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Abstract

A fault-tolerant structure for a network is required to continue functioning following the
failure of some of the network’s edges or vertices. In this paper, we address the problem of
designing a fault-tolerant additive spanner, namely, a subgraph H of the network G such that
subsequent to the failure of a single vertex, the surviving part of H still contains an additive
spanner for (the surviving part of) G, satisfying dist(s, t,H \ {v}) ≤ dist(s, t,G \ {v}) + β
for every s, t, v ∈ V . Recently, the problem of constructing fault-tolerant additive spanners
resilient to the failure of up to f edges has been considered [8]. The problem of handling
vertex failures was left open therein. In this paper we develop new techniques for constructing
additive FT-spanners overcoming the failure of a single vertex in the graph. Our first result is
an FT-spanner with additive stretch 2 and Õ(n5/3) edges. Our second result is an FT-spanner

with additive stretch 6 and Õ(n3/2) edges. The construction algorithm consists of two main
components: (a) constructing an FT-clustering graph and (b) applying a modified path-buying
procedure suitably adopted to failure prone settings. Finally, we also describe two constructions
for fault-tolerant multi-source additive spanners, aiming to guarantee a bounded additive stretch
following a vertex failure, for every pair of vertices in S×V for a given subset of sources S ⊆ V .
The additive stretch bounds of our constructions are 4 and 8 (using a different number of edges).

1 Introduction

An (α, β)-spanner H of an unweighted undirected graph G is a spanning subgraph satisfying for
every pair of vertices s, t ∈ V that dist(s, t,H) ≤ α · dist(s, t,G) + β. When β = 0, the spanner
is termed a multiplicative spanner and when α = 1 the spanner is additive. Clearly, additive
spanners provide a much stronger guarantee than multiplicative ones, especially for long distances.
Constructions of additive spanners with small number of edges are currently known for β = 2, 4, 6
with O(n3/2), Õ(n7/5) and O(n4/3) edges respectively [1, 2, 5, 11, 14, 15]. This paper considers
a network G that may suffer single vertex failure events, and looks for fault tolerant additive
spanners that maintain their additive stretch guarantee under failures. Formally, a subgraph H ⊆
G is a β-additive FT-spanner iff for every (s, t) ∈ V × V and for every failing vertex v ∈ V ,
dist(s, t,H \ {v}) ≤ dist(s, t,G \ {v}) + β. As a motivation for such structures, consider a situation
where it is required to lease a subnetwork of a given network, which will provide short routes from
every source s and every target t with additive stretch 2. In a failure-free environment one can
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simply lease a 2-additive spanner H0 of the graph with Θ(n3/2) edges. However, if one of the
vertices in the graph fails, some s − t routes in H0 \ {v} might be significantly longer than the
corresponding route in the surviving graph G \ {v}. Moreover, s and t are not even guaranteed to
be connected in H0 \ {v}. One natural approach towards preparing for such eventuality is to lease
a larger set of links, i.e., an additive FT-spanner.

The notion of fault-tolerant spanners for general graphs was initiated by Chechik at el. [10]
for the case of multiplicative stretch. Specifically, [10] presented algorithms for constructing an f -
vertex fault tolerant spanner with multiplicative stretch (2k− 1) and O(f2kf+1 ·n1+1/k log1−1/k n)
edges. Dinitz and Krauthgamer presented in [13], a randomized construction attaining an improved
tradeoff for vertex fault-tolerant spanners, namely, f -vertex fault tolerant k-spanner with Õ(f2 ·
n1+2/(k+1)) edges. Constructions of fault-tolerant spanners with additive stretch resilient to edge
failures were recently given by Braunschvig at el. [8]. They establish the following general result.
For a given n-vertex graph G, let H1 be an ordinary additive (1, β) spanner for G and H2 be a
(α, 0) fault tolerant spanner for G resilient against up to f edge faults. Then H = H1 ∪ H2 is a
(1, β(f)) additive fault tolerant spanner for G (for up to f edge faults) for β(f) = O(f(α+ β)). In
particular, fixing the number of H edges to be O(n3/2) and the number of faults to f = 1 yields
an additive stretch of 14. Hence, in particular, there is no construction for additive stretch < 14
and o(n2) edges. In addition, note that these structures are resilient only to edge failures as the
techniques of [8] cannot be utilized to protect even against a single vertex failure event. Indeed,
the problem of handling vertex failures was left open therein.

In this paper, we make a first step in this direction and provide additive FT-structures resilient
to the failure of a single vertex (and hence also edge) event. Our constructions provide additive
stretch 2 and 6 and hence provide an improved alternative also for the case of a single edge failure
event, compared to the constructions of [8].

The presented algorithms are based upon two important notions, namely, replacement paths
and the path-buying procedure, which have been studied extensively in the literature. For a source
s, a target vertex t and a failing vertex v ∈ V , a replacement path is the shortest s − t path
Ps,t,v that does not go through v. The vast literature on replacement paths (cf. [7, 16, 19, 21])
focuses on time-efficient computation of the these paths as well as their efficient maintenance in
data structures (a.k.a distance oracles).

Fault-resilient structures that preserve exact distances for a given subset of sources S ⊆ V
have been studied in [17], which defines the notion of an FT-MBFS structure H ⊆ G containing the
collection of all replacement paths Ps,t,v for every pair (s, t) ∈ S×V for a given subset of sources S
and a failing vertex v ∈ V . Hence, FT-MBFS structures preserve the exact s− t distances in G \ {v}
for every failing vertex v, for every source s ∈ S.

It is shown in [17] that for every graph G and a subset S of sources, there exists a (poly-time
constructible) 1-edge (or vertex) FT-MBFS structure H with O(

√
|S| · n3/2) edges. This result is

complemented by a matching lower bound showing that for sufficiently large n, there exist an n-
vertex graph G and a source-set S ⊆ V , for which every FT-MBFS structure is of size Ω(

√
|S| ·n3/2).

Hence exact FT-MBFS structures may be rather expensive. This last observation motivates the
approach of resorting to approximate distances, in order to allow the design of a sparse subgraph
with properties resembling those of an FT-MBFS structure.

The problem of constructing multiplicative approximation replacement paths P̃s,t,v (i.e., such

that |P̃s,t,v| ≤ α · |Ps,t,v|) has been studied in [3, 9, 6]. In particular its single source variant has
been studied in [4, 18]. In this paper, we further explore this approach. For a given subset of
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sources S, we focus on constructions of subgraphs that contain an approximate BFS structure with
additive stretch β for every source s ∈ S that are resistant to a single vertex failure.

Indeed, the construction of additive sourcewise FT-spanners provides a key building block of
additive FT-spanner constructions (in which bounded stretch is guaranteed for all pairs). We
present two constructions of sourcewise spanners with different stretch-size tradeoffs. The first
construction ensures an additive stretch 4 with Õ(max{n · |S|, (n/|S|)3}) edges and the second
construction guarantees additive stretch 8 with Õ(max{n · |S|, (n/|S|)2}). As a direct consequence
of these constructions, we get an additive FT-spanner with stretch 6 and Õ(n3/2) edges and an
additive sourcewise FT-spanner with additive stretch 8 and Õ(n4/3) for at most Õ(n1/3) sources.

Our constructions employ a modification of the path-buying strategy, which was originally de-
vised in [5] to provide 6-additive spanners with O(n4/3) edges. Recently, the path-buying strategy
was employed in the context of pairwise spanners, where the objective is to construct a subgraph
H ⊆ G that satisfies the bounded additive stretch requirement only for a subset of pairs [12]. The
high-level idea of this procedure as follows. In an initial clustering phase, a suitable clustering of
the vertices is computed, and an associated subset of edges is added to the spanner. Then comes a
path-buying phase, where they consider an appropriate sequence of paths, and decide whether or
not to add each path into the spanner. Each path P has a cost, given by the number of edges of p
not already contained in the spanner, and a value, measuring P ’s help in satisfying the considered
set of constraints on pairwise distances. The considered path P is added to the spanner iff its value
is sufficiently larger than its cost. In our adaptation to the FT-setting, an FT-clustering graph is
computed first, providing every vertex with a sufficiently high degree (termed hereafter a heavy
vertex) two clusters to which it belongs. Every cluster consists of a center vertex v connected via
a star to a subset of its heavy neighbors. In our design not all replacement paths are candidates to
be bought in the path-buying procedure. Let π(s, t) be an s − t shortest-path between a source s
and a heavy vertex t (in our constructions, all heavy vertices are clustered). We divide the failing
events on π(s, t) into two classes depending on the position of the failing vertex on π(s, t) with
respect to the least common ancestor (LCA) `(s, t) of t’s cluster members in the BFS tree rooted
at s. Specifically, a vertex fault π(s, t) that occurs on `(s, t) is handled directly by adding the
last edge of the corresponding replacement path to the spanner. Vertex failures that occur strictly
below the LCA, use the shortest-path π(s, x) between s and some member x in the cluster of t
whose failing vertex v does not appear on its π(s, x) path. The approximate replacement path will
follow π(s, x) and then use the intercluster path between x and t. The main technicality is when
concerning the complementary case when that failing events occur strictly above `(s, t). These
events are further divided into two classes depending on the structure of their replacement path.
Some of these replacement paths would again be handled directly by collecting their last edges into
the structure and only the second type paths would be candidate to be bought by the path-buying
procedure. Essentially, the structure of these paths and the cost and value functions assigned to
them would guarantee that the resulting structure is sparse, and in addition, that paths that were
not bought have an alternative safe path in the surviving part of the structure.

