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Abstract We have established a metric for measuring human performance while
operating a sidestick-controlled car and have used it in conjunction with a known
environment type to identify unusual steering trends. We focused on the analysis
of the vehicle’s offset from the lane center in the time domain and identified a
set of this signal’s features shared by all test drivers. The distribution of these
features identifies a specific driving environment type and represents the essence
of the proposed metric. We assumed that the driver performance, while operating
a sidestick-controlled car, is determined by the environment type on one side and
the driver’s own mental state on the other. The goal is to detect the mismatch of
the assumed driving environment, gained from the introduced metric, and a ground
truth about the actual environmental type, which can be obtained through map and
GPS data, in order to identify unusual steering trend possibly caused by a change in
driver fitness.

1 Introduction

The most recent basic guidelines for the considerations on the driving context data
were provided by the European AIDA project. The main identified context features
were:

• Goal of the current voyage as provided by the navigational component
• Basic traffic information extended with car to infrastructure and car-to-car
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• Assessment of driver’s current state, both mental and physical
• Assessment of vehicle’s current state

This work represents the effort to indirectly assess the driver’s current mental
state, by measuring his driving performance when operating a sidestick-controlled
vehicle. The optimal input device for the primary driving task in road vehicles is a
very debatable subject. In the scope of the project Diesel Reloaded, sidestick has
been proposed as the future input modality in the automotive domain (Mercep et al.
2013). As compared to a central stick, where the input device is located between
the driver’s or pilot’s legs, a sidestick is located to the left or to the right (or both)
of the driver. One advantage is the integration of longitudinal and lateral vehicle
dynamics’ control in one single physical device, saving space and reducing the
amount of physical force necessary to operate the vehicle. Another advantage is
accessibility, since the device can be operated by people with a wide range of
physical impediments. However, one of the key assumptions for the acceptance
of sidestick-controlled vehicles is a reliable and affordable drive-by-wire system
(Spiegelberg 2005). Therefore, the acceptance of the new input device might not
be a question of ergonomics, but rather of engineering and regulatory changes
taking place in other vehicle subsystems. Vehicle information and communication
architecture is one of the key enabling technologies for innovation in the area of
human–machine interaction and driver assistance (Buckl et al. 2012).

In this work, we propose analyzing the lane keeping task as the primary factor
describing the successful performance of the driving task. A blind analysis of the
vehicle’s offset from the lane center over the course of time is performed. The goal
is to find a lane offset-based metric which describes the driver’s performance in a
specific environment. The focus is on the definition and the validation of the metric
through experimental data. Once the driver performance in a specific environment
is sufficiently described by the metric, we assume that any sudden change in
this description directly relates to a new and unusual steering trend in a specific
environment. The fact that the driver suddenly altered his driving performance is
therefore directly attributed to the change in its mental state. This result can be used
as an input for other driver assistance systems. It should be noted that this work
remains plagued by the absence of any related research, since the lane following
task has mostly been analyzed from the driver intention, collision avoidance, or
autonomous driving point of view. The assessment of the driver performance for
sidestick-controlled vehicles seems to be a novel domain, what is not surprising
considering the non-existing market share of such vehicles. Nevertheless, the more
general task of target following with a sidestick represents a very interesting field of
research for different vehicle types and different lower-level applications.

This work is organized as follows. In Sect. 2 we describe the proposed method for
obtaining the necessary metric. The experiment design is described in Sect. 3. Pre-
processing methods used on the data gathered during the experiment are described
in Sect. 4. Results are presented in Sect. 5. Finally, we conclude and elaborate on
future work in Sect. 6.
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2 Method

In this section, we describe the method used to obtain the metric for the driver’s
performance. Based on the previous work in the area of driver steering prediction,
we opted for an approach which reduces the driving task to a lane following task, in
which the driver uses his previous knowledge, current state and future predictions
to keep the vehicle from leaving the road margins (MacAdam and Charles 1981).
We assume that a perfect lane detection exists and that it provides the lateral vehicle
offset from the middle of the lane. The lateral offset was taken as the sole input
of the method. The driver’s sidestick input directly changes the lane offset, but
the key difference between analyzing the sidestick input and the lane offset is the
suppression of the influence of the road profile. A driver following a very dynamic
road at high speeds produces a relatively large amount of lateral sidestick activity,
but if he still manages to follow the road profile, the activity of the lane offset will
be reduced to under- and over-steering. Driver’s input for the longitudinal vehicle
control, i.e. throttle and brake, is only used as an additional parameter in the further
analysis.

