The Foundations of Computability Theory

Borut Robi¢

The Foundations
of Computability Theory

Second Edition

@ Springer

Borut Robi¢

Faculty of Computer and Information Science
University of Ljubljana

Ljubljana, Slovenia

ISBN 978-3-662-62420-3 ISBN 978-3-662-62421-0 (eBook)
https://doi.org/10.1007/978-3-662-62421-0

© Springer-Verlag GmbH Germany, part of Springer Nature 2015, 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part of Springer
Nature.
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://doi.org/10.1007/978-3-662-62421-0

To Marinka, Gregor and Rebeka Hana

I still think that the best way to learn a new idea is to see its history, to see why someone
was forced to go through the painful and wonderful process of giving birth to a new idea.
... Otherwise, it is impossible to guess how anyone could have discovered or invented it.

— Gregory J. Chaitin, Meta Maths, The Quest for Omega

Preface

Context

The paradoxes discovered in Cantor’s set theory sometime around 1900 began a
crisis that shook the foundations of mathematics. In order to reconstruct mathemat-
ics, freed from all paradoxes, Hilbert introduced a promising program with formal
systems as the central idea. Though the program was unexpectedly brought to a
close in 1931 by Godel’s famous theorems, it bequeathed burning questions: “What
is computing? What is computable? What is an algorithm? Can every problem be
algorithmically solved?” This led to Computability Theory, which was born in the
mid-1930s, when these questions were resolved by the seminal works of Church,
Godel, Kleene, Post, and Turing. In addition to contributing to some of the greatest
advances of twentieth-century mathematics, their ideas laid the foundations for the
practical development of a universal computer in the 1940s as well as the discovery
of a number of algorithmically unsolvable problems in different areas of science.
New questions, such as “Are unsolvable problems equally difficult? If not, how can
we compare their difficulty?” initiated new research topics of Computability Theory,
which in turn delivered many important concepts and theorems. The application of
these is central to the multidisciplinary research of Computability Theory.

Aims

Monographs in Theoretical Computer Science usually strive to present as much of
the subject as possible. To achieve this, they present the subject in a definition—
theorem—proof style and, when appropriate, merge and intertwine different re-
lated themes, such as computability, computational complexity, automata theory,
and formal-language theory. This approach, however, often blurs historical circum-
stances, reasons, and the motivation that led to important goals, concepts, methods,
and theorems of the subject.

vii

viii Preface

My aim is to compensate for this. Since the fundamental ideas of theoretical
computer science were either motivated by historical circumstances in the field or
developed by pure logical reasoning, I describe Computability Theory, a part of
Theoretical Computer Science, from this point of view. Specifically, I describe the
difficulties that arose in mathematical logic, the attempts to recover from them, and
how these attempts led to the birth of Computability Theory and later influenced it.
Although some of these attempts fell short of their primary goals, they put forward
crucial questions about computation and led to the fundamental concepts of Com-
putability Theory. These in turn logically led to still new questions, and so on. By
describing this evolution I want to give the reader a deeper understanding of the
foundations of this beautiful theory. The challenge in writing this book was there-
fore to keep it accessible by describing the historical and logical development while
at the same time introducing as many modern topics as needed to start the research.
Thus, I will be happy if the book makes good reading before one tackles more ad-
vanced literature on Computability Theory.

Contents

There are three parts in this book.

Part I (Chaps. 1-4) Chapter 1 is introductory: it discusses the intuitive compre-
hension of the concept of the algorithm. This comprehension was already provided
by Euclid and sufficed since 300 B.C.E. or so. In the next three chapters I explain
how the need for a rigorous, mathematical definition of the concepts of the algo-
rithm, computation, and computability was born. Chapter 2 describes the events
taking place in mathematics around 1900, when paradoxes were discovered. The
circumstances that led to the paradoxes and consequently to the foundational crisis
in mathematics are explained. The ideas of the three main schools of recovery—
intuitionism, logicism, and formalism—that attempted to reconstruct mathematics
are described. Chapter 3 delves into formalism. This school gathered the ideas and
results of other schools in the concept of the formal axiomatic system. Three partic-
ular systems that played crucial roles in events are described; these are the formal
axiomatic systems of logic, arithmetic, and set theory. Chapter 4 presents Hilbert’s
Program, a promising formalistic attempt that would use formal axiomatic systems
to eliminate all the paradoxes from mathematics. It is explained how Hilbert’s Pro-
gram was unexpectedly shattered by Godel’s Incompleteness Theorems, which state,
in effect, that not every truth can be proved (in a formal system).

