Skip to main content

Implementation of an Energy Model and a Charging Infrastructure in SUMO

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8594))

Abstract

Future traffic that will be accompanied by higher alternative drive concepts will pose as a challenge when it comes to corresponding energy systems, coordination of operations, and communication interfaces, such as needed for data acquisition and billing. On one hand, the increasing attractiveness of electric vehicles will inevitably lead to the development and testing of compatible technologies; on the other, these will need to be conformed to existing systems, when integrating them into the prevailing infrastructure and traffic. Funded by the German Federal Ministry of Transport, Building and Urban Development, an inductive vehicle charging system and a compatible prototype bus fleet shall be integrated into Braunschweig’s traffic infrastructure in the scope of the project emil (Elektromobilität mittels induktiver Ladung – electric mobility via inductive charging). This paper describes the functional implementations in SUMO that are required by the methodic approach for the evaluation of novel charging infrastructures by means of traffic simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Winter, M.: Elektromobilität mit Lithium-Ionen-Technologie: Chancen, Herausforderungen, Alternativen. In: Proceedings of the HEV 2012. Hybrid and Electric Vehicles, Braunschweig (2012)

    Google Scholar 

  2. Wansart, J.: Analyse von Strategien der Automobilindustrie zur Reduktion von CO2-Flottenemissionen und zur Markteinführung alternativer Antriebe: Ein systemdynamischer Ansatz am Beispiel der kalifornischen Gesetzgebung. Dissertation, Technische Universität Braunschweig, Springer Gabler, Wiesbaden (2012)

    Google Scholar 

  3. Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: SUMO – simulation of urban mobility: an overview. In: SIMUL 2011, The Third International Conference on Advances in System Simulation, Barcelona (2011)

    Google Scholar 

  4. Detering, S.: Kalibrierung und Validierung von Verkehrssimulationsmodellen zur Untersuchung von Verkehrsassistenzsystemen. Dissertation, Technische Universität Braunschweig (2011)

    Google Scholar 

  5. Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS). Forschungsgesellschaft für Straßen- und Verkehrswesen (2001)

    Google Scholar 

  6. Keller, M., de Haan, P.: Handbuch Emissionsfaktoren des Straßenverkehrs 2.1 – Dokumentation. INFRAS, Bern/Heidelberg/Graz/Essen (2004)

    Google Scholar 

  7. Nota, R., Barelds, R, van Maercke, D.: Harmonoise WP 3 Engineering method for road traffic and railway noise after validation and fine-tuning. Technical report Deliverable 18, HARMONOISE (2005)

    Google Scholar 

  8. Maia, R., Silva, M., Araújo, R., Nunes, U.: Electric vehicle simulator for energy consumption studies in electric mobility systems. In: 2011 IEEE Forum in Integrated and Sustainable Transportation Systems, Vienna (2011)

    Google Scholar 

  9. Mitschke, M., Wallentowitz, H.: Dynamik der Kraftfahrzeuge. Springer, Berlin (2004)

    Google Scholar 

Download references

Acknowledgements

The project emil is funded by the German Federal Ministry of Transport, Building and Urban Development (Bundesministerium für Verkehr, Bau und Stadt-entwicklung – BMVBS). We hereby thank all our project partners for their continuous and kind cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Kurczveil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurczveil, T., López, P.Á., Schnieder, E. (2014). Implementation of an Energy Model and a Charging Infrastructure in SUMO. In: Behrisch, M., Krajzewicz, D., Weber, M. (eds) Simulation of Urban Mobility. SUMO 2013. Lecture Notes in Computer Science(), vol 8594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45079-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45079-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45078-9

  • Online ISBN: 978-3-662-45079-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics