variants of the
problem of minimizing the RMS distance under translation, and improve the
state of the art in both of them.

In the partial-matching variant, we first analyze the complexity of Dp 4. We
significantly improve the bound from the naive O(n™) to O(n?m??®(elnm+-e)™).
A preliminary informal exposition of this analysis by a subset of the authors is
given in the (non-archival) note [8]. This paper expands the previous note, derives
additional interesting structural properties of the subdivision, and significantly
improves the complexity bound. The arguments that establish the bound can be
generalized to bound the number of regions of the analogous subdivision in R? by
O ((n®*m)*(elnm + €)™)/y/m). The derivation of the upper bound proceeds by
a reduction that connects partial matchings to a combinatorial question based
on a game theoretical problem, which we believe to be of independent interest.

Next we present a polynomial-time algorithm for finding a local minimum of
the partial-matching RMS-distance. This is significant, given that we do not have
a polynomial bound on the size of the subdivision. We also fill in the details of
explicitly computing the intersections of a line with Dp, 4. Although Rote hinted
at such an algorithm in [12], by exploiting some new properties of Dp 4 derived
here, we manage to compute the intersections in a simple, more efficient manner.

We also note that by combining the combinatorial bound for the complexity
of Dp, 4, along with the procedures in the algorithm for finding a local minimum
of the partial-matching RMS-distance, it is possible to traverse all of Dp 4,
and compute a global minimum of the partial-matching RMS-distance in time
O(n*>m™>(elnm + e)™). This is the best known bound for this problem.

For the Hausdorff variant, we provide improved algorithms for computing a
local minimum of the RMS function, in one and two dimensions. Assuming |A| =
|B| = n, in the one-dimensional case the algorithms run in time O(nlog?n),
and in the two-dimensional case they run in time O(n?logn). Our approach
thus beats the worst-case running time of the ICP algorithm (used for about
two decades to solve this problem). The approach is an efficient search through
the (large number of) critical values of the RMS function. The techniques are
reasonably standard, although their assembly is somewhat involved.



2 Properties of Dp 4

We begin by reconstructing several basic properties of Dp 4 that have been
noted in [12]. First, if we fix the translation t € R? and the assignment 7, the
cost of the matching, denoted by f(m,t), is

Ft) =3 |lbi +t = any||* = cx + (&, da) + m |1t (1)
=1

where ¢, = Y 1", ||bi - aﬂ(i)H2 and dr = 237" (bi — ax(;)). For t fixed, the
assignment 7 that minimizes f(m,t) is the same assignment that minimizes
g(m,t) = cx + (t,d;). It follows that Dp 4 is the minimization diagram (the
xy-projection) of the graph of the function

Ep.a(t) = min (¢ +{t,d,)), teR2
m:B— A injective
This is a lower envelope of a finite number of planes, so its graph is a convex
polyhedron, and its projection Dp_4 is a convex subdivision of the plane, whose
faces are convex polygons. The great open question regarding minimum partial-
matching RMS-distance under translation, is whether the number of regions of
Dp,a is polynomial in m and n. A significant, albeit small step towards settling
this question is the following result of Rote [12].

Theorem 1 (Rote [12]). A line intersects the interior of at most m(n—m)+1
different regions of the partial-matching subdivision Dp 4.

The following property, observed by Rote [12], seems to be well known [16].

Lemma 1. For any A’ C A, with |A’| = m, the optimal assignment that realizes
the minimum M (B +t, A") is independent of the translation t € R2.

Next, we derive several additional properties of Dp 4 which show that the
diagram has, locally, low-order polynomial complexity.

Lemma 2. FEvery edge of Dp.a has a normal vector of the form a; — a; for
suitable i,j € {1,...,n}.

Proof. Let E be an edge of Dp 4 common to the regions associated with the
injections m,0 : B — A. By definition, g(w,t) = g(o,t) < g(d,t) for every
injection § : B — A and for any t € E. By Equation (1), E is contained in the
line {(r,0) = {t e R?: (t,dy — dy) = co—Cr}. Let H = (m\o)U(c\ 7). It is easy
to see that H consists of a vertex-disjoint union of cycles and alternating paths.
Let 71,...,7, be these cycles and paths. It is not hard to see that every cycle
and every path can be “flipped” independently while preserving the validity of
the matching; that is, we can choose, within any of the 7;’s, either all the edges
corresponding to 7 or all the ones corresponding to o, without interfering with
other cycles or paths, so that the resulting collection of edges still represents an