Part II (Chaps. 5-9) Hilbert’s Program left open a question about the existence
of a particular algorithm, the algorithm that would solve the Entscheidungsproblem.
Since this algorithm might not exist, it was necessary to formalize the concept of
the algorithm—only then would a proof of the non-existence of the algorithm be
possible. Therefore, Chapter 5 discusses the fundamental questions: “What is an
algorithm? What is computation? What does it mean when we say that a function
or problem is computable?” It is explained how these intuitive, informal concepts
were formally defined in the form of the Computability (Church-Turing) Thesis by

Preface ix

different yet equivalent models of computation, such as [l-recursive functions and
(general) recursive functions, A-calculus, the Turing machine, the Post machine,
and Markov algorithms. Chapter 6 focuses on the Turing machine, which most
convincingly formalized the intuitive concepts of computation. Several equivalent
variants of the Turing machine are described. Three basic uses of the Turing ma-
chine are presented: function computation, set generation, and set recognition. The
existence of the universal Turing machine is proved and its impact on the creation
and development of general-purpose computers is described. The equivalence of
the Turing machine and the RAM model of computation is proved. In Chapter 7,
the first basic yet important theorems are deduced. These include the relations be-
tween decidable, semi-decidable, and undecidable sets (i.e., decision problems), the
Padding Lemma, the Parameter (i.e., s-m-n) Theorem, and the Recursion Theorem.
The latter two are also discussed in view of the recursive procedure calls in the mod-
ern general-purpose computer. Chapter 8 is devoted to incomputability. It uncovers
a surprising fact that, in effect, not everything that is defined can be computed (on
a usual model of computation). Specifically, the chapter shows that not every com-
putational problem can be solved by a computer. First, the incomputability of the
Halting Problem is proved. To show that this is not just a unique event, a list of
selected incomputable problems from various fields of science is given. Then, in
Chapter 9, methods of proving the incomputability of problems are explained; in
particular, proving methods by diagonalization, reduction, the Recursion Theorem,
and Rice’s Theorem are explained.

Part III (Chaps. 10-15) In this part attention turns to relative computability.
I tried to keep the chapters “bite-sized” by focusing in each on a single issue only.
Chapter 10 introduces the concepts of the oracle and the oracle Turing machine,
describes how computation with such an external help would run, and discusses
how oracles could be replaced in the real world by actual databases or networks of
computers. Chapter 11 formalizes the intuitive notion of the “degree of unsolvabil-
ity” of a problem. To do this, it first introduces the concept of Turing reduction, the
most general reduction between computational problems, and then the concept of
Turing degree, which formalizes the notion of the degree of unsolvability. This for-
malization makes it possible to define, in Chapter 12, an operator called the Turing
Jjump and, by applying it, to construct a hierarchy of infinitely many Turing degrees.
Thus, a surprising fact is discovered that for every unsolvable problem there is a
more difficult unsolvable problem; there is no most difficult unsolvable problem.
Chapter 13 expands on this intriguing fact. It first introduces a view of the class of
all Turing degrees as a mathematical structure. This eases expression of relations
between the degrees. Then several properties of this class are proved, revealing the
highly complex structure of the class. Chapter 14 introduces computably enumer-
able (c.e.) Turing degrees. It then presents Post’s Problem, posing whether there
exist c.e. degrees other than 0 below the degree 0. Then the priority method, dis-
covered and used by Friedberg and Muchnik to solve Post’s Problem, is described.
Chapter 15 introduces the arithmetical hierarchy, which gives another, arithmetical
view of the degrees of unsolvability. Finally, Chapter 16 lists some suggestions for
further reading.

