Skip to main content

Recent Progress in Complex Network Analysis: Properties of Random Intersection Graphs

  • Conference paper

Abstract

Experimental results show that in large complex networks (such as internet, social or biological networks) there exists a tendency to connect elements which have a common neighbor. In theoretical random graph models, this tendency is described by the clustering coefficient being bounded away from zero. Complex networks also have power-law degree distributions and short average distances (small world phenomena). These are desirable features of random graphs used for modeling real life networks. We survey recent results concerning various random intersection graph models showing that they have tunable clustering coefficient, a rich class of degree distributions including power-laws, and short average distances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ball, F., Sirl, D., & Trapman, P. (2014). Epidemics on random intersection graphs. The Annals of Applied Probability, 24, 1081–1128.

    Article  MATH  MathSciNet  Google Scholar 

  • Balogh, J., Bohman, T., & Mubayi, D. (2009). Erdős–Ko–Rado in random hypergraphs. Combinatorics, Probability and Computing, 18, 629–646.

    Article  MATH  MathSciNet  Google Scholar 

  • Barbour, A. D., & Reinert, G. (2011). The shortest distance in random multi-type intersection graphs. Random Structures and Algorithms, 39, 179–209.

    Article  MATH  MathSciNet  Google Scholar 

  • Barrat, A., & Weigt, M. (2000). On the properties of small-world networks. The European Physical Journal B, 13, 547–560.

    Article  Google Scholar 

  • Behrisch, M. (2007). Component evolution in random intersection graphs. The Electronic Journal of Combinatorics, 14(1), R17

    MathSciNet  Google Scholar 

  • Behrisch, M., Taraz, A., & Ueckerdt, M. (2009). Colouring random intersection graphs and complex networks. SIAM Journal on Discrete Mathematics, 23, 288–299.

    Article  MATH  MathSciNet  Google Scholar 

  • Blackburn, S., & Gerke, S. (2009). Connectivity of the uniform random intersection graph. Discrete Mathematics, 309, 5130–5140.

    Article  MATH  MathSciNet  Google Scholar 

  • Blackburn, S., Stinson, D., & Upadhyay, J. (2012). On the complexity of the herding attack and some related attacks on hash functions. Designs, Codes and Cryptography, 64, 171–193.

    Article  MATH  MathSciNet  Google Scholar 

  • Bloznelis, M. (2008). Degree distribution of a typical vertex in a general random intersection graph. Lithuanian Mathematical Journal, 48, 38–45.

    Article  MATH  MathSciNet  Google Scholar 

  • Bloznelis, M. (2009). Loglog distances in a power law random intersection graphs. Preprint 09059, CRC701. http://www.math.uni-bielefeld.de/sfb701.

  • Bloznelis, M. (2010a). A random intersection digraph: Indegree and outdegree distributions. Discrete Mathematics, 310, 2560–2566.

    Article  MATH  MathSciNet  Google Scholar 

  • Bloznelis, M. (2010b). Component evolution in general random intersection graphs. SIAM Journal on Discrete Mathematics, 24, 639–654.

    Article  MATH  MathSciNet  Google Scholar 

  • Bloznelis, M. (2010c). The largest component in an inhomogeneous random intersection graph with clustering. The Electronic Journal of Combinatorics, 17(1), R110.

    MathSciNet  Google Scholar 

  • Bloznelis, M. (2013). Degree and clustering coefficient in sparse random intersection graphs. The Annals of Applied Probability, 23, 1254–1289.

    Article  MATH  MathSciNet  Google Scholar 

  • Bloznelis, M., & Damarackas, J. (2013). Degree distribution of an inhomogeneous random intersection graph. The Electronic Journal of Combinatorics, 20(3), R3.

    MathSciNet  Google Scholar 

  • Bloznelis, M., Godehardt, E., Jaworski, J., Kurauskas, V., & Rybarczyk, K. (2015). Recent progress in complex network analysis—Models of random intersection graphs. In B. Lausen, S. Krolak-Schwerdt, & M. Boehmer (Eds.), European Conference on Data Analysis. Berlin/Heidelberg/New York: Springer (in this volume).

    Google Scholar 

  • Bloznelis, M., Jaworski, J., & Kurauskas, V. (2013). Assortativity and clustering of sparse random intersection graphs. Electronic Journal of Probability, 18, N-38.