Contributions. This paper provides the first constructions for additive spanners resilient upon
single vertex failure. In addition, it provides the first additive FT-structures with stretch guarantee
as low as 2 or 6 and with o(n2) edges.

The main technical contribution of our algorithms is in adapting the path-buying strategy to
the vertex failure setting. Such an adaptation has been initiated in [18] for the case of a single-

3



source s and a single edge failure event. In this paper, we extend this technique in two senses:
(1) dealing with many sources and (2) dealing with vertex failures. In particular, [18] achieves a
construction of single source additive spanner with O(n4/3) edges resilient to a single edge failure.
In this paper, we extend this construction to provide a multiple source additive spanners resilient
to a single vertex failure, for O(n1/3) sources, additive stretch 8 and Õ(n4/3) edges. In summary,
we show the following.

Theorem 1.1 (2-additive FT-spanner) For every n-vertex graph G = (V,E), there exists a
(polynomially constructible) subgraph H ⊆ G of size Õ(n5/3) such that dist(s, t,H\{v}) ≤ dist(s, t,G\
{v}) + 2 for every s, t, v ∈ V .

Theorem 1.2 (6-additive FT-spanner) For every n-vertex graph G = (V,E), there exists a
(polynomially constructible) subgraph H ⊆ G of size Õ(n3/2) such that dist(s, t,H\{v}) ≤ dist(s, t,G\
{v}) + 6 for every s, t, v ∈ V .

Theorem 1.3 (8-additive sourcewise FT-spanner) For every n-vertex graph G = (V,E) and
a subset of sources S ⊂ V where |S| = Õ(n1/3), there exists a (polynomially constructible) subgraph
H ⊆ G of size Õ(n4/3) such that dist(s, t,H \ {v}) ≤ dist(s, t,G \ {v}) + 8 for every s ∈ S and
t, v ∈ V .

2 Preliminaries

Notation. Given a graph G = (V,E), a vertex pair s, t and an edge weight function W : E(G)→
R+, let SP (s, t,G,W ) be the set of s− t shortest-paths in G according to the edge weights of W .
Throughout, we make use of (an arbitrarily specified) weight assignment W that guarantees the
uniqueness of the shortest paths1. Hence, SP (s, t,G′,W ) contains a single path for every s, t ∈ V
and for every subgraph G′ ⊆ G, we override notation and let SP (s, t,G,W ) be the unique s − t
path in G according to W . When the shortest-path are computed in G, let π(s, t) = SP (s, t,G,W ).
To avoid cumbersome notation, we may omit W and simply refer to π(s, t) = SP (s, t,G,W ). For
a subgraph G′ ⊆ G, let V (G′) (resp., E(G′)) denote the vertex set (resp. edge set) in G′.

For a given source node s, let T0(s) =
⋃
t∈V π(s, t) be a shortest paths (or BFS) tree rooted at

s. For a set S ⊆ V of source nodes, let T0(S) =
⋃
s∈S T0(s) be a union of the single source BFS

trees. For a vertex t ∈ V and a subset of vertices V ′ ∈ V , let T (t, V ′) =
⋃
u∈V ′ π(u, t) be the union

of all {t} × V ′ shortest-paths (by the uniqueness of W , T (t, V ′) is a subtree of T0(t)). Let Γ(v,G)
be the set of v’s neighbors in G. Let E(v,G) = {(u, v) ∈ E(G)} be the set of edges incident to
v in the graph G and let deg(v,G) = |E(v,G)| denote the degree of node v in G. For a given
graph G = (V,E) and an integer ∆ ≤ n, a vertex v is ∆-heavy if deg(v,G) ≥ ∆, otherwise it is
∆-light. When ∆ is clear from the context, we may omit it and simply refer to v as heavy or light.
For a graph G = (V,E) and a positive integer ∆ ≤ n, let V∆ = {v | deg(v,G) ≥ ∆} be the set
of ∆-heavy vertices in G. (Throughout, we sometimes simplify notation by omitting parameters
which are clear from the context.) For a subgraph G′ = (V ′, E′) ⊆ G (where V ′ ⊆ V and E′ ⊆ E)
and a pair of vertices u, v ∈ V , let dist(u, v,G′) denote the shortest-path distance in edges between
u and v in G′. For a path P = [v1, . . . , vk], let LastE(P ) be the last edge of P , let |P | denote its
length and let P [vi, vj ] be the subpath of P from vi to vj . For paths P1 and P2, denote by P1 ◦ P2

1The role of the weights W is to perturb the edge weights by letting W (e) = 1+ε for a random infinitesimal ε > 0.
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the path obtained by concatenating P2 to P1. For “visual” clarity, the edges of these paths are
considered throughout, to be directed away from the source node s. Given an s− t path P and an
edge e = (x, y) ∈ P , let dist(s, e, P ) be the distance (in edges) between s and y on P . In addition,
for an edge e = (x, y) ∈ T0(s), define dist(s, e) = i if dist(s, x,G) = i − 1 and dist(s, y,G) = i. A
vertex w is a divergence point of the s − v paths P1 and P2 if w ∈ P1 ∩ P2 but the next vertex u
after w (i.e., such that u is closer to v) in the path P1 is not in P2.

Basic Tools. We consider the following graph structures.

Definition 2.1 ((α, β, S)-AMBFS FT-spanners) A subgraph H ⊆ G is an (α, β, S)-FT-AMBFS
(approximate multi-BFS) structure with respect to S if for every (s, t) ∈ S × V and every v ∈ V ,
dist(s, t,H \ {v}) ≤ α · dist(s, t,G \ {v}) + β .

Definition 2.2 ((α, β) FT-spanners) A subgraph H ⊆ G is an (α, β) FT-spanner if it is an
(α, β, V )-FT-AMBFS structure for G with respect to V .

Throughout, we restrict attention to the case of a single vertex fault. When α = 1, H is termed
(β, S)− additive FT-spanner. In addition, in case where S = V , H is an β-additive FT-spanner.

FT-Clustering Graph. A subset Z ⊆ V is an FT-center set for V if every ∆-heavy vertex
v has at least two neighbors in Z, i.e., |Γ(v,G) ∩ Z| ≥ 2. For every heavy vertex v ∈ V∆, let
Z(v) = {z1(v), z2(v)} be two arbitrary neighbors of v in Z. The clustering graph G∆ ⊆ G consists
of the edges connecting the ∆-heavy vertices v to their two representatives in Z as well as all edges
incident to the ∆-light vertices. Formally,

G∆ =
⋃
v∈V∆

{(v, z1(v)), (v, z2(v))} ∪
⋃
v/∈V∆

E(v,G).

The ∆-heavy vertices are referred hereafter as clustered, hence every missing edge in G \G∆ is
incident to a clustered vertex.

For every center vertex z ∈ Z, let Cz be the cluster consisting of z and all the ∆-heavy vertices
it represents, i.e., Cz = {z} ∪ {v ∈ V∆ | z ∈ Z(v)}. Note that every center z is connected via a
star to each of the vertices in its cluster Cz, hence the diameter of each cluster Cz in G∆ is 2.

For a failing vertex v and a heavy vertex t, let zv(t) ∈ Z(t)\{v} be a cluster center of t in G\{v}.
In particular, if z1(t) 6= v, then zv(t) = z1(t), else zv(t) = z2(t). Let Cv(t) be the cluster centered
at zv(t). Note that since every heavy vertex has two cluster centers z1(t) and z2(t), we have the
guarantee that at least one of them survives the single vertex fault event. The next observation
summarizes some important properties of the clustering graph.