. Preface

Approach

The main lines of the approach are:

e Presentation levels. 1 use two levels of presentation, the fast track and detours.
The fast track is a fil rouge through the book and gives a bird’s-eye view of Com-
putability Theory. It can be read independently of the detours. These contain
detailed proofs, more demanding themes, additional historical facts, and further
details, all of which can safely be skipped while reading on the fast track. The
two levels differ visually: detours are written in small font and are put into Boxes
(between gray bars, with broken lower bar), so they can easily be skipped or
skimmed on first reading. Proofs are given on both levels whenever they are dif-
ficult or long.

e Clarity. Whenever possible I give the motivation and an explanation of the cir-
cumstances that led to new goals, concepts, methods, or theorems. For example, |
explicitly point out with NB (nota bene) marks those situations and achievements
that had important impact on further development in the field. Sometimes NB
marks introduce conventions that are used in the rest of the book. New notions
are introduced when they are naturally needed. Although I rigorously deduce the-
orems, I try to make proofs as intelligible as possible; this I do by commenting
on tricky inferences and avoiding excessive formalism. I give intuitive, informal
explanations of the concepts, methods, and theorems. Figures are given when-
ever this can add to the clarity of the text.

o Contemporary terminology. 1 use the recently suggested terminology and de-
scribe the reasons for it in the Bibliographic Notes; thus, I use partial computable
(p.c.) functions (instead of partial recursive (p.r.) functions); computable func-
tions (instead of recursive functions); computably enumerable (c.e.) sets (instead
of recursively enumerable (r.e.) sets); and computable sets (instead of recursive
sets).

e Historical account. 1 give an extended historical account of the mathematical
and logical roots of Computability Theory.

e Turing machine. After describing different competing models of computation, 1
adopt the Turing machine as the model of computation and build on it. I neither
formally prove the equivalence of these models, nor do I teach how to program
Turing machines; I believe that all of this would take excessive space and add
little to the understanding of Computability Theory. 1 do, however, rigorously
prove the equivalence of the Turing machine and the RAM model, as the latter
so closely abstracts real-life, general-purpose computers.

e Unrestricted computing resources. 1 decouple Automata Theory and Formal-
Language Theory from Computability Theory. This enables me to consider gen-

Preface Xi

eral models of computation (i.e., models with unlimited resources) and hence
focus freely on the question “What can be computed?” In this way, I believe,
Computability Theory can be seen more clearly and it can serve as a natural basis
for the development of Computational Complexity Theory in its study of “What
can be computed efficiently?” Although I don’t delve into Computational Com-
plexity Theory, I do indicate the points where Computational Complexity Theory
would take over.

e Shortcuts to relative computability. 1 introduce oracles in the usual way, after
explaining classical computability. Readers eager to enter relative computability
might want to start with Part II and continue on the fast track.

o Practical consequences and applications. 1 describe the applications of concepts
and theorems, whenever I am aware of them.

Finally, in describing Computability Theory 1 do not try to be comprehensive.
Rather, I view the book as a first step towards more advanced texts on Computability
Theory, or as an introductory text to Computational Complexity Theory.

Audience

This book is written at a level appropriate for undergraduate or beginning graduate
students in computer science or mathematics. It can also be used by anyone pursuing
research at the intersection of theoretical computer science on the one hand and
physics, biology, linguistics, or analytic philosophy on the other.

The only necessary prerequisite is some exposure to elementary logic. However,
it would be helpful if the reader has had undergraduate-level courses in set theory
and introductory modern algebra. All that is needed for the book is presented in
Appendix A, which the reader can use to fill in the gaps in his or her knowledge.

