Skip to main content

Geocoder Accuracy Ranking

  • Chapter

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 500))

Abstract

Finding an address on a map is sometimes tricky: the chosen map application may be unfamiliar with the enclosed region. There are several geocoders on the market, they have different databases and algorithms to compute the query. Consequently, the geocoding results differ in their quality. Fortunately the geocoders provide a rich set of metadata. The workflow described in this paper compares this metadata with the aim to find out which geocoder is offering the best-fitting coordinate for a given address.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caruana, R., Lawrence, S., Giles, C.L.: Overfitting in neural networks: backpropagation. In: Proceedings of 13th Conference on Advances Neural Information Processing Systems, USA, pp. 402–408 (2001)

    Google Scholar 

  2. Documentation of the Yahoo PlaceFinder metadata (Online last accessed July 31, 2012) http://developer.yahoo.com/geo/placefinder/guide/responses.html#address-quality

  3. Google Maps Javascript API V3 Reference (Online; last accessed October 2, 2013)

    Google Scholar 

  4. Google Spreadsheets Autofilter (information about the Google Maps data-coverage) (Online; last accessed October 2, 2013), http://gmaps-samples.googlecode.com/svn/trunk/mapcoverage_filtered.html

  5. Location Data (documentation of the Bing Locations metadata) (Online; last accessed October 2, 2013), http://msdn.microsoft.com/en-us/library/ff701725.aspx

  6. Nominatim - OpenStreetMap Wiki (Online; last accessed October 2, 2013), http://wiki.openstreetmap.org/wiki/Nominatim

  7. Fee, J.: Google maps is more accurate because they say it is - spatially adjusted (Online; last accessed October 2, 2013), http://spatiallyadjusted.com/2012/07/20/google-maps-is-more-accurate-because-they-say-it-is/

  8. Hibbe, M.: Spotlocator – Guess Where the Photo Was Taken! In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 149–160. Springer, Heidelberg (2014)

    Google Scholar 

  9. Holler, R.: GraffDok — A graffiti documentation application. In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 239–251. Springer, Heidelberg (2014)

    Google Scholar 

  10. Kind, J.: Creation of topographic maps. In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 229–238. Springer, Heidelberg (2014)

    Google Scholar 

  11. Kuntzsch, C.: Visualization of data transfer paths. In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 140–148. Springer, Heidelberg (2014)

    Google Scholar 

  12. Lamprecht, A.-L.: User-Level Workflow Design. LNCS, vol. 8311, pp. 1–202. Springer, Heidelberg (2013)

    Google Scholar 

  13. Lamprecht, A.-L., Margaria, T.: Scientific workflows and XMDD. In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 1–13. Springer, Heidelberg (2014)

    Google Scholar 

  14. Lamprecht, A.-L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-based service composition. BMC Bioinformatics 10(Suppl.10), S8 (2009)

    Google Scholar 

  15. Lamprecht, A.-L., Naujokat, S., Margaria, T., Steffen, B.: Semantics-based composition of EMBOSS services. Journal of Biomedical Semantics 2(Suppl. 1), S5 (2011)

    Google Scholar 

  16. Lamprecht, A.-L., Wickert, A.: The course’s SIB libraries. In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 30–44. Springer, Heidelberg (2014)

    Google Scholar 

  17. Margaria, T., Steffen, B.: Agile IT: Thinking in User-Centric Models. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Margaria, T., Steffen, B.: Business Process Modelling in the jABC: The One-Thing-Approach. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on Business Process Modeling. IGI Global (2009)

    Google Scholar 

  19. Margaria, T., Steffen, B.: Continuous Model-Driven Engineering. IEEE Computer 42(10), 106–109 (2009)

    Article  Google Scholar 

  20. Margaria, T., Steffen, B.: Simplicity as a Driver for Agile Innovation. Computer 43(6), 90–92 (2010)

    Article  Google Scholar 

  21. Margaria, T., Steffen, B.: Service-Orientation: Conquering Complexity with XMDD. In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity, pp. 217–236. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Margaria, T., Steffen, B., Reitenspiess, M.: Service-oriented design: The roots. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 450–464. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Naujokat, S., Lamprecht, A.-L., Steffen, B.: Loose programming with PROPHETS. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol. 7212, pp. 94–98. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Niechoda, P.: Documentation of Pawel’s OSM Static maps API (Online; last accessed July 31, 2012), http://pafciu17.dev.openstreetmap.org/

  25. Noack, F.: CREADED: Colored-relief application for digital elevation data. In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 186–199. Springer, Heidelberg (2014)

    Google Scholar 

  26. Respondek, T.: A workflow for computing potential areas for wind turbines. In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 200–215. Springer, Heidelberg (2014)

    Google Scholar 

  27. Scheele, L.: Location analysis for placing artificial reefs. In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 216–228. Springer, Heidelberg (2014)

    Google Scholar 

  28. Sens, H.: Web-based map generalization tools put to the test: A jABC workflow. In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 175–185. Springer, Heidelberg (2014)

    Google Scholar 

  29. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-driven development with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383, pp. 92–108. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Teske, D. (2014). Geocoder Accuracy Ranking. In: Lamprecht, AL., Margaria, T. (eds) Process Design for Natural Scientists. Communications in Computer and Information Science, vol 500. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45006-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45006-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45005-5

  • Online ISBN: 978-3-662-45006-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics