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Abstract

We study the efficiency (in terms of social welfare) of truthful and symmetric mechanisms
in one-sided matching problems with dichotomous preferences and normalized von Neumann-
Morgenstern preferences. We are particularly interested in the well-known Random Serial Dic-
tatorship mechanism. For dichotomous preferences, we first show that truthful, symmetric and
optimal mechanisms exist if intractable mechanisms are allowed. We then provide a connection
to online bipartite matching. Using this connection, it is possible to design truthful, symmetric
and tractable mechanisms that extract 0.69 of the maximum social welfare, which works under
assumption that agents are not adversarial. Without this assumption, we show that Random
Serial Dictatorship always returns an assignment in which the expected social welfare is at least
a third of the maximum social welfare. For normalized von Neumann-Morgenstern preferences,
we show that Random Serial Dictatorship always returns an assignment in which the expected

social welfare is at least 1
e

ν(O)2

n
, where ν(O) is the maximum social welfare and n is the num-

ber of both agents and items. On the hardness side, we show that no truthful mechanism can

achieve a social welfare better than ν(O)2

n
.

1 Introduction

We study the efficiency of mechanisms in one-sided matching problems, where the goal is to al-
locate n indivisible items to n unit-demand rational agents having private preferences over items.
Agents are rational, i.e., they would like to be assigned to the best items according to their private
preferences. The problem essentially captures variants of practical applications such as allocating
houses to residents, assigning professors to courses and so on. In this paper, we mainly focus on
cardinal preferences in which agents have values for different items. A practical setting would be
that residents have values for different houses. A mechanism maps preferences that agents report
to a matching, which is a one-to-one mapping between agents and items. Throughout the paper,
depending on the context, we use sometimes term matching and sometimes assignment, but they
always mean essentially the same. One immediate question arises: if there exist mechanisms in
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NCN grant N N206 567940.

1

http://arxiv.org/abs/1407.3957v2


which no agent could benefit by deviating from reporting his true preference regardless the pref-
erences reported by other agents? Such mechanisms are often called truthful mechanisms. The
question was answered in [15], where it was shown that there exists only one truthful, nonbossy and
neutral mechanism. A mechanism is nonbossy if an individual agent cannot change the output of
the mechanism without changing his assignment. A mechanism is neutral if the mechanism is in-
dependent of the identities of items, e.g., the assignment get permuted accordingly when the items
are permuted. The unique mechanism works as follows. First, agents are sorted in a fixed order,
and then the first agent chooses his favorite item, the next agent chooses his favorite item among
remaining items, etc. When the fixed order is picked uniformly among all possible orderings, the
resulted mechanism is called Random Serial Dictatorship (RSD).

Besides the truthfulness, an important issue left is to understand the efficiency of mechanisms in
one-sided matching problems. The efficiency of a mechanism is defined as the social welfare of the
assignment the mechanism returns. Zhou [17] confirmed Gale’s conjecture by showing that there
is no symmetric, Pareto optimal and truthful mechanism for general preferences. A mechanism is
symmetric if agents are treated equally if they report the same preferences. A mechanism is Pareto
optimal if the mechanism never outputs an assignment that the social welfare could be improved
without hurting any agent. It is well-known that RSD is truthful and ex post efficient, i.e., it never
outputs Pareto dominated outcomes.

We observe that there is few work that study the efficiency of RSD. The main reason is that its
average social welfare could be even O (n) far away from the optimal social welfare if the preferences
of agents for items are unrestricted. It happens when assigning a particular item to a particular
agent contributes most of the optimal social welfare. However, in RSD it is possible that the
agent only gets that item with a probability of 1/n. In this paper, we circumvent this problem by
considering smaller but still rich domains of preferences. The first type of preferences we consider
is dichotomous preferences, where agents have binary preferences over items. We shall call this
setting simply dichotomous. Dichotomous preferences are fairly natural in assignment problems.
For example, professors indicate the courses they like or dislike to teach, or workers choose the
working shifts they want. The goal here is to design good mechanisms to assign courses/shifts to
professors/workers. One can model these problems with bipartite graphs: workers on one side,
shifts on the other, an edge indicates whether a worker wants to participate in a particular shift.
Then one can find a maximum matching in the graph to optimize the total value of the assignment.
It is shown in [5] that with some careful tie-breaking rule, finding a maximum matching yields
a truthful mechanism. However, such mechanisms fail to capture the symmetry. To make this
approach symmetric, one could find all maximum matchings and randomly choose one. Note that
it implies that Zhou’s impossibility result does not pertains to dichotomous preferences. However,
since finding all maximum matchings in bipartite graphs is #P -complete, we conjecture that it
is computationally infeasible to design truthful and symmetric mechanisms that obtain optimal
welfare. Therefore, we turn our attention to investigate how well mechanisms can approximate the
maximum social welfare. By the connection to the online bipartite matching problem [11, 12], we
get the following result:

Result 1. In dichotomous setting there exists a truthful and symmetric mechanism that is a 0.69-
approximation to the maximum social welfare.