Teaching

There are several courses one can teach from this book. A course offering the
minimum of Computability Theory might cover (omitting boxes) Chaps. 5, 6, 7;
Sects. 8.1, 8.2, 8.4; and Chap. 9. Such a course might be continued with a course on
Complexity Theory. An introductory course on Computability Theory might cover
Parts I and II (omitting most boxes of Part I). A beginning graduate-level course on
Computability Theory might cover all three parts (with all the details in boxes). A
course offering a shortcut (some 60 pages) to Relative Computability (Chaps. 10
to 15) might cover Sect. 5.3; Sects. 6.1.1, 6.2.1, 6.2.2; Sects. 6.3, 7.1, 7.2, 7.3;
Sects. 7.4.1,7.4.2,7.4.3; Sects. 8.1, 8.2, 9.1, 9.2; and then Chaps. 10 through 15.

xii Preface

PowerPoint slides covering all three parts of the text are maintained and available at:

http://lalg.fri.uni-1j.si/fct

Origin

This book grew out of two activities: (1) the courses in Computability and Compu-
tational Complexity Theory that I have been teaching at the University of Ljubljana,
and (2) my intention to write a textbook for a course on algorithms that I also teach.

When I started working on (2) I wanted to explain the O-notation in a satisfactory
way, so I planned an introductory chapter that would cover the basics of Computa-
tional Complexity Theory. But to explain the latter in a satisfactory way, the basics
of Computability Theory had to be given first. So, I started writing on computability.
But the story repeated once again and I found myself describing the Mathematical
Logic of the twentieth century. This regression was due to (i) my awareness that,
in the development of mathematical sciences, there was always some reason for in-
troducing a new notion, concept, method, or goal, and (ii) my belief that the text
should describe such reasons in order to present the subject as clearly as possible.
Of course, many historical events and logical facts were important in this respect,
so the chapter on Computability Theory continued to grow.

At the same time, [was aware that students of Computability and Computational
Complexity Theory often have difficulty in grasping the meaning and importance of
certain themes, as well as in linking up the concepts and theorems as a whole. It
was obvious that before a new concept, method, or goal was introduced, the student
should be given a historical or purely logical motivation for such a step. In addition,
giving a bird’s-eye view of the theory developed up to the last milestone also proved
to be extremely advantageous.

These observations coincided with my wishes about the chapter on Computabil-
ity Theory. So the project continued in this direction until the “chapter” grew into a
text on The Foundations of Computability Theory, which is in front of you.

Acknowledgments

I would like to express my sincere thanks to all the people who read all or parts
of the manuscript and suggested improvements, or helped me in any other way. I
benefited from the comments of my colleagues Uro§ Cibej and Jurij Miheli¢. In
particular, Marko Petkovsek (University of Ljubljana, Faculty of Mathematics and
Physics, Department of Mathematics), and Danilo Suster (University of Maribor,
Faculty of Arts, Department of Philosophy) meticulously read the manuscript and
suggested many improvements. The text has benefited enormously from their assis-
tance. Although errors may remain, these are entirely my responsibility.

http://lalg.fri.uni-lj.si/fct

Preface xiii

Many thanks go to my colleague Bostjan Slivnik, who skilfully helped me on
several occasions to deal with TgX and its fonts. I have used drafts of this text in
courses on Computability and Computational Complexity Theory that are given to
students of computer science by our faculty, and to students of computer science and
mathematics in courses organized in collaboration with the Faculty of Mathematics
and Physics, University of Ljubljana. For their comments I particularly thank the
students Ziga Emersic, Ursa Krevs, Danijel Misanovi¢, Rok Resnik, Blaz Sovdat,
Tadej Vodopivec, and Marko Zivec. For helpful linguistic suggestions, discussions
on the pitfalls of English, and careful proofreading I thank Paul McGuiness.