Observation 2.3 (1) |E(G∆)| = O(∆ · n).
(2) Every missing edge is incident to a clustered vertex in V∆.
(3) The diameter of every cluster Cz is 2.
(4) There exists an FT-center set Z ⊆ V of size |Z| = Õ(n/∆).

Obs. 2.3(4) follows by a standard hitting set argument.
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Replacement Paths. For a source s, a target vertex t and a vertex v ∈ G, a replacement path
is the shortest s− t path Ps,t,v ∈ SP (s, t,G \ {v}) that does not go through v.

Observation 2.4 Every path Ps,t,v contains at most 3n/∆ ∆-heavy vertices.

Proof: Note that

3n ≥ 3 ·

∣∣∣∣∣∣
⋃

x∈Ps,t,v∩V∆

Γ(x,G \ {v})

∣∣∣∣∣∣ ≥
∑

x∈Ps,t,v∩V∆

deg(x,G \ {v}) ≥ |Ps,t,v ∩ V∆| ·∆ ,

where the second inequality follows by the fact the every vertex u ∈ V \{v} has at most 3 neighbors
on Ps,t,v. The observation follows.

New-ending replacement paths. A replacement path Ps,t,v is called new-ending if its last edge is
different from the last edge of the shortest path π(s, t). Put another way, a new-ending replacement
path Ps,t,v has the property that once it diverges from the shortest-path π(s, t) at the vertex b, it
joins π(s, t) again only at the final vertex t. It is shown in [17] that for a given graph G and a set S
of source vertices, a structure H ⊆ G containing a BFS tree rooted at each s ∈ S plus the last edge
of each new-ending replacement path Ps,t,v for every (s, t) ∈ S×V and every v ∈ V , is an FT-MBFS

structure with respect to S. Our algorithms exploit the structure of new-ending replacement paths
to construct (β, S)-additive FT-spanners. Essentially, a key section in our analysis concerns with
collecting the last edges from a subset of new-ending replacement paths as well as bounding the
number of new-ending paths Ps,t,v whose detour segments intersect with π(s′, t)\{t} for some other
source s′ ∈ S.

The basic building block. Our constructions of β-additive FT-spanners, for β ≥ 2, consist of
the following two building blocks: (1) an FT-clustering graph G∆ for some parameter ∆, and (2)
an (β−2, Z)-additive FT-spanner where Z is an FT-center set (i.e., cluster centers) for the vertices.

Lemma 2.5 Let β ≥ 2 and H = G∆ ∪Hβ−2(Z) where Z is an FT-center set for V∆. Then H is
an β additive FT-spanner.

Proof: Consider vertices u1, u2, u3 ∈ V . Let P ∈ SP (u1, u2, G \ {u3}) be the u1 − u2 replacement
path in G \ {u3} and let (x, y) be the last missing edge on P \ H (i.e., closest to u2). Since
G∆ ⊆ H, by Obs. 2.3(2), y is a clustered vertex. Let z = zu3(y) be the cluster center of y in
G \ {u3}, and consider the following u1− u2 path P3 = P1 ◦P2 where P1 ∈ SP (u1, z,H \ {u3}) and
P2 = (z, y)◦P [y, u2]. Clearly, P3 ⊆ H\{u3}, so it remains to bound its length. Since Hβ−2(Z) ⊆ H,
it holds that |P1| ≤ dist(u1, z,G \ {u3}) + β − 2. Hence,

dist(u1, u2, H \ {u3}) ≤ |P3| = |P1|+ |P2|
≤ dist(u1, z,G \ {u3}) + β − 2 + dist(y, u2, G \ {u3})
≤ dist(u1, y,G \ {u3}) + dist(y, u2, G \ {u3}) + β

≤ |P |+ β = dist(u1, u2, G \ {u3}) + β ,

where the second inequality follows by the triangle inequality using the fact that the edge (z, y)
exists in H \ {u3}. The lemma follows.
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3 Additive Stretch 2

We begin by considering the case of additive stretch 2. We make use of the construction of FT-MBFS
structures presented in [17].

Fact 3.1 ([17]) There exists a polynomial time algorithm that for every n-vertex graph G = (V,E)
and source set S ⊆ V constructs an FT-MBFS structure H0(S) from each source si ∈ S, tolerant to
one edge or vertex failure, with a total number of O(

√
|S| · n3/2) edges.

Set ∆ = dn2/3e and let Z be an FT-center set for V∆ as given by Obs. 2.3(4). Let H0(Z) be an
FT-MBFS structure with respect to the source set Z as given by Fact 3.1. Then, let H = G∆∪H0(Z).
Thm. 1.1 follows by Lemma 2.5, Obs. 2.3 and Fact 3.1.

4 Sourcewise additive FT-spanners

In this section, we present two constructions of (4, S) and (8, S) additive FT-spanners with respect
to a given source set S ⊆ V . The single source case (where |S| = 1) is considered in [18], which
provides a construction of a single source FT-spanner2 with O(n4/3) edges and additive stretch 4.
The current construction increases the stretch to 8 to provide a bounded stretch for Õ(n1/3) sources
with the same order of edges, Õ(n4/3).

4.1 Sourcewise spanner with additive stretch 4

Lemma 4.1 There exists a subgraph H4(S) ⊆ G with Õ(max{|S| · n, (n/|S|)3}) edges satisfying
dist(s, t,H4(S) \ {v}) ≤ dist(s, t,G \ {v}) + 4 for every (s, t) ∈ S × V and v ∈ V .

The following notation is useful in our context. Let C = {Cz | z ∈ Z} be the collection of
clusters corresponding to the FT-centers Z. For a source s ∈ S and a cluster Cz ∈ C rooted at
FT-center z ∈ Z, let LCA(s, Cz) be the least common ancestor (LCA) of the cluster vertices of Cz
in the BFS tree T0(s) rooted at s. Let π(s, Cz) be the path connecting s and LCA(s, Cz) in T0(s).

4.1.1 Algorithm Cons4SWSpanner for constructing H4(S) spanner

Step (0): Replacement-path definition. For every (s, t) ∈ S × V and every v ∈ V , let
Ps,t,v = SP (s, t,G \ {v},W ).

Step (1): Clustering. Set ∆ = |S| and let Z ⊆ V be an FT-center set of size Õ(n/∆) (by Obs.
2.3(4) such set exists). Let C = {Cz | z ∈ Z} be the collection of |Z| clusters. For a heavy vertex
t, let C1(t), C2(t) be its two clusters in C corresponding to the centers z1(t) and z2(t) respectively.

2The construction of [18] supports a single edge failure, yet, it can be modified to overcome a single vertex failure
as well.
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Step (2): Shortest-path segmentation. For every (s, t) ∈ S×V∆, the algorithm uses the first
cluster of t, C1(t), to segment the path π(s, t). Define

πfar(s, t) = π(s, `(s, t)) \ {`(s, t)} and πnear(s, t) = π(`(s, t), t) \ {`(s, t)},

where `(s, t) = LCA(s, C1(t)) is the LCA of the cluster C1(t) in the tree T0(s). Hence, π(s, t) =
πfar(s, t) ◦ `(s, t) ◦ πnear(s, t). The algorithm handles separately vertex faults in the near and far
segments. Let V near(s, t) = V (πnear(s, t)) and V far(s, t) = V (πfar(s, t)).

Step (3): Handling faults in the cluster center and the LCA. Let

Elocal(t) = {LastE(Ps,t,v) | s ∈ S, v ∈ {z1(t), LCA(s, C1(t))}} and Elocal =
⋃
t∈V∆

Elocal(t),

be the last edges of replacement-paths protecting against the failure of the primary cluster center
z1(t) and the least common ancestor LCA(s, C1(t)).

Step (4): Handling far vertex faults V far(s, t). A replacement path Ps,t,v is new-ending if
its last edge is not in (T0(S)∪G∆). For a new-ending path Ps,t,v, let bs,t,v be the unique divergence
point of Ps,t,v from π(s, t) (in the analysis we show that such point exists). Let Ds,t,v = Ps,t,v[bs,t,v, t]
denote the detour segment and let D+

s,t,v = Ds,t,v \ {bs,t,v} denote the detour segment excluding the

divergence point. For every clustered vertex t, let Pfar(t) be the collection of new-ending s−t paths
protecting against vertex faults in the far segments, i.e., Pfar(t) = {Ps,t,v | s ∈ S, LastE(Ps,t,v) /∈
T0(S) and v ∈ V far(s, t)}.