injection from B into A. Observe now that /(w,0) = {t € R?: <t, Py dw> =

- Z§=1 ¢y, }, where d.; is the sum of the terms in d, — d, that involve only the
a; € A contained in v; and ¢,; is analogously defined for ¢, — c,. Note that d.,
is 0 for every cycle v; and, therefore, at least one of the +;’s is a path. Then, we
must have <t, d%.> = —cy, forall j =1,...,p and every t € {(m, o). Otherwise, a
flip in a path or cycle violating the equation would contradict the optimality of 7
or of o along £(m, o). Therefore, all the vectors d.,; must be orthogonal to /(7 7).
Hence, the direction of d — d, is the same as the one of d,, for every path ;. If
a path, say 71, starts at some a; and ends at some a;, then d,, = a; — a;, which
concludes the proof. m]

Remark. Tt follows that if A is in general position then H has exactly one
alternating path, and the pair a;, a; is unique.

Lemma 3. i) Dp 4 has at most 4m(n —m) unbounded regions.
it) Every region in Dp a has at most m(n —m) edges.
i11) Every vertex in Dp a has degree at most 2m(n —m).
i) Any convex path can intersect at most m(n—m)—+n(n—1) regions of Dp_ a,
i.e., while translating B along any convex path, the optimal partial matching
can change at most m(n —m) +n(n — 1) times.

Proof. i) Take a bounding box that encloses all the vertices of the diagram. By
Theorem 1, every edge of the bounding box crosses at most m(n—m)+1 regions
of Dp 4. The edges of the box traverse only unbounded regions, and cross every
unbounded region exactly once, except for the coincidences of the last region
traversed by an edge and the first region traversed by the next edge.

ii) By Lemma 2, the normal vector of every edge of a region corresponding
to the injection 7 is a multiple of a; — a; for some a; € n(B) and a; ¢ 7(B).
There are exactly m(n — m) such possibilities.

iii) Let v be a vertex of Dp_4. Draw two generic parallel lines close enough to
each other to enclose v and no other vertex. Each edge adjacent to v is crossed by
one of the lines, and by Theorem 1 each of these lines crosses at most m(n —m)
edges.

iv) We use the following property that was observed in Rote’s proof of The-
orem 1. Suppose that we translate B along a line in some direction v. Rank the
points of A by their order in the v-direction, i.e., a < a’ means that {(a,v) < {(a’,v)
(for simplicity, assume that v is generic so there are no ties). Let @ denote the
sum of the ranks of the m points of A that participate in the optimal partial
match. As Rote has shown, whenever the optimal assignment changes, ¢ must
increase. Now follow our convex path ~y, which, without loss of generality, can
be assumed to be polygonal. As we traverse an edge of v, & obeys the above
property, increasing every time we cross into a new region of Dp 4. When we
turn (counterclockwise) at a vertex of =y, the ranking of A may change, but
each such change consists of a sequence of swaps of consecutive elements in the
present ranking. At each such swap, @ can decrease by at most 1. Since -y is
convex, each pair of points of A can be swapped at most twice, so the total



decrease in @ is at most 2(5) = n(n — 1). Hence, the accumulated increase in
@, and thus also the total number of regions of Dp 4 crossed by 7, is at most

(n+(n—1)+...+(n—m+1))—(1+2+...+m)+n(n—1). O

In the remainder of this section, we focus on establishing a global bound
on the complexity of the diagram Dp 4. We begin by deriving the following
technical auxiliary results.

Lemma 4. Let 7 be an optimal assignment for a fived translation t € R2.

i) There is no cyclic sequence (i1,42,...,1k,11) Satisfying
[bi; +t = aryll <1bi;, +t = ar@, »ll forall j € {1,...,k} (modulo k).
it) Each point of B +t is matched to one of its m nearest neighbors in A.
i11) At least one point in B + t is matched to its nearest neighbor in A.
iv) There exists an ordering (b1,...,by) of the elements of B, such that each
b is assigned by m to one of its k nearest neighbors in A, fork=1,...,m.