Due to the limitation of such mechanisms, next we show that RSD also obtains a constant
approximation for dichotomous preferences.
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Result 2. Random Serial Dictatorship in dichotomous setting returns an assignment in which the
expected social welfare is a 3-approximation of the maximum social welfare.

The second type of preferences we consider is normalized von Neumann-Morgenstern prefer-
ences, where the value of agent i for item j lies in [0, 1]. We shall call this setting simply normalized.
In this setting our result gives asymptotically tight description of the social welfare achieved by
RSD.

Result 3. In normalized setting with n agents and n items, Random Serial Dictatorship returns

a matching which expected social welfare is at least 1
e
ν(O)2

n
, where ν(O) is the maximum social

welfare.

This result implies that RSD achieves an
√
e · n-approximation of the optimal social welfare

in unit-range preferences, i.e., when maxi va(i) = 1, mini va(i) = 0. Recently [6] presented an
O (

√
n)-approximation for RSD in unit-range setting.

Finally, we complement the above result with the following upper-bound.

Result 4. Given n, for any k = 1, . . . , n and for any ǫ > 0 there exist an instance of one-sided
matching problem with normalized von Neumann-Morgenstern preferences where ν (O) = k and no

truthful mechanism can achieve expected social welfare better than k2

n
+ ǫ, where k is the optimal

social welfare.

1.1 Related work

Here we only mention the most relevant work on one-sided matching problems. For more details,
we refer the reader to surveys [13, 14]. One-sided matching problems modeled in [9] gave a market-
like procedure to produce efficient assignments. There, the procedure is Pareto optimal but not
truthful. Gale and Shapley [7] considered a similar problem, the marriage problem, but they
turned attention to the incentive issues on whether agents would or would not reveal their private
preferences. In [8] authors were asking about existence of good mechanisms when preferences
are also considered. Zhou [17] answered this question by showing that there is no symmetric,
Pareto optimal and truthful mechanism. Between ex-ante Pareto optimality and ex-post Pareto
optimality, Bogomolnaia and Moulin [2] introduced a new concept called ordinal efficiency. They
gave a probabilistic serial mechanism that always returns ordinal efficient assignments. However,
the probabilistic serial mechanism is not truthful. Bhalgat et al. [1] studied the efficiency of RSD in
a more restricted setting than ours, where agents have values of n−j+1

n
for their jth favorite item.

Chakrabarty and Swamy [4] introduced the notion of rank approximation to measure the social
welfare under ordinal preferences. One-sided matching problems with dichotomous preferences
were studied by Bogomolnaia and Moulin [3]. They used the Gallai-Edmonds decomposition of
bipartite graphs to characterize the (most) efficient assignments.The most related work to ours
is that Filos-Ratsikas et al. [6] independently gave the similar approximation ratio of RSD under
unit-range preferences while our results applies to more general settings.

Cardinal preferences enable agents to explicitly express how much they prefer each item, while
this can not be done in ordinal preferences. The space of cardinal preferences could be shown to
be the same as the space of von Neumann-Morgenstern preferences. In addition, the normalization
of preferences is a standard procedure, see [10]. Besides the literature of operational research
and decision theory, normalized von Neumann-Morgenstern preferences are widely used to model
individual behavior in game-theoretical settings.
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2 Preliminaries

The model We model one-sided matching problems as bipartite graphs. In a bipartite graph,
its left side is a set A of agents and its right side are a set I of indivisible items. We assume
|A| = |I| = n and each agent is matched to exactly one item. For each agent a ∈ A and each
item i ∈ I, there is an edge (a, i) representing a possible allocation of item i to agent a. The
preference of agent a for item i is denoted by va (i), which is the value that agent a has for item
i. We consider two different types of preferences, dichotomous preferences and normalized von
Neumann-Morgenstern preferences. In dichotomous preferences, it holds that va (i) ∈ {0, 1}, while
in normalized von Neumann-Morgenstern preferences, it holds that va (i) ∈ [0, 1]. In dichotomous
case we shall say shortly that agent a 1-values item i, if va (i) = 1, instead of clunky “agent a has
value 1 for item i”; the same with value 0.

We say va (·) is the preference profile of agent a. Denote by V the set of all possible preference
profiles of a single agent: for dichotomous preferences V = {0, 1}I , for normalized von Neumann-
Morgenstern preferences V = [0, 1]I . Preference profiles of all agents are denoted by vA = (va)a∈A ∈
VA; by v−a = (va′)a′∈A\a we denote all profiles except of agent a’s. By (v′a, v−a) we denote agents’

preferences with a’s preference changed from va to v′a; if (v
′
a, v−a) is an argument of a function,

then we skip writing double brackets. Consider a set of items I ′ ⊆ I and suppose that agent a
values items i1, . . . , ik ∈ I ′ equally and more than any other item in I ′. We say that items i1, . . . , ik
are favorite items of agent a in I ′.