Let offset(n) represent the time series containing the lateral vehicle offset from
the middle of the lane. Let ı.n/ be the first differential of the function offset(n). The
set �0 can be defined as:

�0 WD fıx 2 � j jıxj < �0g: (1)

meaning that �0 contains the segments of ı.n/ where the lane offset signal
underwent a trend change with a magnitude described by �0. �0 is a set of
subsegments of ı.n/ of various lengths, in which the differential fell beneath the
�0. Let us now define a so-called trigger set T as a set containing the first and last
element of every subsegment in �0 . In a case of a subsegment which is one point
wide, meaning that the first and the last element are the same, the trigger set T
includes it only once. An example of the trigger set is given in Fig. 1.

Fig. 1 Trigger set contains
points in which signal started
to rapidly change, here
denoted with vertical lines
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In the next step, we generate an alternative description of the trigger set, based
on average densities of the triggers in a fixed time window. Inside of a larger time
window, we iterate a smaller N-points time window, in which the number of triggers
is counted. The counter value is added to an appropriate bin, i.e. N-point window
containing four triggers increases the counter value of the bin number four. After the
entire larger window has been processed, it is fully described by the final value of all
the bins. Our hypothesis is that for a fixed sidestick sensitivity and a fixed sidestick
sampling rate, a fixed number of bins will take on a typical average value for a
specific driver and environment. The shapes of the bins’ values and their relation
to each other might also prove advantageous in the driver performance assessment.
We propose that each environment will impose upon (or require from) the driver a
specific behavior of the road offset signal, which we try to capture with the proposed
metric. The static values of the bins as well as the perturbations between the bins
should behave in a same manner for the same environment and for the same driver.
Such perturbations can also be imagined as spectral shifts of the road offset in the
frequency domain, even though we did not engage in spectral analysis in the scope
of this work.

2.1 Trivial Solutions

There are, of course, trivial ways of identifying the environment based on the
lateral component of the sidestick input. Long and extreme turning will signify an
urban environment. Average number of sidestick corrections can trivially differen-
tiate between inside and outside of city. The problem with these “summarizing”
approaches is that they do not provide any possibility of further analysis, since most
of the useful data is discarded in the averaging process.

3 Experiment Design

A total of 23 participants, all in possession of a valid driver license inside the
European Union, took part in the experiment (19 male and 4 female). Mean age
was 26.48, minimal 18 and maximal 36 years. A pre-experiment survey was filled
out in order to determine possible alcohol or caffeine intake. The Virtual Test Drive
(VTD) software from the company VIRES was used for the data collection. It was
integrated into an automobile mock-up, a complete chassis of a Smart automobile, as
shown in Fig. 2. A sidestick was mounted on the right of the driver, at the location
usually taken by the gear shift. The sidestick did not provide force feedback. A
simulation of the driving environment was shown on a large screen in front of
the vehicle mock-up. Simulated vehicle dynamics were those of a typical personal
automobile.
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Fig. 2 Virtual Test Drive driving simulator with a complete vehicle mock-up

The experiment started with a target following game which was played with
the sidestick inside the vehicle simulator. The goal was to learn the sensitivity and
the behavior of the sidestick prior to the driving phase. Even though the sidestick
is almost completely absent from the current road vehicles, all the participants
possessed experience of using a common joystick, which lessened the learning
curve. The participants were required to keep an object shaped as a circle in the
middle of a large moving rectangular target for as long as possible. Penalty points
were gathered when the circle failed to keep up with the rectangle. A randomly
generated target following scenario was executed in each 30-s run. The game lasted
no more than 3 min.

In the next step, the driving simulation was started. This step consisted of a new
learning phase and, finally, the real driving phase. The learning phase lasted no more
than 5 min. Participants were able to explore the simulation and further increase their
grip on the sidestick skills. In the second phase, all the participants started from the
same position inside the simulated world and the data was collected using the VTD
RDB interface shown in Fig. 3. The participants started the drive on the outskirts of
a virtual city and proceeded to drive towards and finally into the city, continuing on
the city roads. Most of the participants chose to take the same route out of the city
and back to the original starting position, but this was not strictly required in order to
complete this phase. The real driving phase and the respective data collected lasted
around 7 min.
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Fig. 3 Data flow between software and hardware components used in the experiment

4 Preprocessing Collected Data

The lane offset data collected in the experiment had to be pre-processed before being
fed to the previously described method. Additionally, the window sizes and the �0

had to be defined. All of these values are directly dependent on the sidestick device
and had to be derived from the data.