Proof. 1) For the sake of contradiction, we assume that there exists a cyclic
sequence that satisfies all the prescribed inequalities. Consider the assignment
o defined by o(i;) = 7(i(j—1) mod ) for all j € {1,...,k} and o(¢) = 7 (¢) for all
other indices ¢. Since 7 is a one-to-one matching, we have that m(i;) # m(i;)
for all different 7,5’ € {1,...,k} and, consequently, o is one-to-one as well. It is
easily checked that f(o,t) < f(m,t), contradicting the optimality of .

ii) For contradiction, assume that for some point b € B, b+t is not matched
by 7 to one of its m nearest neighbors in A. Then, at least one of these neighbors,
say a, cannot be matched (because these m points can be claimed only by the
remaining m — 1 points of B+t). Thus, we can reduce the cost of 7 by matching
b+t to a, a contradiction that establishes the claim.

iii) Again we assume for contradiction that m does not match any of the
points of B + t to its nearest neighbor in A. We construct the following cyclic
sequence in the matching w. We start at some arbitrary point b, € B, and
denote by a; its nearest neighbor in A (to simplify the presentation, we do not
explicitly mention the translation ¢ in what follows). By assumption, b; is not
matched to a;. If a; is also not claimed in 7 by any of the points of B, then b,
could have claimed it, thereby reducing the cost of 7, which is impossible. Let
then by denote the point that claims a; in 7. Again, by assumption, a; is not
the nearest neighbor as of by, and the preceding argument then implies that as
must be claimed by some other point b3 of B. We continue this process, and
obtain an alternating path (b1, a1, bs,ag,bs,...) such that the edges (b;,a;) are
not in 7, and the edges (b;11,a;) belong to m, for i = 1,2,.... The process must
terminate when we reach a point by that either coincides with b, or is such that
its nearest neighbor is among the already encountered points a;, ¢ < k. We thus
obtain a cyclic sequence as in part i), reaching a contradiction.

iv) Start with some point by € B such that by +t goes to its nearest neighbor
ay in A in the optimal partial-matching 7; such a point exists by part iii). Delete
by from B, and a; from A. The optimal matching of B\ {b1} into A\ {a;}
(relative to t) is equal to the restriction of 7 to the points in B\ {b1}, because



otherwise we could have improved = itself. We apply part iii) to the reduced
sets, and obtain a second point by € B\ {b1} whose translation bs +¢ is matched
to its nearest neighbor ag in A\ {a1}, which is either its first or second nearest
neighbor in the original set A. We keep iterating this process until the entire set
B is exhausted. At the k-th step we obtain a point by, € B\ {b1,...,bx_1}, such
that the nearest neighbor ay, in A\ {a1,...,ax_1} is matched to by by 7, so ag
is among the k nearest neighbors in A of by + . O

Observe, that the geometric properties in Lemma 4 can be interpreted in
purely combinatorial terms. Indeed, for ¢ fixed, associate with each b; € B an
ordered list L:(b;), called its preference list, which consists of the points of A
sorted by their distances from b; + ¢. In general, given m such ordered lists
on n elements, an injective assignment from {1,...,m} to {1,...,n} such that
there is no cycle as in part i) is called stable or Pareto efficient. The problem
of finding a stable matching was studied, for the case m = n, in the game
theory literature under the name of the House Allocation Problem [14]. Note
also that the proofs of parts ii)-iv) can be carried out in this abstract setting,
and hold for any stable matching. Note that part iv) immediately yields an upper
bound of m! on the number of stable matchings and, in addition, implies that
only the first m elements of each L;(b;) are relevant. This bound is tight for the
combinatorial problem, since if the ordered lists all coincide there are m! different
stable matchings. A recent article, motivated by the extended abstract [8] prior
to this work, studied this combinatorial problem and derived the following.

Lemma 5 (Asinowski et al. [2]). The number of elements that belong to some
stable matching on m ordered preference lists is at most m(lnm + 1).

The properties derived so far imply the following significantly improved upper
bound on the complexity of Dp 4.

Theorem 2. The combinatorial complezity of Dp_a is O(n*m35(elnm+e)™).

Proof. The proof has two parts. First, we identify a convex subdivision K such
that in each of its regions the first m elements of the ordered preference lists
L(b) of neighbors of each b+t, according to their distance from b+, are fixed for
all b € B. We show that the complexity of K is only polynomial; specifically, it
is O(n?m*). Second, we give an upper bound on how many regions of Dp 4 can
intersect a given region of K, using Lemma 5. Together, these imply an upper
bound on the complexity of Dg 4. The proof of the first part, which is based on
a somewhat non-standard application of the Clarkson-Shor technique, is omitted
in this version. We now consider all possible translations ¢ in the interior of some
fixed region 7 of K and their corresponding optimal matchings. Lemma 4(i)
ensures that all of them must be stable with respect to the fixed preference lists
L(b), for b € B, over t € 7. In addition, Lemma 1 ensures that we only need
to bound the number of different image sets of such stable matchings. Using the
bound in Lemma 5, we can derive that the number of optimal matchings for