We call matrix pA = (pa)a∈A, where pa =
(

pia
)

i∈I , a feasible matching if the following conditions

hold: 1) for any a ∈ A and i ∈ I, pia ∈ {0, 1}; 2) for any a ∈ A,
∑

i∈I p
i
a = 1; 3) for any i ∈ I,

∑

a∈A pia = 1. Given a feasible matching pA, we say item i is matched to agent a if pia = 1. Thus,
the value of agent a for the matching pA is given by va · pa =

∑

i∈I va (i) p
i
a, where · is an operator

of the vector product. The social welfare of the matching pA is given by ν (pA) =
∑

a∈A va · pa.
From each agent a ∈ A mechanism M collects declarations da ∈ V about his preference profile

— we overload notations here a bit, since vector da does not always have to be declared completely,
i.e., when some of the items are already matched, then the mechanism does not ask a about
values for these items. Of course, the connection between true valuations va ∈ V and declarations
da ∈ V, which M collects, depends heavily on the mechanism M itself. Mechanism M maps
agents declarations dA to a feasible matching MA (dA) (i.e., the pA matrix); Ma (vA) denotes the
allocation to agent a (i.e., the pa vector). Mechanism M might be randomized, and then matching
MA (dA) is a random matrix, and allocation Ma (vA) is a random vector as well. In this case,
E [ν (MA (dA))] is the expected social welfare of mechanism MA, but since all of the mechanisms
we analyze are randomized, we shall call it just social welfare.

We measure the performance of the mechanism by comparing the social welfare it produces
with the optimal social welfare ν (O (vA)), where O (vA) denotes a matching that maximizes the
social welfare when preferences are given by vA. Note that O (vA) can be seen as a maximum
weight matching in the graph G = (A ∪ I,A× I) where weight of edge (a, i) is equal to va (i). For
simplicity however, throughout the paper we shall just write O, instead of O (vA).

A mechanism M is truthful, if for every a ∈ A, every vA ∈ VA and every v′a ∈ V, it holds that
(even when the mechanism is randomized)

va ·Ma (vA) ≥ va · Ma

(

v′a, v−a

)

.

A mechanism M is symmetric if for every a1, a2 ∈ A, every dA ∈ VA such that da1 = da2 , it holds

4



that E [Ma1 (dA)] = E [Ma2 (dA)], i.e., agents with identical declarations have the same (expected)
value for the allocation.

RSD and iterative analysis Now let us give the formal description of the Random Serial
Dictatorship (RSD) mechanism. RSD first picks an ordering of agents uniformly at random and
then asks agents to choose sequentially with respect to the order. We assume that agents are
rational, i.e., they will always choose the best items among the unmatched items. Ties are broken
randomly, i.e., when agent a is asked in RSD and his favorite items are i1 and i2 among unmatched
items, agent a will chose items i1 and i2 with an equal probability. This is an important assumption
for the analysis of RSD with dichotomous preferences. If we would like to analyze RSD when agent
would always deterministically choose among the best items, then the competitive ratio guarantees
and lower bounds from von Neumann-Morgenstern preferences would apply.

Let us observe a property of RSD that is important for our analysis. Instead of thinking that a
random ordering is fixed before any agent is considered sequentially, we can think that RSD chooses
an agent randomly from remaining agents in each step. It is easy to see that agents are considered
in the same random order in both cases.

RSD is iterative in nature, and so is the analysis. Let us index its time-steps by t, which ranges
from 0 to n. t = 0 indicates the moment after sorting the agents, but before asking first agent to
choose. Let Rt represent the (partial) matching constructed by RSD after first t steps. Then ν

(

Rt
)

represents the social welfare obtained after first t steps; in particular ν
(

R0
)

= 0. As RSD is being
executed, the set of unmatched agents and the set of available items are gradually decreasing. Let
At and It be the set of unmatched agents and the set of available items after step t. For example,
A0 = A and I0 = I. As the sets At and It are being modified, we also keep track of the way in
which ν (O) is being changed (recall that O denotes a matching that maximizes the welfare). More
precisely, we start with ν

(

O0
)

= ν (O). Suppose that at step t, RSD asks agent a to choose and
then a picks item i, then ν

(

Rt
)

= ν
(

Rt−1
)

+ va (i). We remove a from At−1 and i from It−1, e.g.,
At = At−1 − {a} and It = It−1 − {i}. In addition, we also remove welfare contributed by a and i
from ν

(

Ot−1
)

. Certainly, when t = n, then ν (On) = 0, while ν (Rn) is the social welfare obtained
by RSD.