    Google Scholar 

  • Bloznelis, M., Jaworski, J., & Rybarczyk, K. (2009). Component evolution in a secure wireless sensor network. Networks, 53(1), 19–26.

    Article  MATH  MathSciNet  Google Scholar 

  • Bloznelis, M., & Karoński, M. (2013). Random intersection graph process. In A. Bonato, M. Mitzenmacher, & P. Pralat (Eds.), WAW 2013. Lecture notes in computer science (Vol. 8305, pp. 93–105). Switzerland: Springer International Publishing.

    Google Scholar 

  • Bloznelis, M., & Kurauskas, V. (2012). Clustering function: A measure of social influence. http://arxiv.org/abs/1207.4941.

  • Bloznelis, M., & Kurauskas, V. (2013). Large cliques in sparse random intersection graphs. arXiv:1302.4627 [math.CO].

    Google Scholar 

  • Bloznelis, M., & Łuczak, T. (2013). Perfect matchings in random intersection graphs. Acta Mathematica Hungarica, 138, 15–33.

    Article  MATH  MathSciNet  Google Scholar 

  • Bloznelis, M., & Radavičius, I. (2011). A note on Hamiltonicity of uniform random intersection graphs. Lithuanian Mathematical Journal, 51(2), 155–161.

    Article  MATH  MathSciNet  Google Scholar 

  • Bradonjic, M., Hagberg, A., Hengartner, N. W., & Percus, A. G. (2010). Component evolution in general random intersection graphs. In R. Kumar & D. Sivakumar (Eds.), WAW 2010. Lecture notes in computer science (Vol. 6516, pp. 36–49). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Britton, T., Deijfen, M., Lindholm, M., & Lagerås, N. A. (2008). Epidemics on random graphs with tunable clustering. Journal of Applied Probability, 45, 743–756.

    Article  MATH  MathSciNet  Google Scholar 

  • Deijfen, M., & Kets, W. (2009). Random intersection graphs with tunable degree distribution and clustering. Probability in the Engineering and Informational Sciences, 23, 661–674.

    Article  MATH  MathSciNet  Google Scholar 

  • Eschenauer, L., & Gligor, V. D. (2002). A key-management scheme for distributed sensor networks. In Proceedings of the 9th ACM Conference on Computer and Communications Security (pp. 41–47).

    Google Scholar 

  • Foudalis, I., Jain, K., Papadimitriou, C., & Sideri, M. (2011). Modeling social networks through user background and behavior. In A. Frieze, P. Horn, & P. Pralat (Eds.), WAW 2011. Lecture notes in computer science (Vol. 6732, pp. 85–102). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Godehardt, E., Jaworski, J., & Rybarczyk, K. (2007). Random intersection graphs and classification. In R. Decker & H.-J. Lenz (Eds.), Advances in data analysis (pp. 67–74). Berlin/Heidelberg/New York: Springer.

    Chapter  Google Scholar 

  • Godehardt, E., Jaworski, J., & Rybarczyk, K. (2012). Clustering coefficients of random intersection graphs. In W. Gaul, A. Geyer-Schulz, L. Schmidt-Thieme, & J. Kunze (Eds.), Challenges at the interface of data analysis, computer science, and optimization (pp. 243–253). Berlin/Heidelberg/New York: Springer.

    Chapter  Google Scholar 

  • Jackson, O. M., & Rogers, B. W. (2007). Meeting strangers and friends of friends: How random are social networks? American Economic Review, 97, 890–915.

    Article  Google Scholar 

  • Janson, S., Łuczak, T., & Norros, I. (2010a). Large cliques in a power-law random graph. Journal of Applied Probability, 47, 1124–1135.

    Article  MATH  MathSciNet  Google Scholar 

  • Janson, S., Łuczak, T., & Ruciński, A. (2010b). Random graphs. New York: Wiley.

    Google Scholar 

  • Jaworski, J., Karoński, M., & Stark, D. (2006). The degree of a typical vertex in generalized random intersection graph models. Discrete Mathematics, 306, 2152–2165.

    Article  MATH  MathSciNet  Google Scholar 

  • Jaworski, J., & Stark, D. (2008). The vertex degree distribution of passive random intersection graph models. Combinatorics, Probability and Computing, 17, 549–558.

    Article  MATH  MathSciNet  Google Scholar 

  • Karoński, M., Scheinerman, E. R., & Singer-Cohen, K. B. (1999). On random intersection graphs: The subgraph problem. Combinatorics, Probability and Computing, 8, 131–159.