The algorithm divides this set into two subsets Pfardep (t) and Pfarindep(t) depending on the structure

of the partial detour segment D+
s,t,v. A new-ending path Ps,t,v is dependent if D+

s,t,v intersects
π(s′, t) \ {t} for some s′ ∈ S, i.e., for a dependent path Ps,t,v, it holds that

V (D+
s,t,v) ∩ V (T (t, S)) 6= {t} . (1)

Otherwise, it is independent. Let

Pfardep (t) = {Ps,t,v ∈ Pfar(t) | s ∈ S, v ∈ V far(s, t) and V (D+
s,t,v) ∩ V (T (t, S)) 6= {t}}

be the set of all S×{t} dependent paths and let Pfarindep(t) = Pfar \Pfardep (t) be the set of independent
paths.

Step (4.1): Handling dependent new-ending paths. The algorithm simply takes the last

edges Efardep (t) of all dependent replacement paths where Efardep (t) = {LastE(P ) | P ∈ Pfardep (t)}. (In

the analysis section, we show that the Efardep (t) sets are sparse.) Let Efardep =
⋃
t∈V∆

Efardep (t).

Step (4.2): Handling independent new-ending paths. The algorithm employs a modified

path-buying procedure on the collection Pfarindep =
⋃
t∈V∆

Pfarindep(t) of new-ending independent paths.

The paths of Pfarindep are considered in some arbitrary order. A path P ∈ Pfarindep is bought, if it
improves the pairwise cluster distances in some sense. Starting with

G0 = T0(S) ∪G∆ ∪ Elocal ∪ Efardep , (2)
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at step τ ≥ 0, the algorithm is given Gτ ⊆ G and considers the path Pτ = Ps,t,v. Let e = (x, y) be
the first missing edge on Pτ \E(Gτ ) (where x is closer to s). Note that since G∆ ⊆ G0, both x and
t are clustered. Recall that for a clustered vertex u and a failing vertex v, Cv(u) is the cluster of u
centered at zv(u) ∈ Z(u)\{v}. For every cluster C, let Vf (C) be the collection of vertices appearing
on the paths π(s, C) = π(s, LCA(s, C)) for every s ∈ S excluding the vertices of the clusters. That
is,

Vf (C) =
⋃
s∈S

V (π(s, C)) \ C. (3)

The path Pτ is added to Gτ resulting in Gτ+1 = Gτ ∪ Pτ , only if

dist(x, t, Pτ ) < dist(Cv(x), Cv(t), Gτ \ Vf (Cv(t))). (4)

Let τ ′ = |Pfarindep| be the total number of independent paths considered to be bought by the algo-
rithm. Then, the algorithm outputs H4(S) = Gτ ′ . This completes the description of the algorithm.

Analysis. Throughout the discussion, we consider a Ps,t,v paths of clustered vertices t ∈ V∆. A
path Ps,t,v is a new-ending path, if LastE(Ps,t,v) /∈ G0 (see Eq. (2)). Let bs,t,v be the first divergence
point of Ps,t,v and π(s, t).

Lemma 4.2 For every vertex u ∈ Ps,t,v such that LastE(Ps,t,v[s, u]) /∈ T0(S), it holds that: (a)
v ∈ π(s, u). (b) V (Ps,t,v[bs,t,v, u]) ∩ V (π(s, u)) = {bs,t,v, u}.

Proof: Begin with (a). Assume towards contradiction otherwise. By the uniqueness of the weight
assignment W , we get that Ps,t,v[s, u] = SP (s, u,G \ {v},W ) = π(s, u). Leading to contradiction
to the fact that LastE(Ps,t,v) not in T0(S). We next prove (b) and show that the divergence point
bs,t,v is unique. By the definition of bs,t,v, it occurs on π(s, t) above the failing vertex v. Since by
Lemma 4.2, v ∈ π(s, u), it also holds that bs,t,v ∈ π(s, u). Assume towards contradiction that there
exists an additional point

w ∈ (Ps,t,v[bs,t,v, u] ∩ π(s, u)) \ {bs,t,v, u}.

There are two cases to consider (b1) v ∈ π(bs,t,v, w), in such a case, v /∈ π(w, u) and hence π(w, u) =
SP (w, u,G \ {v}) = Ps,t,v[w, u], contradiction that LastE(Ps,t,v[s, u]) /∈ T0(S). (b2) v ∈ π(w, u).
In such a case, v /∈ π(bs,t,v, w) and hence π(bs,t,v, w) = SP (bs,t,v, w,G \ {v}) = Ps,t,v[bs,t,v, w],
contradiction to the fact the bs,t,v is a divergence point from π(s, t). The claim holds.

The next claim shows that a new-ending Ps,t,v path whose last edge is not in G0 (see Eq. (2)),

protecting against faults in the near segment, has a good approximate replacement P̃s,t,v in T0∪G∆.

Lemma 4.3 If LastE(Ps,t,v) /∈ G0 and v ∈ πnear(s, t), then dist(s, t, (G0∪G∆)\{v}) ≤ dist(s, t,G\
{v}) + 4.

Proof: Since v ∈ πnear(s, t), i.e., the failing vertex occurs strictly below LCA(s, C1(t)) on π(s, t),
there exists a vertex w ∈ C1(t) such that v /∈ π(s, w) (hence in particular w 6= v). See Fig. 1.
Since LastE(Ps,t,v) /∈ Elocal, it holds that v 6= z1(t). Consider the following s − w path P =
π(s, w) ◦ [w, z1(t), t]. Clearly, P ⊆ (T0(S) ∪G∆) \ {v}. By the triangle inequality, as the diameter
of the cluster C1(t) is 2, it holds that

dist(s, t, (T0(S) ∪G∆) \ {v}) ≤ dist(s, w,G) + 2 ≤ dist(s, t,G) + 4 ≤ dist(s, t,G \ {v}) + 4 .
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Figure 1: Handling near vertex faults. Schematic illustration of an approximate replacement path
in (T0∪G∆)\{v}. Shown is an π(s, t) whose failing vertex v occurs strictly below the least common
ancestor LCA(s, C1(t)). The alternative replacement path exploits the surviving π(s, w) ⊆ T0(S)
path for w ∈ C1(t) and the intracluster path connecting w and v through z = zv(t).

The claim follows.

For every new-ending path Ps,t,v, recall that D+
s,t,v = Ds,t,v \ {bs,t,v}. Let (x, y) be the first

missing in Ps,t,v \G0 (where x is closer to y). The following auxiliary claims are useful.

Lemma 4.4 For every vertex u ∈ Ps,t,v such that LastE(Ps,t,v[s, u]) /∈ G0, it holds that: (a)
Cv(u) = C1(u). (b) Ps,t,v[x, t] ⊆ D+

s,t,v.

Proof: Begin with (a). By the definition of the weight assignment W , it holds that Ps,t,v[s, u] =
Ps,u,v = SP (s, u,G \ {v},W ). Since LastE(Ps,t,v[s, u]) /∈ Elocal, it holds that v 6= z1(u), concluding
that zv(u) = z1(u) and hence Cv(u) = C1(u). Claim (a) follows. Consider claim (b). Let b = bs,t,v.
We show that x 6= b, which implies the claim. By 4.2, v ∈ π(s, y). Since b appears above v
on π(s, t), b is mutual to π(s, t) and π(s, y). Hence, the s − y shortest path has the following
form: π(s, y) = π(s, b) ◦ π(b, v) ◦ π(v, y). Since b 6= v 6= y, dist(y, b,G) ≥ 2, and hence also
dist(y, b,G \ {v}) ≥ 2, concluding that b 6= x. The lemma follows.

Corollary 4.5 Let t ∈ V∆. For every Ps,t,v ∈ Pfarindep(t), Ps,t,v[x, t] ∩ Vf (Cv(t)) = ∅ where x is the

first vertex of D+
s,t,v.

Proof: Since Ps,t,v is independent, by Eq. 1, D+
s,t,v ∩ T (t, S) = {t}. Since t ∈ Cv(t), by Eq. (3),

t /∈ Vf (Cv(t)) and hence D+
s,t,v ∩ Vf (Cv(t)) = ∅. The corollary follows by combining with Lemma

4.4(b).
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Correctness analysis of H4(S). We now show that H4(S) is a (4, S) FT-spanner.