Sequence
{

ν
(

Rt
)}

t≥0, which represents the increasing welfare of RSD, is a random pro-
cess. Moreover, E [ν (Rn)] represents the expected social welfare returned by RSD. The sequence
{

ν
(

Ot
)}

t≥0, which represents how the optimal social welfare is affected by the random choices
within RSD, is a random process as well. Therefore, we want to describe a relation between
E [ν (Rn)] and ν

(

O0
)

, and to do so we deploy theory of martingales.

Martingales Below we only introduce notions and properties that we use later in the paper. For
a thorough treatment of martingale theory see [16].

Definition 1. Consider a random process
(

Xt
)n

t=0
. Suppose we observe first k steps of the process,

and let Hk denote the information we have acquired in steps 0, 1, . . . , k. Expected value of Xk+1,
conditioned on the information we have from steps 0 to k, is formally presented as E

[

Xk+1
∣

∣Hk
]

.
If for any k = 0, . . . , n− 1, we have E

[

Xk+1
∣

∣Hk
]

= Xk, then the process is called a martingale.

In other words, the process does not change on expectation in one step. We shall also consider
a sub-martingale

(

Xt
)n

t=0
which satisfies E

[

Xk+1
∣

∣Hk
]

≥ Xk instead of equality in the above
definition.
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Theorem (Doob’s Stopping Theorem). Let
(

Xt
)n

t=0
be a martingale, respectively sub-martingale.

For any k = 0, 1, . . . , n it holds that E
[

Xk
]

= E
[

X0
]

, respectively E
[

Xk
]

≥ E
[

X0
]

.

The above is not the Doob’s theorem in its full generality, but rather the simplest variant that
still holds in our setting.

3 Dichotomous preferences and online bipartite matching

In this section, we establish a connection between one-sided matching with dichotomous preferences
and online bipartite matching. A similar connection was also presented in [1].

Consider a variant of online bipartite matching. We are given a bipartite graph G = (A∪B,E),
where one side A of the graph is given, while vertices from other side B and edges between A
and B are unknown. Suppose that vertices from B arrive one by one, and upon the arrival of
vertex b ∈ B, all edges adjacent to b are revealed. On vertices of A there is an ordering σ given
by a random permutation. Consider RANKING algorithm that upon arrival of vertex b ∈ B it
matches b to the unmatched neighbor in a ∈ A with the highest ranking σ (a). In their seminal
paper, Karp et al. [11] have proven that this algorithm constructs a matching of expected size at
least

(

1− 1
e

)

OPT , where OPT is the offline optimum, and the bound holds even if the vertices
of B arrive in an adversarial order. Furthermore, Mahdian and Yan [12] have shown that the
performance of RANKING algorithm is even better when the order of vertices in B is also given
by a random permutation:

Theorem . Given that the vertices in B arrive uniformly at random and the order of vertices in A
is random, RANKING algorithm constructs a matching of expected size at least 0.69 ·OPT , where
OPT is the offline optimum.

Now let us see consider the following mechanisms for one-sided matching with dichotomous
preferences. Given the agents and items, mechanism RSD* generates a random ordering on agents
and a random ranking on items. RSD* considers agents one by one according to the random
ordering. Suppose that agent a is considered at step τ and let da(·) be the preference reported by
agent a. Denote by Iτ the set of items yet unmatched at step τ . If agent a 1-values any unmatched
item, RSD* assigns agent a an item with the highest rank among all remaining items. Otherwise,
RSD* assigns nothing to agent a. Finally, RSD* matches any unmatched items to unmatched
agents. Truthfulness of RSD* follows from the observation that τ as well as Iτ are independent
of a’s declaration da. More precisely, the moment τ is given only by a random permutation of
agents, while set Iτ depends on the permutation of agents and declarations da′ of agents a′ that
came before a. Therefore, if a declares da (i) = 1 for item i such that va (i) = 0, then he can only
increase the probability that at moment τ he is matched to a 0-valued item. Analogically, if a
declares da (i) = 0 for item i such that va (i) = 1, then he can only decrease the probability that at
moment τ he is matched to a 1-valued item. Suppose now that agent a has 0 value for all items in
Iτ . In this case agent gains nothing regardless of what his declarations are. An agent that reports
truthfully in this case, we call non-adversarial. Since RSD* is guided by two random permutations,
the symmetry of the mechanism is clear.