translations in 7 is then O ((mawﬂ))) -0 (m’”(lnmrr!m)*") -0 ((eln :/n%ew )



where in the second step we used Stirling’s approximation. Hence, by multiplying
this bound by the number of regions in K, we conclude that the number of
assignments corresponding to optimal matchings, and thus also the complexity
of Dp. 4, is at most O(n?m35(elnm + ¢e)™). O

The following proposition (proof omitted in this version) sets an obstruction
for the combinatorial approach alone to yield a polynomial bound for Dp 4.

Proposition 1. For every n > |3 | 4+ m, there exists m preference lists of

{1,...,n} with 2 (%) different images of stable matchings.

3 Finding a local minimum of the partial-matching
RMS-distance under translation

The high-level algorithm. We now concentrate on the algorithmic problem of
computing, in polynomial time, a local minimum of the partial-matching RMS-
distance under translation.

We “home in” on a local minimum of F(¢) by maintaining a vertical slab I
in the plane that is known to contain such a local minimum in its interior, and
by repeatedly shrinking it until we obtain a slab I* that does not contain any
vertex of Dp 4. That is, any (vertical) line contained in I* intersects the same
sequence of regions, and, by Theorem 1, the number of these regions is O(mn).
We compute these regions, find the optimal partial matching assignment in each
region, and the corresponding explicit (quadratic) expression of F(t), and search
for a local minimum within each region.

A major component of the algorithm is a procedure, that we call II;(¢),
which, for a given input line ¢, constructs the intersection of Dp 4 with ¢, com-
putes the global minimum ¢* of F' on ¢, and determines a side of ¢, in which
F attains strictly smaller values than F'(¢*). If no such decrease is found in the
neighborhood of t* then it is a local minimum of F', and we stop. Using Lemma 2
and the Hungarian algorithm [6,10], IT;(¢) runs in O(m5n?) time.

We use this “decision procedure” as follows. Suppose we have a current ver-
tical slab I, bounded on the left by a line £~ and on the right by a line £T. We
assume that I1; has been executed on £~ and on T, and that we have deter-
mined that F' assumes smaller values than its global minimum on ¢~ to the right
of £, and that it assumes smaller values than its global minimum on ¢* to the
left of ¢*. This is easily seen to imply that F' must contain a local minimum
in the interior of I. (We note that just finding a local minimum of F along £
or ¢~ is not sufficient; see the full version for details.) Let ¢ be some vertical
line passing through I. We run II; on 4. If it determines that F' attains smaller
values to its left (resp., to its right), we shrink I to the slab bounded by ¢~ and
¢ (resp., the slab bounded by ¢ and ¢T). By what has just been argued, this
ensures that the new slab also contains a local minimum of F' in its interior.

To initialize the slab I, we choose an arbitrary horizontal line A, and run Iy
on A, to find the sequence S of its intersection points with the edges of D 4. We



run a binary search through S, where at each step we execute II; on the vertical
line through the current point. When the search terminates, we have a vertical
slab I, whose intersection with A is contained in a single region oy of Dp 4.

After this initialization, we find the region oy that lies directly above o
and that the final slab I* should cross. In general, there are possibly many such
regions, but fortunately, by Lemma 3(ii), their number is only at most m(n—m).

To find o7, we compute the boundary of oy; this is done similarly to the
execution of IIy; see the full version for details. Once we have explored the
boundary of oy, we take the sequence of all vertices of og, and run a I1;-guided
binary search on the vertical lines passing through them, exactly as we did with
the vertices of S, to shrink I into a slab I7, so that og intersects I; in a trapezoid
(or a triangle), with a single (portion of an) edge at the top and a single edge
at the bottom. This allows us to determine o7, which is the region lying on
the other (higher) side of the top edge, in O(m°n?log(mn)) time. A symmetric
variant of this procedure will find the region lying directly below o¢ in the final
slab.

We repeat the previous step to find the entire stack of O(nm) regions that
I* crosses, where each step shrinks the current slab and then crosses to the next
region in the stack. Once this is completed, we find a local minimum within I'*
as explained above. Again, details are omitted in this version.

In summary, we have the following main result of this section.