Lemma 4.6 H4(S) is a (4, S) FT-spanner.

Proof: Let H = H4(S). The proof is by contradiction. Assume that there exists a vertex s ∈ S, a
target vertex t and a failing vertex v such that dist(s, t,H \ {v}) > dist(s, t,G \ {v}) + 4. Let

BP = {(t, v) | t ∈ V, v ∈ (V ∪ {∅}) and

dist(s, t,H \ {v}) > dist(s, t,G \ {v}+ 4}

be the set of “bad pairs” namely, vertex pair (t, v) whose additive stretch in H is greater than 4
with respect to s ∈ S. By the contradictory assumption BP 6= ∅. Since the BFS tree T0(s) is in
H, it holds that the failing vertex v ∈ π(s, t) for every pair (t, v) ∈ BP .

For every bad pair (t, v) ∈ BP define et,v to be the last missing edge of Ps,t,v = SP (s, t,G \
{v},W ) in H. Let d(t, v) = dist(s, et,v, Ps,t,v) be the distance of the last missing edge from s on
Ps,t,v. Finally, let (t0, v0) ∈ BP be the pair that minimizes d(t, v), and let eet0,v0 = (u, ti). Note
that et0,v0 is the shallowest “deepest missing edge” over all bad pairs (t, v) ∈ BP .

Lemma 4.7 The pair (ti, v0) ∈ BP .

Proof: Assume towards contradiction that (ti, v0) /∈ BP and let P ′′ ∈ SP (s, ti, H \ {v0}). Hence,
since (ti, v0) /∈ BP , it holds that

|P ′′| ≤ dist(s, ti, G \ {v0}) + 4 (5)

= |Ps,t0,v0 [s, ti]|+ 4.

We now consider the following s − t0 replacement path Q = P ′′ ◦ Ps,t0,v0 [ti, t0]. By definition of
(ti, v0) (last missing edge on Ps,ti,v0), Q ⊆ H \ {v0}. In addition,

|Q| = |P ′′|+ |Pt0,v0 [ti, t0]| ≤ |Ps,t0,v0 [s, ti]|+ 4 + |Ps,t0,v0(ti, t0)|
= |Ps,t0,v0 |+ 4 = dist(s, t0, G \ {v0}) + 4 ,

where the inequality follows by Eq. (5). This contradicts the fact that (t0, v0) ∈ BP .

Since π(s, ti) ⊆ H, by the fact that (ti, v0) ∈ BP , we have that the failing vertex v0 occurs on
the shortest-path π(s, ti). Since the last edge of Ps,ti,v0 = Ps,t0,v0 [s, ti] is missing, by the fact that
the clustering graph G∆ is in H, by Obs. 2.3(2), it holds that ti is clustered (i.e., ti ∈ V∆). By step
(2), since Elocal ⊆ H, it holds that v0 /∈ {z1(ti), LCA(s, C1(ti))}. Combining with Lemma 4.3, it
holds that v0 /∈ V near(s, ti). Hence, v0 ∈ V far(s, ti). There are further two cases. Case (1) Ps,ti,v0

is dependant. By step (4.1), we then have that LastE(Ps,ti,v0) ∈ Efardep (t), contradiction to the fact
that LastE(Ps,ti,v0) is missing in H.

Consider case(2) where Ps,ti,v0 is an independent path, i.e., Ps,ti,v0 ∈ P
far
indep(t) and hence it was

considered to be bought in the path-buying procedure of Step (4.2). By the fact that the pair
(ti, v0) is a bad pair (i.e., (ti, v0) ∈ BP ), we conclude that the algorithm did not buy the path.
Let τ be the iteration at which Pτ = Ps,ti,v0 was considered to be purchased in the path-buying
procedure. Let Gτ be the current spanner in iteration τ . Let x be the vertex incident to the first
missing edge on Pτ \ E(Gτ ).
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Let C0 = Cv0(ti) be the cluster of ti in G∆ \ {v0}. Since LastE(Pτ ) /∈ Elocal, by Lemma 4.4(a)
C0 = C1(ti) and zv0(ti) = z1(ti). By definition,

v0 ∈ πfar(s, ti) = π(s, C0) \ {LCA(s, C0)}.

Hence, in particular failing vertex is not in the cluster C0, i.e., v0 /∈ C0 and by Eq. (3),

v0 ∈ Vf (C0). (6)

Since Pτ was not bought by the algorithm, by Eq. (4), we have that

dist(Cv0(x), C0, Gτ \ Vf (C0)) ≤ dist(x, ti, Pτ ). (7)

Let w1 ∈ Cv0(x) and w2 ∈ C0 be an arbitrary closest pair in Gτ \ Vf (C0) from the clusters Cv0(x)
and C0 respectively satisfying that dist(w1, w2, Gτ \ Vf (C0)) = dist(Cv0(x), C0, Gτ \ Vf (C0)).

Let z1 (resp., z2) be the cluster center of Cv0(x) (resp., C0). Consider the following s − ti
replacement path in H \ {v0}, P5 = P1 ◦ P2 ◦ P3 ◦ P4 where P1 = Pτ [s, x], P2 = [x, z1, w1] and
P3 ∈ SP (w1, w2, Gτ \ Vf (C0)) and P4 = [w2, z2, ti]. For an illustration see Fig. 2. We first claim
that P5 ⊆ H \ {v0}. Since x incident to the first missing edge on Pτ , P1 is in H \ {v0}. By Eq.
(6), v0 ∈ Vf (C0) and since w1, w2 ⊆ Gτ \ Vf (C0) it also holds that w1, w2 6= v0. Finally note that
Gτ , G∆ ⊆ H, hence P2, P4 ⊆ H \ {v0}. We next bound the length of P5.

dist(s, ti, H \ {v0}) ≤ P5 ≤ dist(s, x,G \ {v0}) + 2 + dist(w1, w2, Gτ \ Vf (C0)) + 2

= dist(s, x,G \ {v0}) + dist(Cv0(x), C0, Gτ \ Vf (C0)) + 4

≤ dist(s, x,G \ {v0}) + dist(x, ti, Pτ ) + 4 (8)

= |Ps,ti,v|+ 4 = dist(s, ti, G \ {v0}) + 4,

where Eq. (8) follows by Eq. (7). We end with contradiction to the fact that the pair (ti, v0) is a
bad pair. The claim follows.

Size analysis of H4(S). We proceed with the size analysis.

Lemma 4.8 For every t ∈ V∆, |Elocal(t)| = O(|S|), hence |Elocal| = O(|S| · n).

Bounding the number of last edges in Efardep (t). We now turn to bound the number of edges
added due to step (4.1), i.e., the last edges of new-ending dependent paths Ps,t,v protecting against

the faults in the far segment πfar(s, t). To bound the number of edges in Efardep (t), consider the
partial BFS tree rooted at t, T (t, S) ⊆ T0(T ), whose leaf set is contained in the vertex set S where
T (t, S) =

⋃
s∈S π(s, t). It is convenient to view this tree as going from the leafs towards the root,

where the root t is at the bottom and the leafs are on the top of the tree. Let V + = S ∪ {u ∈
T (t, S) | deg(u, T (t, S)) ≥ 3}, be the union of S and the vertices with degree at least 3 in the tree
T (t, S). We have that |V +| < 2|S|. A pair of vertices x, y ∈ V + is adjacent if their shortest-path
π(x, y) is contained in the tree T (t, S) and it is free from any other V + vertex, i.e, π(x, y) ⊆ T (t, S)
and π(x, y) ∩ V + = {x, y}. Let Π(V +) = {π(x, y) | x, y ∈ V + and x, y are adjacent } be the
collection of paths between adjacent pairs.

Observation 4.9 (1) T (t, S) = Π(V +). (2) Π(V +) consists of at most 2|S|+ 1 paths π(x, y) (i.e.,
there are at most 2|S| adjacent pairs).
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Figure 2: Schematic illustration of the path-buying procedure of Alg. Cons4SWSpanner. Shown
is an s − t path Pτ = Ps,t,v considered to be bought in time τ . The green paths correspond to
shortest-paths in T0(s) and the red edges correspond to missing edges on Pτ \ E(Gτ ). The first
missing edge on Pτ \ E(Gτ ) is incident to x. If Pτ was not bought, then there exists a short route
between a pair of vertices w1 and w2 belonging to Cv(x) and Cv(t) (respectively) in H \ {v}.

We now show the following.

Lemma 4.10 For every t ∈ V∆, |Efardep (t)| = O(|S|).