Theorem 1. Assuming that agents are non-adversarial, RSD* is a truthful and symmetric mecha-
nism that achieves 0.69-approximation to the maximum social welfare in one-sided matching prob-
lems with dichotomous preferences.
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Algorithm 1: RSD*(A, I)

1 Let random permutation σ : {1, ..., n} 7→ {1, ..., n} be the ranking of items;
2 For each agent a ∈ A in random order:

3 ask agent a about his preference profile da ∈ V = {0, 1}I ;
4 if there is no unmatched item i such that da (i) = 1, then discard agent a;
5 otherwise, assign a to unmatched item i that has the highest rank σ (i);
6 Match any unmatched items to unmatched agents anyhow.

One can imagine that sometimes an agent can be adversarial, and he would not admit that he
does not value any of the remaining items. To address this issue, in the next section we present an
analysis of RSD mechanism in which every agent can be adversarial.

4 Dichotomous preferences and RSD

Theorem 2. Random Serial Dictatorship always returns an matching in which the expected welfare
is at least 1

3ν (O) in one-sided matching problems with dichotomous preferences.

Proof. Recall, O is an optimal matching. Let At be the set of agents remaining after t steps, let It

be the set of remaining items, and Ot ⊂ O is what remains from optimal solution after t steps of
RSD. Also, Rt is the partial matching constructed by RSD after t steps, and ν

(

Rt
)

be its welfare.
For an agent a let Oa ∈ I be the item to which a is matched in O.

Let Y t be the set of agents who are matched to an item in Ot which they value 1, i.e.,
{

a ∈ At
∣

∣ va (Oa) = 1
}

. Therefore
∣

∣Y t
∣

∣ = ν
(

Ot
)

for every t. It can happen that at time t, an
agent does not 1-value any of remaining items It, even though he could have 1-valued some of the
items in I0. Thus let Zt ⊆ At be the agents who 0-value all items in It. Let us denote yt =

∣

∣Y t
∣

∣

and zt =
∣

∣Zt
∣

∣ for brevity.
Consider step t + 1 of RSD, and assume we have all information available after first t steps,

represented by Ht. Let a be the agent who is to make his choice in this step, and let i be the
item a chooses. Agent a does not belong to Zt with probability 1 − zt

n−t
, and if this happens,

then for sure va (i) = 1, which adds 1 to the welfare of RSD, i.e., ν
(

Rt+1
)

= ν
(

Rt
)

+ 1. Hence

E
[

ν
(

Rt+1
)∣

∣Ht
]

= ν
(

Rt
)

+ 1− zt

n−t
.

Now let us analyze the expected decrease ν
(

Ot
)

− ν
(

Ot+1
)

. Suppose that agent a does not

belong to Zt, again with probability 1− zt

n−t
. Edge (a, i) is adjacent to at most two 1-value edges in

Ot, since Ot is a feasible matching. Thus when a /∈ Zt, then ν
(

Ot
)

− ν
(

Ot+1
)

is at most 2 . Now

suppose that agent a belongs to Zt, which happens with probability zt

n−t
. Since va (i) = 0, then a is

not adjacent to any 1-value edge in Ot, and i may be adjacent to at most one such edge since agent
a choose an item randomly from unmatched items. Therefore, when a ∈ Zt, then ν

(

Ot
)

−ν
(

Ot+1
)

is at most 1. Hence, together with noting that zt

n−t
+ yt

n−t
≤ 1, we can conclude that the expected

decrease ν
(

Ot
)

− ν
(

Ot+1
)

is:

E
[

ν
(

Ot
)

− ν
(

Ot+1
)
∣

∣Ht
]

≤ 2 ·
(

1− zt

n− t

)

+
zt

n− t
· yt

n− t
≤ 3 ·

(

1− zt

n− t

)

.
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Since E
[

ν
(

Rt+1
)
∣

∣Ht
]

= ν
(

Rt
)

+ 1− zt

n−t
, we get that

E
[

ν
(

Ot
)

− ν
(

Ot+1
)∣

∣Ht
]

≤ 3 ·
(

1− zt

n− t

)

= 3 · E
[

ν
(

Rt+1
)

− ν
(

Rt
)∣

∣Ht
]

.

This means that sequence
(

Xt
)n

t=0
, defined byX0 = 0 andXt+1−Xt = 3·

(

ν
(

Rt+1
)

− ν
(

Rt
))

−
(

ν
(

Ot
)

− ν
(

Ot+1
))

, satisfies E
[

Xt+1
∣

∣Ht
]

≥ Xt, and therefore is a sub-martingale. From Doobs
Stopping Theorem we get that E [Xn] ≥ E

[

X0
]

= 0, and hence

0 ≤ E [Xn] = E

[

n
∑

t=1

Xt −Xt−1

]

= 3 · E
[

n
∑

t=1

ν
(

Rt
)

− ν
(

Rt−1
)

]

−

− E

[

n
∑

t=1

ν
(

Ot−1
)

− ν
(

Ot
)

]

= 3 · E [ν (Rn)]− E
[

ν
(

O0
)]

,

since R0 = On = ∅. This allows us to conclude that 3 · E [ν (Rn)] ≥ ν (O), which finishes the
proof.