    Article  MATH  MathSciNet  Google Scholar 

  • Kurauskas, V. (2013). On small subgraphs in a random intersection digraph. Discrete Mathematics, 313, 872–885.

    Article  MATH  MathSciNet  Google Scholar 

  • Kurauskas, V., & Rybarczyk, K. (2013). On the chromatic index of random uniform hypergraphs SIAM Journal on Discrete Mathematics. To appear.

    Google Scholar 

  • Lagerås, A. N., & Lindholm, M. (2008). A note on the component structure in random intersection graphs with tunable clustering. Electronic Journal of Combinatorics, 15(1), N10.

    Google Scholar 

  • Newman, M. E. J. (2003). Properties of highly clustered networks. Physical Review E, 68, 026121.

    Article  Google Scholar 

  • Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64, 026118.

    Article  Google Scholar 

  • Nikoletseas, S., Raptopoulos, C., & Spirakis, P. G. (2011). On the independence number and hamiltonicity of uniform random intersection graphs. Theoretical Computer Science, 412, 6750–6760.

    Article  MATH  MathSciNet  Google Scholar 

  • Nikoletseas, S., Raptopoulos, C., & Spirakis, P. (2012). Maximum cliques in graphs with small intersection number and random intersection graphs. In Mathematical foundations of computer science (pp.728–739). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Ravasz, E., & Barabási, A. L. (2003). Hierarchical organization in complex networks. Physical Review E, 67, 026112.

    Article  Google Scholar 

  • Rybarczyk, K. (2011a). Diameter, connectivity, and phase transition of the uniform random intersection graph. Discrete Mathematics, 311, 1998–2019.

    Article  MATH  MathSciNet  Google Scholar 

  • Rybarczyk, K. (2011c). Sharp threshold functions for random intersection graphs via a coupling method. The Electronic Journal of Combinatorics, 18(1), P36.

    MathSciNet  Google Scholar 

  • Rybarczyk, K. (2012). The degree distribution in random intersection graphs. In W. Gaul, A. Geyer-Schulz, L. Schmidt-Thieme, & J. Kunze (Eds.), Challenges at the interface of data analysis, computer science, and optimization (pp. 291–299). Berlin/Heidelberg/New York: Springer.

    Chapter  Google Scholar 

  • Rybarczyk, K. (2013). The coupling method for inhomogeneous random intersection graphs. arXiv:1301.0466.

    Google Scholar 

  • Rybarczyk, K. (2014). Constructions of independent sets in random intersection graphs. Theoretical Computer Science, 524, 103–125.

    Article  MATH  MathSciNet  Google Scholar 

  • Rybarczyk, K., & Stark, D. (2010). Poisson approximation of the number of cliques in random intersection graphs. Journal of Applied Probability, 47, 826–840.

    Article  MATH  MathSciNet  Google Scholar 

  • Singer, K. (1995). Random intersection graphs. Ph.D. thesis, The Johns Hopkins University.

    Google Scholar 

  • Stark, D. (2004). The vertex degree distribution of random intersection graphs. Random Structures and Algorithms, 24, 249–258.

    Article  MATH  MathSciNet  Google Scholar 

  • Strogatz, S. H., & Watts, D. J. (1998). Collective dynamics of small-world networks. Nature, 393, 440–442.

    Article  Google Scholar 

  • Yagan, O., & Makowski, A. M. (2012). Zero-one laws for connectivity in random key graphs, IEEE Transactions on Information Theory, 58, 2983–2999

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of M. Bloznelis and V. Kurauskas was supported by the Lithuanian Research Council (grant MIP-067/2013). J. Jaworski and K. Rybarczyk acknowledge the support by the National Science Centre (NCN)—DEC-2011/01/B/ST1/03943. Co-operation between E. Godehardt and J. Jaworski was also supported by Deutsche Forschungsgemeinschaft (grant no. GO 490/17-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhard Godehardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bloznelis, M., Godehardt, E., Jaworski, J., Kurauskas, V., Rybarczyk, K. (2015). Recent Progress in Complex Network Analysis: Properties of Random Intersection Graphs. In: Lausen, B., Krolak-Schwerdt, S., Böhmer, M. (eds) Data Science, Learning by Latent Structures, and Knowledge Discovery. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44983-7_7

Download citation

Publish with us

Policies and ethics