We first claim that every two dependent replacement paths with the same divergence point have
the same last edge.

Lemma 4.11 For every two dependent paths Ps1,t,v1 , Ps2,t,v2 ∈ P
far
dep (t), if bs1,t,v1 = bs2,t,v2 then

LastE(Ps1,t,v1) = LastE(Ps1,t,v2).

Proof: Let b = bs1,t,v1 = bs2,t,v2 . Since b ∈ π(s1, t) ∩ π(s2, t) it holds that π(si, t) = π(si, b) ◦
π(b, t) for i ∈ {1, 2}. In addition, since Psi,t,vi [si, b] = π(si, b) for i ∈ {1, 2}, it holds that both
failing vertices v1 and v2 occur in the common segment π(b, t). Recall that Psi,t,vi is a new-
ending path, hence by the definition of the divergence point b (see Lemma 4.2(b)), it holds that
V (Psi,t,vi [b, t])∩V (π(b, t)) = {b, t} and hence both detours are free from the failing vertices. Hence,
Ps1,t,v1 [b, t], Ps1,t,v1 [b, t] = SP (b, t, G \ {v1, v2}). We get that LastE(Ps1,t,v1) = LastE(Ps2,t,v2) as
needed.

Since our goal is to bound the number of last edges of the new ending dependent paths Pfardep (t),

to avoid double counting, we now restrict attention toQfar(t), a collection of representative paths in

Pfardep (t) each ending with a distinct new edge from Efardep (t). Formally, for each new edge e ∈ Efardep (t),

let P (e) be an arbitrary path in Pfardep (t) satisfying that LastE(P (e)) = e. Let Qfar(t) = {P (e), e ∈
Efardep (t)} (hence |Qfar(t)| = |Efardep (t)|). From now on, we aim towards bounding the cardinality of
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Qfar(t). Let DP = {bs,t,v | Ps,t,v ∈ Qfar(t)} be the set of divergence points of the new ending

paths in Qfar(t). By Lemma 4.11, it holds that in order to bound the cardinality of Pfardep (t), it is
sufficient to bound the number of distinct divergence points. To do that, we show that every path
π(x, y) of two adjacent vertices x, y ∈ V +, contains at most one divergence point in DP \ V +.

Lemma 4.12 |π(x, y) ∩ (DP \ V +)| ≤ 1 for every π(x, y) ∈ Π(V +).

Proof: Assume, towards contradiction, that there are two divergence points bs1,t,v1 and bs2,t,v2 on
some path π(x, y) for two adjacent vertices x, y ∈ V +. For ease of notation, let Pi = Psi,t,vi , bi =
bsi,t,vi , Di = Dsi,t,vi and D+

i = Di \ {bi} for i ∈ {1, 2}. Without loss of generality, assume the
following: (1) y is closer to t than x and (2) b2 is closer to t than b1. By construction, the vertices
s1 and s2 are in the subtree T (x) ⊆ T (t, S). For an illustration see Fig. 3. We now claim that the
failing vertices v1, v2 occur on π(y, t). Since D+

1 and D+
2 are vertex disjoint with π(y, t)\{t}, it would

imply that both detour segments D1 and D2 are free from the failing vertices and hence at least one
of the two new edges LastE(P1), LastE(P2) could have been avoided. We now focus on v1 and show
that v1 ∈ π(y, t), the exact same argumentation holds for v2. Since P1 is a new-ending dependent
path, by Eq. (1), there exists some source s3 ∈ s \ {s1} satisfying that

(
D+

1 ∩ π(s3, t)
)
\ {t} 6= ∅.

Let w ∈
(
D+

1 ∩ π(s3, t)
)
\{t} be the first intersection point (closest to s1). See Fig. 3 for schematic

illustration. We first claim that s3 is not in the subtree T (x) ⊆ T (t, S) rooted at x. To see why this
holds, assume, towards contradiction, that s3 ∈ T (x). It then holds that the replacement path P1

has the following form P1 = π[s1, x] ◦ π(x, b1) ◦ P1[b1, w] ◦ P1[w, t]. Recall, that since b1 ∈ DP \ V +,
b1 6= x and also b1 6= w. Since P1[x,w] goes through b1, by the optimality of P1, it holds that

dist(x,w,G \ {v1}) > dist(b1, w,G \ {v1}) . (9)

On the other hand, the path π(s3, t) has the following form: π(s3, t) = π(s3, w)◦π(w, x)◦π(x, b1)◦
π(b1, t). Hence, π(w, b1) goes through x. Since the failing vertex v1 ∈ π(b1, t) is not in π(w, b1),
by the optimality of π(w, b1), we get that dist(w, b1, G \ {v1}) > dist(x,w,G \ {v1}), leading to
contradiction with Ineq. (9). Hence, we conclude that s3 /∈ T (x) (in particular this implies that
s3 6= s2). Note that π(w, t) is a segment of π(s3, t) and hence it is contained in the tree T (t, S).
Since P1 is a new-ending path (i.e., LastE(P1) /∈ T (t, S)), we have that P1[w, t] 6= π(w, t) are
distinct w− t paths. We next claim that the failing vertex v1 must occur on π(w, t) and hence also
on π(s3, t). To see this, observe that if π(w, t) would have been free from the failing vertex v1, then
it implies that π(w, t) = SP (w, t,G\{v1}) = P1[w, t], contradiction as LastE(P1) 6= LastE(π(w, t)).
Finally, we show that v1 ∈ π(y, t). By the above, the failing vertex v1 is common to both paths
π(s1, t) and π(s3, t), i.e., v1 ∈ π(s1, t)∩π(s3, t). By the definition of the path π(x, y), all its internal
vertices u have degree 2 and hence (π(x, y)∩π(s3, t))\{y} = ∅, concluding that v1 ∈ π(y, t). By the
same argumentation, it also holds that v2 is in π(y, t). As the detours D1 and D2 are vertex disjoint
with π(y, t) \ {t}, it holds that they are free from the two failing vertices, i.e., v1, v2 /∈ D1 ∪ D2.
Since P1, P2 ∈ Qfar(t), it holds that LastE(P1) 6= LastE(P2), and hence there are two b1−t distinct
shortest paths in G\{v1, v2}, given by D1 and π(b1, b2)◦D2. By optimality of these paths, they are
of the same lengths. Again, we end with contradiction to the uniqueness of the weight assignment
W . The claim follows.

By Lemma 4.11 there are at most |V +| replacement paths with divergence point in V +. By
Lemma 4.12, there is at most one divergence point on each segment π(x, y) of an adjacent pair
(x, y). Combining with Obs. 4.9(2), we get |Efar(t)| = |Qfar(t)| = O(|S|). The lemma follows.
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Figure 3: Schematic illustration of new-ending dependent paths. Shown is the tree T (t, S) with
the root t at the bottom and leaf set is contained in the set of sources S. (a) The two replacement
paths have the same divergence point b, hence one of the new last edges is redundant. (b) A new-
ending s1 − t dependant path Ps1,t,v1 with a divergence point b1 ∈ π(x, y) intersects with π(s3, t)
at the vertex w /∈ {b1, t}. Since Ps1,t,v is a new-ending path (i.e., its last edges is not on T (t, S)),
the failing vertex v must occur on the path π(w, t). Hence v1 ∈ π(s1, t) ∩ π(s3, t), implying that
v1 ∈ π(y, t). Since this holds for any new-ending path with a divergence point in π(x, y), we get
that only one new edge from all these paths is needed.

We complete the size analysis and proves Lemma 4.1, by bounding the number of edges added
by the path-buying procedure of Step (4.2).

Bounding the number of edges added due to the path-buying procedure. Finally, it
remains to bound the number of edges added due to the path-buying procedure of step (4.2).

Lemma 4.13 |H4(S) \G0| = Õ((n/|S|)3).

Proof: Let B ⊆ Pfarindep(t) be the set of paths bought in the path-buying procedure of Step (4.2).
For every ordered pair of clusters C1, C2 ∈ C, let B(C1, C2) ⊆ B be the set of paths that were added
since they improved the distance of C1 and C2, that is

B(C1, C2) = {Pτ ∈ B | C1(τ) = C1 and C2(τ) = C2}

Clearly, B =
⋃
C1,C2∈C B(C1, C2). We next use the fact that the diameter of each cluster C ∈ C is

small, to bound the cardinality of the set B(C1, C2).

Lemma 4.14 |B(C1, C2)| ≤ 5 for every C1, C2 ∈ C.