Our analysis is simple, and most likely not tight — approximation ratio should be below 3. On
the other hand, it is not very close to 2, as there exist instances with dichotomous preferences in
which RSD gives expected outcome close to 1

2.28 · ν (O). One can see a resemblance between the
following instance and the worst case instance for algorithm RANDOM from Karp et al. [11].

Fact 1. Consider the following instance of a problem. We have numbers k, z and n = z + k,
with k even, and also sets A = {1, ..., n}, I = {1, ..., n}. Define the valuations: va (i) = 1 if
a = i ∈ {1, . . . , k} or a ∈

{

1, . . . , k2
}

∧ i ∈
{

k
2 , . . . , k

}

, and 0 otherwise. The optimum solution
in this case is obviously k. Simulations indicate that for k = 104 and z = 107, the expected
performance of RSD is around 4378 giving ratio of 104

4378 ≈ 2.28. Taking different values of k or z
did not significantly changed the outcome of simulations.

5 Normalized von Neumann-Morgenstern preferences and RSD

Theorem 3. Random Serial Dictatorship always returns an assignment in which the expected

social welfare is at least 1
e

ν(O)2

n
in one-sided matching problems with normalized von Neumann-

Morgenstern preferences, where ν (O) is the maximum social welfare.

Proof. As before, let O be the optimal assignment, and Ot ⊆ O be the subset of the optimal
assignment that remains after t steps of RSD. Consider step t + 1, and let Ht be all information
available after t steps. We choose agent a uniformly at random from the remaining agents, and
then a chooses item i that he prefers the most, i.e., edge (a, i) has the greatest value among edges
{

(a, i)| i ∈ It
}

. The number of agents without an assigned item is exactly n − t after t steps, and
hence the probability of choosing a particular agent is 1

n−t
.

Let O (a) denote the item matched to agent a in O. Since agent a has the largest value for item
i among remaining items, it has to hold that va (i) ≥ va (O(a)). Therefore, the expected welfare of
RSD in step t+ 1 increases at least

∑

a∈At

va (i)

n− t
≥
∑

a∈At

va (O(a))

n− t
=

ν
(

Ot
)

n− t
,
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and hence E
[

ν
(

Rt+1
)∣

∣Ht
]

≥ ν
(

Rt
)

+
ν(Ot)
n−t

. Similar martingale-based reasoning as in Section 4

yields that E [ν (Rn)] ≥ E

[

∑n−1
t=0

ν(Ot)
n−t

]

, so in the remaining part we give a lower bound on this

sum.
When we remove agent a and item i in step t+1, what is the average decrease ν

(

Ot
)

−ν
(

Ot+1
)

?
Surely, we remove edge

(

a,Ot (a)
)

from Ot. However, item i may be assigned a different agent than
a in Ot, and the value of this assignment can be arbitrary — let us denote by Lt+1 ∈ [0, 1] the
decrease of Ot caused by deleting the assignment of i. Therefore, the average decrease at step t+1

is ν
(

Ot
)

− E
[

ν
(

Ot+1
)∣

∣Ht
]

= E
[

Lt+1
∣

∣Ht
]

+
ν(Ot)
n−t

, so if we define sequence (Yt)
n
t=1, where

Y t+1 = Lt+1 +
ν
(

Ot
)

n− t
−
(

ν
(

Ot
)

− ν
(

Ot+1
))

, (1)

then E
[

Y t+1
∣

∣Ht
]

= 0 for t = 0, 1, . . . , n − 1. We define another sequence
(

Xt
)n

t=0
with X0 = 0

and Xt =
∑t

i=1 Y
i.

Equality E
[

Y t+1
∣

∣Ht
]

= 0 implies E
[

Xt+1
∣

∣Ht
]

= Xt, which means that
(

Xt
)n

t=0
is a martin-

gale, and from Doob’s Stopping Theorem, we get that 0 = E
[

X0
]

= E [Xn] = E
[
∑n

t=1 Y
t
]

. Thus
summing equality (1) for t from 1 to n− 1 and taking expectation yields that

E

[

n−1
∑

t=0

ν
(

Ot
)

n− t

]

= ν (O)− E

[

n−1
∑

t=1

Lt

]

.

And since E

[

∑n−1
t=0

ν(Ot)
n−t

]

is the outcome of RSD, we just need to upper-bound E

[

∑n−1
t=1 Lt

]

now.