A value of 15-s has been chosen for the previously defined larger sliding window,
while the smaller sliding window was fixed to 200-points (about 3 s). This has been
chosen by a brute force analysis of the impact different window sizes have on the
observed features and remains in direct connection with the sidestick sensitivity and
sample rate. These parameters and their further refinement remain an open question
and were not covered further the scope of this work.

A value of �0 of 0.3 was chosen on the same terms.
In order to eliminate the bouncing artifacts of the collected lane offset signal,

present when the sidestick is switching from one discrete position to another we
iterate a 3-phase 15-point moving average smoothing over the signal. The artifacts
removed are rapid oscillations around a stable or steadily transient (ramp) sidestick
position. They can be removed with a low-pass frequency filter, but the result
has proven to be generally worse during the experiment: As the smoothing effect
approaches the level of a simple average smoothing, the filter progressively removes
more of the important signal features.
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5 Results

After applying the binning procedure, two bins started to contain relatively large
and stable signal features which stayed similar for all participants. These bins were
bin number 4 and bin number 5, which count the number of 200-point windows
containing, respectively, 4 and 5 triggers in larger 15-s time window. Lower bins
have not been deemed useful for classification and started to fill bottom-up only
during long steering maneuvers. The bins higher than 5 were almost always empty
and would appear only in the most erratic and non-realistic driving situations, when
the participants opted for a short chase through the streets (even though they were
advised not to beforehand). The emerging signal features in bins 4 and 5 differed in
two ways throughout a course of every experiment.

The first difference was the relative difference of the same bin value between
different environments. Driving inside the city, as well as driving outside the city as
higher speeds, trivially raised the value of bins 4 and 5 throughout all test subjects. In
addition, any sudden increase in speed was intuitively countered with over-steering
in the following curves, which would create significant spikes in the bin 5. This
type of differences was only marginally useful for classifying environments, since
the average value can drift through a large value range inside the same environment
without being classified as another environment, but still denoting a change in
driver performance. In other words, too much data about the driver performance
is discarded by only focusing on the values of bins. This is, in fact, a version of the
previously mentioned trivial solution.

The second type of differences focuses on the shapes of the bins 4 and 5 and
their mutual ratio. This has proven to be the most valuable approach and it mostly
tied to the surges in value of the bins 4 and 5. There were four identified sub-types,
presented in Figs. 4 and 5, which are further denoted as F0, F1, F2, and SW.

Fig. 4 Sub-type F0 on the left, sub-type F1 on the right
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Fig. 5 Sub-type F2 on the left, sub-type SW on the right

Fig. 6 Typical form of the bin 4 and bin 5 signals during the drive

Table 1 Occurrence of
sub-types for different
environments

Environment SW F0 F1 F2

Inside the city 3 3 67 14

Transition between environments 18 0 4 2

Outside the city 1 0 13 29

The SW sub-type represents a switch of absolute values between the bins 4 and
5 and was mostly observed on the borders of two environments and during a change
of driving style inside a certain environment. The F0 sub-type represents a surge of
bin 5 which is not followed by the bin 4. The F1 sub-type represents a surge of bin
5 which is moderately followed by the bin 4. The F2 sub-type represents a surge of
bin 5 followed by a same or similar surge by the bin 4.

Figure 6 demonstrates the appearance of the sub-types during a drive in which the
participant first drove outside the city (F2), than inside (F1) and than began leaving
the city (SW).

Table 1 demonstrates the occurrence of sub-types in different environments for
different drivers.
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The relatively large amount of collected data (160 min of driving sampled at
60 Hz) resulted in a relatively low amount of detected sub-types, due to their size
(some are formed over a period of 60 s) and due to the presence of other signal
forms, which did not take a stable form. Nevertheless, the data clearly shows a
correlation between the environment type and the signal features based on the
proposed metric.

6 Conclusion

A metric for measuring driver performance for a sidestick-operated road vehicle
was proposed. The driving task was first reduced to lane following task, taking the
lane offset as the main element of the metric. Binning of the average number of
trend changes inside the road offset signal produced several signal features which
can be used for classification of the driving environment. The assumption is that
each environment requires a specific performance of the lane keeping task. In this
sense, we have identified the signal features which correlate with the performance
and performance changes of the lane keeping task.

Future work involves classifying additional environment types and comparison
with other sidestick devices, with their own sensitivity and sampling rates. Addition-
ally, we will compare how the metric fares in more generic target following tasks,
joystick being the main input method.
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