Proof: Fix C1, C2 ∈ C and order the paths of B(C1, C2) according to the time step they were
added to the spanner B(C1, C2) = {Pτ1 , . . . , PτN } where τ1 < τ2 < . . . < τN where N = |B(C1, C2)|.
Since Pτk ∈ P

far
indep, it is a new-ending path, i.e., LastE(Pτk) /∈ T0(S). Let Pτk = Psk,tk,vk and

Dτk = Dsk,tk,vk denote the detour segment of this path. Let xk be the vertex adjacent to the first
missing edge on Pτk . Hence, C1 = Cvk(xk) and C2 = Cvk(tk) for every k ∈ {1, . . . , N} and also
Vf (Cvk(tk)) = Vf (C2) for every k ∈ {1, . . . , N}. Since T0(S) ⊆ G0, the missing edges of Pτk are
restricted to the detour segment Dτk .
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In addition, since Pτk ∈ P
far
indep, it holds that the failing vertex vk occurs on the far segment

πfar(sk, tk) and in particular, vk /∈ C2 (i.e., vk occurs strictly above the least common ancestor
LCA(sk, C2) and since all cluster members appears on T0(sk) in the subtree rooted at LCA(sk, C2),
the far segment πfar(sk, tk) is free from cluster members). We therefore have

{v1, . . . , vN} ⊆ Vf (C2) . (10)

Note that π(sk, C2) ⊆ π(sk, tk) and hence it is contained in T (tk, S) for every k ∈ {1, . . . , N}. By
the definition of independent paths (see Eq. (1) for the definition of dependent paths), we have
that

D+
sk,tk,vk

∩ T (tk, S) = {tk} . (11)

Consequently, by Lemma 4.4(b),

Pτk [xk, tk] ⊆ D+
τk
⊆ G \ Vf (C2) . (12)

where the last inclusion holds by the fact that tk /∈ Vf (C2) and Vf (C2) ⊆
⋃
s∈S π(s, C2) ⊆⋃

s∈S π(s, t) = T (t, S). Let zi ∈ Z be the cluster center of Ci for i ∈ {1, 2}. We therefore have
that z1 = zv1(x1) = . . . = zvN (xN ) and z2 = zv1(t1) = . . . = zvN (tN ) and hence z2 6= vk for every
k ∈ {1, . . . , N}. Hence,

z1, z2 /∈ {v1, . . . , vN}. (13)

For every k ∈ {1, . . . , N}, denote

Xk = dist(xk, tk, Gτk+1
\ Vf (C2)).

We now show that Xk < Xk−1 for every k ∈ {2, . . . N}.
Since the path Pτk is purchased at time τk, we have that

Xk ≤ dist(xk, tk, Pτk \ Vf (C2)) (14)

= dist(xk, tk, Pτk) (15)

< dist(C1, C2, Gτk \ Vf (C2)) (16)

≤ Xk−1 , (17)

where Eq. (14) follows by the fact that Pτk ⊆ Gτk+1
, Eq. (15) follows by Eq. (12). Eq. (16) follows

by the fact that Pτk was bought and by Eq. (4), and Eq. (41) follows by the fact that xk−1 ∈ C1

and tk−1 ∈ C2.
Therefore, we have that

XN ≤ X1 − (N − 1) . (18)

Conversely, we have that

XN ≥ dist(xN , tN , G \ {v1, . . . , vN}) (19)

≥ dist(x1, t1, G \ {v1, . . . , vN})− 4 (20)

= dist(x1, t1, Pτ1)− 4 = dist(x1, t1, Pτ1 \ Vf (C2))− 4 (21)

≥ X1 − 4 , (22)

where Eq. (19) follows as GτN+1 ⊆ G and by Eq. (10), {v1, . . . , vN} ⊆ Vf (C2). To see Eq. (20),
we need to prove the existence of the intracluster paths R1 = [x1, z1, xN ] and R2 = [t1, z2, tN ] in
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G\{v1, . . . , vN} where z1 (resp., z2) is the cluster center of C1 (resp., C2). By definition, x1, xN ∈ C1

and t1, tN ∈ C2. Hence, z1 (resp., z2) is a common neighbor of both x1 and xN (resp., t1 and tN ).
By (13), z1, z2 /∈ {v1, . . . , vN}.

In addition, by Eq. (12), xk, tk ∈ G \ Vf (C2) for every k ∈ {1, . . . , N} and by Eq. (10),
it also holds that xk, tk /∈ {v1, . . . , vN} for every k ∈ {1, . . . , N}. Hence, R1 and R2 exists in
G \ {v1, . . . , vN} and Eq. (20) follows by the triangle inequality. Eq. (21) follows by Eq. (12) and
Eq. (10). Finally, Eq. (22) follows by the fact that Pτ1 was added at step τ1, hence Pτ1 ⊆ Gτ2 . We
get that N ≤ 5. The claim follows.

By Obs. 2.3(2) and Obs. 2.4, every path Pτk contains at most O(n/|∆|) = O(n/|S|) missing
edges in G \G∆. Hence,

|E(Gτ ′ \G0)| = O(n/|S|) · |B| (23)

= O(n/|S|) ·
∑

C1,C2∈C
|B(C1, C2)| (24)

≤ O(n/|S|) · |C|2 = Õ((n/|S|)3) . (25)

where the last equality follows by the fact that |C| = Õ(n/|S|). The claim follows.

4.2 Sourcewise spanner with additive stretch 8

In this section, we present Alg. Cons8SWSpanner for constructing a sourcewise additive FT-spanner
with additive stretch 8. The size of the resulting spanner is smaller (in order) than the H4(S)
spanner of Alg. Cons4SWSpanner, at the expense of larger stretch. The algorithm is similar in
spirit to Alg. Cons4SWSpanner and the major distinction is in the path-buying procedure of step
(4.2).

Lemma 4.15 There exists a subgraph H8(S) ⊆ G with Õ(max{|S|·n, (n/|S|)2}) edges s.t. dist(s, t,H8(S)\
{v}) ≤ dist(s, t,G \ {v}) + 8 for every (s, t) ∈ S × V and every v ∈ V .

4.2.1 Algorithm Cons8SWSpanner for constructing H8(S) spanner

Step (0-4.1): Same as in Alg. Cons4SWSpanner. Let Elocal, Efardep be the set of last edges obtained

at the end of step (3) and set (4.1) respectively. Let Pfarindep be the set of new-ending independent
paths.

Step (4.2): Handling independent new-ending paths. Starting with G0 as in Eq. (2), the

paths of Pfarindep are considered in an arbitrary order. At step τ , we are given Gτ ⊆ G and consider
the path Pτ = Ps,t,v. Let Dτ = Pτ \ π(s, t) be the detour segment of Pτ (since π(s, t) ⊆ T0(S) is in
G0, all missing edges of Pτ occur on its detour segment).

To decide whether Pτ should be added to Gτ , the number of pairwise cluster “distance im-
provements” is compared to the number of new edges added due to Pτ . To do that we compute
the set ValSet(Pτ ) containing all pairs of clusters that achieves a better distance if Pτ is bought.
The value and cost of Pτ are computed as follows. Let Val(Pτ ) = |ValSet(Pτ )| as the number of
distance improvements as formally defined later. We next define a key vertex φτ ∈ V∆ on the path
Pτ .
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Definition 4.16 Let φs,t,v (or φτ for short) be the last vertex on Pτ (closest to t) satisfying that:
(N1) LastE(Pτ [s, φτ ]) /∈ Gτ , and (N2) v ∈ πnear(s, φτ ) = π(`, φτ ) \ {`} where ` = LCA(s, Cv(φτ )).
If there is no vertex on Pτ that satisfies both (N1) and (N2), then let φτ be the first vertex incident to
the first missing edge on Pτ \E(Gτ ) (i.e., such that Pτ [s, φτ ] is the maximal prefix that is contained
in Gτ ).