Let us note that equality (1) can be transformed into

Y t+1

n− t− 1
=

Lt+1

n− t− 1
−
(

ν
(

Ot
)

n− t
− ν

(

Ot+1
)

n− t− 1

)

for t+ 1 < n. Since E
[

Y t+1
∣

∣Ht
]

= 0, we have E

[

Y t

n−t

∣

∣

∣
Ht−1

]

= 0 as well. Thus sequence
(

Zt
)n−1

t=0

with Z0 = 0 and Zt =
∑t

i=1
Y i

n−i
is a martingale, and again from Doob’s Stopping Theorem we get

that 0 = E
[

Z0
]

= E
[

Zn−1
]

= E

[

∑n−1
t=1

Y t

n−t

]

, which gives

0 = E

[

n−1
∑

t=1

Y t

n− t

]

= E

[

n−1
∑

t=1

Lt

n− t

]

− E

[

n−1
∑

t=1

ν
(

Ot−1
)

n− t+ 1
− ν

(

Ot
)

n− t

]

,

and since the second sum telescopes we obtain that

E

[

n−1
∑

t=1

Lt

n− t

]

=
ν
(

O0
)

n
− E

[

ν
(

On−1
)]

≤ ν (O)

n
. (2)

For any Lt ∈ [0, 1] it holds that Lt

n−t
≥
∫ t

t−Lt
dx
n−x

. Moreover all intervals
[

t− Lt, t
]

are disjoint, and

they are of total length of
∑n−1

t=1 Lt, hence

n−1
∑

t=1

Lt

n− t
≥

n−1
∑

t=1

∫ t

t−Lt

dx

n− x
≥
∫

∑n−1
t=1 Lt

0

dx

n− x
= ln

n

n−∑n−1
t=1 Lt

.
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Function x 7→ ln n
n−x

is convex, so from Jensen’s inequality and (2) we get that

ν (O)

n
≥ E

[

n−1
∑

t=1

Lt

n− t

]

≥ E

[

ln
n

n−∑n−1
t=1 Lt

]

≥ ln
n

n− E

[

∑n−1
t=1 Lt

] ,

which yields n
(

1− e−
ν(O)
n

)

≥ E

[

∑n−1
t=1 Lt

]

. We can now finish lowerbounding the outcome of

RSD:

ν (R) ≥ E

[

n−1
∑

t=0

ν
(

Ot
)

n− t

]

= ν (O) − E

[

n−1
∑

t=1

Lt

]

≥ ν (O) − n + n · e−
ν(O)
n ≥ 1

e

ν (O)2

n
,

where the last inequality follows from x− 1 + e−x ≥ 1
e
x2 for x ∈ [0, 1].

The theorem above can be easily applied to the case that agents’ preferences are unit-range.

Corollary 1. When agents’ preferences are unit-range, i.e., maxi va(i) = 1, mini va(i) = 0, for
a ∈ A, Random Serial Dictatorship

√
e · n-approximates the maximum social welfare.

Proof. In unit-range preferences each agent has value 1 for at least one item, hence RSD gets
exactly welfare 1 in the first step. Therefore, ν (R) ≥ 1 and it means that the approximation ratio

is at least 1
ν(O) . Since we have shown that RSD achieves at least 1

e
ν(O)2

n
, the approximation ratio

of RSD is at least max
{

1
ν(O) ,

ν(O)
e·n

}

≥ 1√
e·n .

On the hardness side, we can show that no truthful mechanism can do significantly better.

Theorem 4. Given n, for any k = 1, . . . , n and for any ǫ > 0 there exist an instance of one-sided
matching problem with normalized von Neumann-Morgenstern preferences where ν (O) = k and no

truthful mechanism can achieve expected social welfare better than k2

n
+ ǫ, where k is the optimal

social welfare.

Consider an instance presented in Figure 1. Agent a1 has value 1 for item i1, and any other
player ai, i = 2, ..., n̄, has value ε for item i1, where ǫ is a small quantity. All agents have value 0
for items i2, i3, ..., in̄. Obviously assigning item ij to agent aj is an optimum assignment and it has
value ν (O) = 1. Since we cannot distinguish between agents, we need to assign them item i1 with
the same probability — this means that any truthful mechanism can not achieve welfare better
than 1

n̄
+ n̄−1

n̄
ε. This is made formal in the following Lemma.

Lemma 1. There exists an instance (see Figure 1) such that ν (O) = 1 but any truthful mechanism
cannot achieve an expected social welfare better than 1

n̄
+ ε.