I have made every reasonable effort to get permissions for inclusion of photos of
the scientists whose contributions to the development of Computability Theory are
described in the book. It turned out that most of the photos are already in the public
domain. Here, Wikimedia makes praiseworthy efforts in collecting them; so does the
online MacTutor History of Mathematics Archive at the University of St Andrews,
Scotland. They were both very helpful and I am thankful to them. For the other pho-
tos I owe substantial thanks to the Archives of the Mathematisches Forschungsin-
stitut Oberwolfach, Germany, King’s College Library, Cambridge, UK, and the Los
Alamos National Laboratory Archives, USA. I have no doubt that photos make this
serious text more pleasant. The following figures are courtesy of Wikimedia: Figs.
1.3,14,15,1.7,2.5,2.6,2.7,2.9,3.1,3.6,3.9, 5.4, and 5.11. The following figures
are courtesy of the MacTutor History of Mathematics archive: Figs. 1.6, 2.4, 2.8,
4.8, 5.5, and 5.8. The following figures are courtesy of the King’s College Library,
Cambridge: Figs. 5.6 (AMT/K/7/9), 6.1 (AMT/K/7/14). The following figures are
courtesy of the Archives of the Mathematisches Forschungsinstitut Oberwolfach:
Figs. 2.2,2.10, 3.5, 3.8, 4.5, 5.2, and 5.3. Figure 3.7 is courtesy of Los Alamos Na-
tional Laboratory Archives, USA. (Unless otherwise indicated, this information has
been authored by an employee or employees of the Los Alamos National Security,
LLC (LANS), operator of the Los Alamos National Laboratory under Contract No.
DE-AC52-06NA25396 with the U.S. Department of Energy. The U.S. Government
has rights to use, reproduce, and distribute this information. The public may copy
and use this information without charge, provided that this Notice and any state-
ment of authorship are reproduced on all copies. Neither the Government nor LANS
makes any warranty, express or implied, or assumes any liability or responsibility
for the use of this information.)

I also thank the staff at Springer for all their help with the preparation of this
book. In particular, I thank Ronan Nugent, my editor at Springer in Heidelberg, for
his advice and kind support over the past few years. Finally, I thank the anonymous
reviewers for their many valuable suggestions.

Ljubljana, January 2015 Borut Robi¢

Xiv Preface

Preface to the Second Edition

This is a completely revised edition, with about ninety pages of new material.
In particular:

1. To improve the clarity of exposition, some terminological inconsistencies and
notational redundancies have been removed. Thus all partial computable func-
tions are now uniformly denoted by (possibly indexed) ¢, instead of using y for
the functions induced by particular Turing machines.

2. Various kinds of typos, minor errors, and aesthetic as well as grammatical flows
have been corrected.

3. An entirely new Section 3.1.2 on The Notion of Truth has been added in
Chapter 3. The section describes Alfred Tarski’s definition of the notion of truth
in formal languages and his attempts to formulate a similar definition for natural
languages. Since the new section represents a natural bridge between the notion
of the formal axiomatic system and the notion of its model, it has been inserted
between the old sections on formal axiomatic systems and their interpretations.

4. Another major change is in Chapter 5, in Section 5.2.3 on models of computation,
where the discussion of the Post Machine has been completely rewritten.

5. To comply with the up-to-date terminology, the recursive functions (as defined
by Godel and Kleene) have been renamed to pi-recursive functions. In this way,
general recursive functions (as defined by Gédel and Herbrand) can simply be
called recursive functions.

6. An entirely new Chapter 16 Computability (Church-Turing) Thesis Revisited
has been added. The chapter is a systematic and detailed account of the origins,
evolution, and meaning of this thesis.

7. Accordingly, some sections with Bibliographic Notes have been augmented.

8. Some sections containing Problems have been extended with new problems.
Where required, definitions introducing the key notions and comments on these
notions have been added.

9. A Glossary relating to computability theory has been added to help the reader.
10. Finally, References have been expanded by ninety new bibliographic entries.

Acknowledgments for the Second Edition

I am grateful to Benjamin Wells (University of San Francisco), who meticulously
read the first edition of the book and suggested so many improvements. The text has
greatly benefited from his comments.

I am grateful to Ronan Nugent, Senior Editor at Springer, for his advice and kind
support during the preparation of this edition. I thank the anonymous copyeditor for
many valuable comments and the staff at Springer for their help with the preparation
of this edition.

Ljubljana, May 2020 Borut Robi¢

Contents

Part I THE ROOTS OF COMPUTABILITY THEORY

1

Introduction 3
1.1 Algorithms and Computation.ccouinneeeennn... 3
1.1.1 The Intuitive Concept of the Algorithm and Computation... 3
1.1.2 Algorithms and Computations Before the Twentieth Century 6