Theorem 3. Given two finite point sets A, B in R?, with n = |A| > |B| = m,
and such that for every two pairs (a1, as), (as,as) € AX A the vectors a1 —as and
as — aq are non-parallel, a local minimum of the partial-matching RMS-distance
under translation can be computed in O(mSn3logn) time.

4 Finding a local minimum of the Hausdorff
RMS-distance under translation

In this section, we turn to the simpler problem involving the Hausdorff RMS-
distance, and present efficient algorithms for computing a local minimum of the
RMS function in one and two dimensions. Due to lack of space, most of the
material in this section is omitted, and we only provide here a high-level review
of our algorithms.

The one-dimensional unidirectional case. Let N4(b+ t) be the nearest neigh-
bor in A of b+ ¢, for b € B, and t € R. The function r(t) := RMS(B +1t,A) =
> pep(b+t—Na(b+t))? is continuous and piecewise parabolic, with O(mn) non-
smooth breakpoints, which are the breakpoints of the step functions N (b + t).
For any given tg, it is easy to compute, in O(m logn) time, the derivative r'(to),
or its left and right one-sided versions r’(tg) ™, r'(to)* (when ¢ is a breakpoint).
A simple observation is that if I = [t1,%2] is an interval satisfying /()" < 0
and 7/(t2)” > 0 then I contains a local minimum of r. We thus start with a
large interval I that contains all breakpoints of r, and keep shrinking it, halving

10



the number of breakpoints in I in each step, until it contains only linearly many
breakpoints, in which case r can be constructed explicitly over I, and searched
for a local minimum, in near-linear time. Specifically, we obtain:

Theorem 4. Given two finite point sets A, B on the real line, with |A| = n and
|B| = m, a local minimum of the unidirectional RMS distance under translation
from B to A can be obtained in time O(m log® n + nlog n).

The one-dimensional bidirectional case. Simple extensions of the procedure given
above apply to the two variants of the minimum bidirectional Hausdorff RMS-
distance, as defined in the introduction. Omitting the fairly routine details of
these extensions, we obtain:

Theorem 5. Given two finite point sets A, B on the real line, with |A| = n
and |B| = m, a local minimum under translation of the Li-bidirectional or
Lo -bidirectional RMS distance between A and B, can be computed in time
O((nlogm + mlogn)log min {m,n}).

Minimum Hausdorff RMS-distance under translation in two dimensions. Here
the function r(t) := RMS(B+t, A) = >, g b+t —Na(b+1)? induces a convex
subdivision of the plane, where in each of its regions o, all the m values N4 (b+t),
for b € B, are fixed for t € . This subdivision is simply the overlay M of the m
shifted copies V(A — b), for b € B, of the Voronoi diagram of A. These copies
have a total of O(mn) edges, and their overlay has thus complexity O(m?n?)
(which is tight in the worst case). Over each region of M, r(t) is a quadratic
function (a paraboloid), and the explicit expression for r(t) can be updated in
O(1) time as we cross from one region to an adjacent one.

The goal is to search for a local minimum of r without explicitly constructing
these many features of M. Similarly to the one-dimensional case, we maintain a
vertical slab I, known to contain a local minimum, and keep shrinking it until
it contains no vertices of M. In this case it overlaps only O(mn) regions of M,
vertically stacked above one another, and it is straightforward to enumerate all
of them, get the explicit expressions of r over each of them, and search for a
local minimum in each part, in a total of O(mn) time.

The shrinking of I is performed in two phases. We first enumerate all O(mn)
Voronoi vertices of the original diagrams, and run a binary search through them,
as above. The resulting intermediate slab contains no original vertices, so the
edges that cross it behave like lines. They might still intersect at O(m?n?) points
within 7, but we can run a binary search through them efficiently, using the
(dual version of the) slope selection algorithm of [4], so that each step takes only
O(mnlogmn) time.

Concretely, we obtain:

Theorem 6. Given two finite point sets A, B in R?, with |A| = n and |B| = m,

a local minimum of the unidirectional Hausdorff RMS-distance from B to A
under translation can be computed in time O(mnlog® mn).
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The bidirectional variants can be handled in much the same way, and, omit-
ting the details, we get:

Theorem 7. Given two finite point sets A, B in R?, with |A| = n and |B| = m,
a local minimum of the L1 -bidirectional or the Lo, -bidirectional Hausdorff RMS-
distance between A and B under translation can be computed in O(mnlog® mn)
time.
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