Proof. Let us consider the first instance as follows

v1(a, i) =

{

0 if 1 ≤ a ≤ n, 2 ≤ i ≤ n̄

ǫ if 1 ≤ a ≤ n̄, i = 1

10



a1 a2 a3 an̄

i1 i2 i3 in̄

1 ε ε ε ε ε ε ε ε

Figure 1

where ǫ is a small quantity. In this case, consider any mechanism, it is cleat that there exists an
agent who obtains item 1 with a probability at most 1

n̄
. Without loss of generality, we assume that

agent 1 is such an agent. Now let us consider the second instance in Figure 1.

v2(a, i) =











0 if 1 ≤ a ≤ n, 2 ≤ i ≤ n̄

ǫ if 2 ≤ a ≤ n̄, i = 1

1 if a = 1, i = 1

The optimal social welfare is 1 by assigning item 1 to the first agent. It is also easy to see that
any mechanism that achieves an approximation ratio better than O( 1

n̄
) must allocate item 1 to

agent 1 with a probability larger than 1
n̄
. It implies that, under any truthful mechanism with an

approximation ratio better than O( 1
n̄
), agent 1 in the first instance could benefit by misreporting

his values as in the second instance. This proves that no truthful mechanism could achieve an
expected social welfare better than Ω(ν(O)

n̄
) in the second instance where ν (O) = 1.

Using k copies of this instance in Figure 1, we can prove Theorem 4.
Proof of Theorem 4. For simplicity let us assume that k divides n. Consider now the following

instance with n agents and n items. We divide agents and items into k chunks, each consisting of
n
k
agents and the same number of items. Each chunk looks exactly like the instance from Figure 1

where n̄ = n
k
and ε = ǫ/k. Agents have value 0 for items from different chunks. Therefore social

welfare of any mechanism is a sum of welfares in all chunks. From Lemma 1 we know that on each
chunk any truthful mechanism gets an expected social welfare of at most k

n
+ ε. Since there are

k chunks, no truthful mechanism can get an expected social welfare on the whole instance better

11



than k ·
(

k
n
+ ε
)

= k2

n
+ ǫ. On the other hand, each of the k chunks contributes 1 to the optimal

welfare, giving ν (O) = k. This concludes the proof.

6 Open question

As mentioned in the introduction, we can give the following truthful and symmetric mechanisms
that outputs optimal social welfare. The mechanism works as follows. First, collect agents prefer-
ences da for all a ∈ A. Then consider graph G = (A, I) with edge between every pair a ∈ A, i ∈ I
for which da(i) = 1.. Next, find the all maximum matchings. Finally, output a maximum matching
uniformly at random.

Claim 1. The mechanism above is truthful and symmetric, and outputs optimal social welfare.

Proof. The symmetry and optimality of the mechanism is easy to see since it outputs one of the
maximum matching uniformly at random. The following shows that the mechanism is also truthful.

Let da be the declared preference profile of agent a, and let d−a be declarations of all agents but
a. Consider item i which a values 0, and suppose a declares da (i) = 0. Let MA be the number of all
maximum matchings, let M1

a be the number of matchings in which a is assigned item he 1-values.

Therefore expected value of a’s assignment is M1
a

MA
. Suppose now that a would declare da (i) = 1

instead. There are two situations: with this change the size of maximum matching has increased
by one, or remained the same. If the size increased by 1, then it means that right now all matchings
use edge (a, i), and in this situation a is always assigned item i, which he 0-values. Hence, he does
not have incentive to misreport in this case. If the size of maximum matching remained the same,
then the total number of matchings could only increase (or remain the same) and now is equal to
MA +M(a,i). However, the number of matchings in which a is assigned 1-valued item, remains the
same: M1

a . Therefore, after misreporting value of i, agent a has probability of receiving 1-valued

item equal to M1
a

MA+M(a,i)
≤ M1

a

MA
, Hence, a does not have incentive to misreport in this case either.

Consider the other situation. Let i be an item which a values 1, and suppose a declares da (i) = 1.
As before, let MA be the total number of matchings, let M1

a , be the number of matchings in which a

is assigned item he 1-values. Now the probability that a is matched to 1-valued item is equal to M1
a

MA
.

Suppose that a declares da (i) = 0. After a has changed his declaration, we have two possibilities:
size of maximum matching has decreased by one, or remained the same. If the size has decreased
by one, then it means that a is not assigned anymore to any item, so he gets value of 0 in this
case, and hence he does not have any incentive to lie. If the size has remained the same, then the
total number of matchings is now equal to MA −M(a,i). But the number of matchings in which a
was assigned 1-value item, decreases by the same amount, i.e., M1

a −M(a,i) is now the number of
matchings from which a benefits value 1. Therefore, the probability of receiving 1-valued item is

now equal to
M1

a−M(a,i)

MA−M(a,i)
, and

M1
a −M(a,i)

MA −M(a,i)
≤ M1

a

MA

,

for any M(a,i). Hence a does not have incentive to misreport in this case either.

Unfortunately, such a mechanism is not feasible when computational efficiency is required. The
problem is that it is #P -complete to count all maximum matchings. Therefore, we suspect that
any truthful, symmetric and optimal mechanism would be somehow connected with an algorithm

12



for counting all maximum matchings. And because of that, we conjecture that such mechanism
should be #P -complete as well.
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