1.2 Chapter SUMMArYouuiinn ettt 7
The Foundational Crisis of Mathematics.......................... 9
2.1 CrisisinSetTheoryo 9
2.1.1 Axiomatic SyStems.couuiiiiiiiii 9
2.1.2 Cantor’s Naive Set Theory 13
2.1.3 Logical Paradoxesccooiiiiiiiiiin. 17
2.2 Schoolsof Recoveryo 19
2.2.1 Slowdown and Revision 20
222 INtUitioniSMottt e 20
223 Logicism . ..ot 23
224 FormaliSmooouuiiii i 26
2.3 Chapter SUMMArYottt 29
Formalism 31
3.1 Formal Axiomatic Systems and Theories 31
3.1.1 What Is a Formal Axiomatic System? 31
3.1.2 TheNotionof Trutho .. 35
3.1.3 Interpretations and Models 40
3.2 Formalization of Logic, Arithmetic, and Set Theory.............. 44
3.3 Chapter SUMMATYottt 53
Hilbert’s Attempt at Recovery 55
4.1 Hilbert’s Program i 55

4.1.1 Fundamental Problems of the Foundations of Mathematics . 55

XV

Xvi Contents

4.1.2 Hilbert’s Program oo, 59

4.2 The Fate of Hilbert’s Program 60

4.2.1 Formalization of Mathematics: Formal Axiomatic System M 60

4.2.2 Decidability of M: Entscheidungsproblem 61

4.2.3 Completeness of M: Godel’s First Incompleteness Theorem 63

4.2.4 Consequences of the First Incompleteness Theorem 64

4.2.5 Consistency of M: Godel’s Second Incompleteness Theorem 66

4.2.6 Consequences of the Second Incompleteness Theorem 67

4.3 Legacy of Hilbert’s Program ooi... 69

4.4 Chapter SUMMATYttt 70

Problems 71

Bibliographic NOtesttt i 72
Part I CLASSICAL COMPUTABILITY THEORY

5 The Quest for a Formalization 77

5.1 WhatIs an Algorithm and What Do We Mean by Computation? ... 77

5.1.1 Intuition and Dilemmas 78

5.1.2 The Need for Formalization 79

5.2 Models of Computationuuiiiunineenennnnnann. 80

5.2.1 Modeling After Functions 80

5.2.2 Modeling After Humansccoiviun... 88

5.2.3 Modeling After Languagesccoiviininn... 90

5.2.4 Reasonable Models of Computation. 95

5.3 Computability (Church-Turing) Thesis......................... 96

5.3.1 History of the Thesis, 96

532 TheThesiS.uuuuuuuuiiiiiiiiiiiieeieeena 97

5.3.3 Difficulties with Total Functions. 99

5.3.4 Generalization to Partial Functions 102

5.3.5 Applications of the Thesis 106

5.4 Chapter SUMMArYttt 106

Problems 107

Bibliographic NOtesttt 109

6 The TuringMachine.......... i 111

6.1 TuringMachine 111

6.1.1 BasicModel 112

6.1.2 Generalized Models i 117

6.1.3 Equivalence of Generalized and Basic Models 119

6.14 ReducedModel......... ... 123

6.1.5 Equivalence of Reduced and Basic Models 124

6.1.6 Use of Different Models 124

6.2 Universal Turing Machine 125

6.2.1 Coding and Enumeration of Turing Machines 125

6.2.2 The Existence of a Universal Turing Machine 127

Contents XVii

6.2.3 The Importance of the Universal Turing Machine 129

6.2.4 Practical Consequences: Data vs. Instructions 129

6.2.5 Practical Consequences: General-Purpose Computer. 129

6.2.6 Practical Consequences: Operating System. 131

6.2.7 Practical Consequences: RAM Model of Computation 132

6.3 UseofaTuring Machine iiiiiiia.. 135

6.3.1 Function Computationoveeiuunnneeean.. 135

6.3.2 SetGenerationcieiiiiiiiiiiii 137

6.3.3 SetRecognitionc.ccoiiiiiiiniiiinain. 140

6.3.4 Generation vs. Recognition............................ 143

6.3.5 The Standard Universes Z* and N 146

6.3.6 Formal Languages vs. Sets of Natural Numbers 147

6.4 Chapter SUMMArYuutittn e 148

Problemso 149

Bibliographic Notest 152

7 TheFirstBasicResults, 155

7.1 Some Basic Properties of Semi-decidable (C.E.) Sets............. 155

7.2 Padding Lemma and Index Sets................... 157

7.3 Parameter (s-m-n) Theoremcoo.... 159

7.3.1 Deduction of the Theorem............................. 160

7.4 Recursion (Fixed-Point) Theorem 161

7.4.1 Deduction of the Theorem............................. 162

7.4.2 Interpretation of the Theorem 163

7.4.3 Fixed Points of Functions 164

7.4.4 Practical Consequences: Recursive Program Definition. 165

7.4.5 Practical Consequences: Recursive Program Execution. 166
7.4.6 Practical Consequences: Procedure Calls in General-

Purpose Computersooiiiiiniiinenna... 169

7.5 Chapter Summaryoiiuuiiiiiii i 171

Problems 171

Bibliographic NOtesuuuiiiii i 173

8 Incomputable Problems. 175

8.1 Problem Solving 175

8.1.1 Decision Problems and Other Kinds of Problems.......... 176

8.1.2 Language of a Decision Problem 177

8.1.3 Subproblems of a Decision Problem 179

8.2 There Is an Incomputable Problem — Halting Problem 180

8.2.1 Consequences: The Basic Kinds of Decision Problems 183

8.2.2 Consequences: Complementary Sets and Decision Problems 185

8.2.3 Consequences: There Is an Incomputable Function 186

8.3 Some Other Incomputable Problems........................... 186

8.3.1 Problems About Turing Machines 187

8.3.2 Post’s Correspondence Problem 189

Xviii Contents

8.3.3 Problems About Algorithms and Computer Programs 189

8.3.4 Problems About Programming Languages and Grammars .. 191

8.3.5 Problems About Computable Functions 193

8.3.6 Problems from Number Theory 194

8.3.7 Problems from Algebra 194

8.3.8 Problems from Analysisccoiiiiiiiii.. 196

8.3.9 Problems from Topologycoiiiiiio... 197

8.3.10 Problems from Mathematical Logic..................... 198

8.3.11 Problems About Gamescoeiiuineeian.. 199

8.4 Can We Outwit Incomputable Problems? 201

8.5 Chapter SUMMArYoounii i 203

Problems 203

Bibliographic NOtesttt i 204

9 Methods of Proving Incomputability 205

9.1 Proving by Diagonalization oot 205

9.1.1 Direct Diagonalization........................coo.... 205

9.1.2 Indirect Diagonalization 208

9.2 Provingby Reduction i 210

9.2.1 ReductionsinGeneral 210

9.22 Them-Reduction oo, 211

9.2.3 Undecidability and m-Reduction 213

9.24 Thel-Reduction............ccooiiiiiiiinneiinnnn.. 215

9.3 Proving by the Recursion Theorem 218

9.4 ProvingbyRice’sTheorem 219

9.4.1 Rice’s Theorem for P.C.Functions 219

9.4.2 Rice’s Theorem for Index Sets 220

9.4.3 Rice’s Theoremfor CE.Sets 222

9.4.4 Consequences: Behavior of Abstract Computing Machines . 223

9.5 Incomputability of Other Kinds of Problems 224

9.6 Chapter SUMMAryoouittitiietememeeneneneenennnn 227

Problems 228

Bibliographic NOtest et 230
Part II RELATIVE COMPUTABILITY

10 Computation with ExternalHelp 233

10.1 Turing Machines withOracles 233

10.1.1 Turing’s Ideaof OracularHelp 234

10.1.2 The Oracle Turing Machine (0-TM)..................... 237

10.1.3 Some Basic Properties of o-TMs 239

10.1.4 Coding and Enumeration of 0-TMs 240

10.2 Computation with Oracles, 242

10.2.1 Generalization of Classical Definitions 242

10.2.2 Convention: The Universe N and Single-Argument Functions245

Contents Xix

11

12

13

14

10.3 Other Ways to Make External Help Available 245
10.4 Relative Computability Thesis............... oo, 246
10.5 Practical Consequences: o-TM with a Database or Network 246
10.6 Practical Consequences: Online and Offline Computation 247
10.7 Chapter SUMMAryuuiiiiiiiit i, 248
Bibliographic Notest 249
Degrees of Unsolvability 251
11.1 Turing Reduction. i ... 251

11.1.1 Turing Reduction of a Computational Problem............ 252

11.1.2 Some Basic Properties of the Turing Reduction 253
11.2 Turing Degreesttt 256
11.3 Chapter SUMMArYoouniiii ettt 259
Problems e 260
Bibliographic NOtest 261
The Turing Hierarchy of Unsolvability 263
12.1 The Perplexities of Unsolvability 263
122 The Turing Jump oo e 264

12.2.1 Properties of the Turing JumpofaSet................... 265
12.3 Hierarchies of T-Degreesovvine it 267

12.3.1 The Jump Hierarchy............ 268
12.4 Chapter SUMMArYttt i, 270
Problems 270
Bibliographic NOtesttt 271
The Class D of Degrees of Unsolvability 273
13.1 The Structure (D, <, /) ot 273
13.2 Some Basic Properties of (D, <,”) ... 275

13.2.1 Cardinality of Degrees and of the Class D 275

13.2.2 The Class D as a Mathematical Structure 276

13.2.3 Intermediate 7-Degreesc.cooiiiieiennn... 281

1324 CONES . .o ve ettt e e 282

13.2.5 Minimal T-Degreesc.coouiiiiiiiinnenennnn.. 284
13.3 Chapter SUMMATYcootnntet i 285
Problems 285
Bibliographic Notes it 286
C.E. Degrees and the Priority Method 287
14.1 CE. Turing Degreesuuinneiiineineiineanennnn 287
14.2 Post’s Problem 288

14.2.1 Post’s Attempt at a Solution to Post’s Problem 289
14.3 The Priority Method and Priority Arguments.................... 292

14.3.1 The Priority Method in General 292

14.3.2 The Friedberg-Muchnik Solution to Post’s Problem 296

14.3.3 Priority Arguments.ouviiiiniineeiennnn.. 297

XX

15

Contents

14.4 Some Properties of C.E. Degrees................coooiiii.. 297
14.5 Chapter SUMMATYcoouunit i 298
Problems 298
Bibliographic NoOtest i 299
The Arithmetical Hierarchy 301
15.1 Decidability of Relations 301
15.2 The Arithmetical Hierarchy 302
15.3 The Link with the Jump Hierarchy 306
15.4 Practical Consequences: Proving Incomputability 308
15.5 Chapter SUMMArYoouunitit i 310
Problems 310
Bibliographic NOtesttt 311

Part IV BACK TO THE ROOTS

16

17

Computability (Church-Turing) Thesis Revisited 315
16.1 Introductiont 315
16.2 The Intuitive Understanding of the Notion of a “Procedure” 316
16.3 Towardthe Thesiso i 317
163.1 GOdel 317
16.3.2 Church 319
1633 Kleenettt 323
16.3.4 ROSSEI ..ottt 323
16.3.5 POSt ..o 324
16.3.6 TUIING ..ottt e e 326
16.4 Church-Turing Thesiscco ... 337
16.4.1 Differences Between Church’s and Turing’s Theses 337
16.4.2 The Church-Turing Thesis................... 338
16.4.3 Justifications of the Church-Turing Thesis 339
16.4.4 Provability of the Church-Turing Thesis 343
16.5 Résumé and Warningsc.oiuuiiinneiineennnennn.. 345
16.6 New Questions About the Church-Turing Thesis 347
16.6.1 Original CTT e 347
16.6.2 Algorithmic Versions of CTT 347
16.6.3 Complexity-Theoretic Versions of CTT.................. 348
16.6.4 Physical Versionsof CTT, 349
16.6.5 Hypercomputing?cc.oiiiiiiiiinieiennnn.. 353
Bibliographic NOtesttt 357
Further Reading 359
Mathematical Background, 363
Notation Index 371

Contents XXi
GlosSary 377

References 397

	Preface
	Context
	Aims
	Contents
	Approach
	Audience
	Teaching
	Origin
	Acknowledgments
	Preface to the Second Edition
	Acknowledgments for the Second Edition

	Contents