Let Qτ = Pτ [φτ , t] and define Cost(Pτ ) = |E(Qτ ) \ E(Gτ )| be the number of edges of Qτ that
are missing in the current subgraph Gτ . Thus Cost(Pτ ) represents the increase in the size of the
spanner Gτ if the procedure adds Qτ . Our algorithm attempts to buy only the suffix Qτ of Pτ when
considering Pτ . We now define the set ValSet(Pτ ) ⊆ C × C which contains a collection ordered
cluster pairs. Let C1(τ) = Cv(φτ ) and C2(τ) = Cv(t) be the clusters of φτ and t in G∆ \ {v}. Let
κ = Cost(Pτ ). The candidate Pτ is said to be cheap if κ ≤ 4, otherwise it is costly. The definition
of ValSet(Pτ ) depends on whether or not the path is cheap. In particular, if Pτ is cheap, then let
ValSet(Pτ ) = {(C1(τ), C2(τ))} only if

dist(φτ , t, Pτ ) < dist(C1(τ), C2(τ), Gτ \ Vf (C2(τ))) , (26)

where Vf (C2(τ)) is as given by Eq. (3), and let ValSet(Pτ ) = ∅ otherwise. Alternatively, if Pτ is
costly, we do the following.

Definition 4.17 Let Us,t,v = {u3`+1 | ` ∈ {0, . . . , b(κ − 1)/3c}} ⊆ Qτ be some representative
endpoints of missing edges on Qτ satisfying that

LastE(Qτ [φτ , u`]) /∈ Gτ for every u` ∈ Us,t,v and dist(u`, u`′ , Qτ ) ≥ 3

for every u`, u`′ ∈ Us,t,v.

Define

ValSet1(Pτ ) = {(C1(τ), C`) | C` = Cv(u`), u` ∈ Us,t,v (27)

and dist(φτ , u`, Pτ ) < dist(C1(τ), C`, Gτ \ Vf (C`))}

and

ValSet2(Pτ ) = {(C`, C2(τ)) | C` = Cv(u`), u` ∈ Us,t,v (28)

and dist(u`, t, Pτ ) < dist(C`, C2(τ), Gτ \ Vf (C2(τ)))}

Let ValSet(Pτ ) = ValSet1(Pτ ) ∪ ValSet2(Pτ ). The subpath Qτ is added to Gτ resulting in Gτ+1

only if
Cost(Pτ ) ≤ 4 · Val(Pτ ) , (29)

where Val(Pτ ) = |ValSet(Pτ )|. (Note that when Pτ is cheap, Eq. (29) holds iff Eq. (26) holds.)

The output of Alg. Cons8SWSpanner is the subgraph H8(S) = Gτ ′ where τ ′ = |Pfarindep|. This
completes the description of the algorithm.
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Analysis. Throughout the discussion, a path Ps,t,v is a new-ending path, if LastE(Ps,t,v) /∈ G0

(see Eq. (2)). Hence, we consider only Ps,t,v ∈ Pfarindep(t) paths for clustered vertices t ∈ V∆.
For a new-ending path Ps,t,v, recall that bs,t,v is the unique divergence point of Ps,t,v and π(s, t)

and let Ds,t,v be the detour segment, i.e., Ds,t,v = Ps,t,v[bs,t,v, t] and D+
s,t,v = Ds,t,v \ {bs,t,v}. Let

Qs,t,v = Ps,t,v[φs,t,v, t] be the path segment that was considered to be bought in step (4.2) (see Def.
4.16).

Observation 4.18 Qs,t,v ⊆ D+
s,t,v.

Proof: Let x be the first vertex incident to a new-edge on Ps,t,v (such that Ps,t,v[s, x] is the maximal
prefix that is contained in G0). Since φs,t,v occurs not before x on Ps,t,v the observation follows by
Lemma 4.4(b).

Lemma 4.19 Let Ps,t,v ∈ Pfarindep(t) be a new-ending replacement path. Then for every uk ∈ Us,t,v∪
{t} with Ck = Cv(uk) it holds that:
(a) Ck = C1(uk).
(b) V (Ps,ti,v[bs,t,v, uk]) ∩ V (T (uk, S)) = {bs,t,v, uk}.
(c) Qs,t,v[φs,t,v, uk] ∩ Vf (Ck) = {∅}.
(d) v ∈ Vf (Ck).

Proof: We begin with (a). By the uniqueness of the weight assignment W , Ps,ti,v[s, uk] = Ps,uk,v =
SP (s, uk, G \ {v},W ). By the uniqueness of the divergence point bs,t,v and in particular by Lemma
4.2(b),

bs,t,v = bs,uk,v . (30)

Since LastE(Ps,uk,v) /∈ Elocal, concluding that v 6= z1(uk) and hence zv(uk) = z1(uk) and (a) holds.
Consider (b). By the definition of the set Us,t,v (see Def. 4.17), it holds LastE(Ps,uk,v) /∈ G0.

Since uk ∈ Qs,t,v occurs strictly after φs,t,v, by the definition Def. 4.16, it holds that uk did not
satisfy property (N2). Hence, since LastE(Ps,uk,v) /∈ Elocal, v /∈ {z1(uk), LCA(s, C1(uk))} and hence

v ∈ πfar(s, uk). As LastE(Ps,uk,v) /∈ Efardep (uk), we get that Ps,uk,v is a new-ending independent
path. By Eq. (1), V (Ps,uk,v[bs,uk,v, uk])∩ V (T (uk, S)) = {bs,uk,v, uk}. Hence (b) holds by Eq. (30).

We now turn to consider claim (c). By Eq. (3), Vf (Cv(uk)) ⊆ T (uk, S). Since Cv(uk) ∩
Vf (Cv(uk)) = ∅, it holds that uk /∈ Vf (Cv(uk)), and hence by combining with claim (a), we get that
Ps,uk,v[bs,uk,v, uk] ∩ Vf (Cv(uk)) = {bs,uk,v}. Since by the proof of Lemma 4.4(b), φs,t,v 6= bs,uk,v,
hence Qs,t,v[φs,t,v, uk] ∩ Vf (Cv(uk)) = ∅.

Consider claim (d). By the above, v occurs on the far segment π(s, Ck) \ {LCA(s, Ck)}, hence
v /∈ Ck. Since (π(s, Ck) \ Ck) ⊆ Vf (Ck), (d) holds.

The next observation is useful in our analysis.

Observation 4.20 If φs,t,v satisfies (N1) and (N2), then there exists a vertex x ∈ Cv(φs,t,v) satis-
fying that v /∈ π(s, x).

Proof: Let Pτ = Ps,t,v and φτ = φs,t,v. By the uniqueness of the weight assignment W , Pτ [s, φτ ] =
Ps,φτ ,v = SP (s, φτ , G \ {v},W ). Since φτ satisfies (N2), it holds that the failing vertex v occurs on
πnear(s, φτ ), strictly below (i.e., closer to φτ ) the least common ancestor LCA(s, Cv(φτ )) on π(s, φτ ).
Hence, there must exist a vertex x ∈ Cv(φτ ) such that v /∈ π(s, x) (otherwise, if v is shared by
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π(s, u) for all cluster members u, then we end with contradiction to the definition of the least
common ancestor LCA(s, Cv(φτ ))).

We proceed by showing correctness.

Theorem 4.21 H8(S) is a (8, S) FT-spanner.

Proof: Let H = H8(S). It is required to show that dist(s, t,H \ {v}) ≤ dist(s, t,G \ {v}) + 8 for
every (s, t) ∈ S × V and v ∈ V . By the analysis of Alg. Cons4SWSpanner (Lemma 4.6), it remains

to consider the case of independent new-ending paths where Ps,t,v ∈ Pfarindep(t) for t ∈ V∆.
Let τ be the iteration at which Pτ = Ps,t,v was considered to be added to the spanner at step

(4.2), and let κ = Cost(Pτ ) denote its cost. Let φτ be as defined in Def. 4.16 and recall that
Qτ = Pτ [φτ , t] is the candidate suffix to be bought by the procedure. (In particular, Cost(Pτ )
counts the number of edges on Qτ \ E(Gτ ).)

Case (1): Qτ was bought. If φτ did not satisfy neither properties (N1), (N2) (or both), then
Pτ [s, φτ ] ⊆ Gτ . Since Pτ = Pτ [s, φτ ]◦Qτ andQτ was added to the spanner, we get that Pτ ⊆ H\{v}.

It remains to consider the complementary case where φτ satisfies both (N1) and (N2). By Obs.
4.20, we get that there exist x ∈ Cv(φτ ) satisfying that v /∈ π(s, x).

Consider the path P = π(s, x)◦ (x, zv(φτ ), φτ ). By definition, P ⊆ H \{v} and by the existence
of the intracluster path connecting x and φτ in G \ {v}, it holds that |P | = dist(s, x,G \ {v}) + 2 ≤
dist(s, φτ , G \ {v}) + 4. Hence, letting P ′ = P ◦Qτ (where Qτ = Pτ [φτ , t]), since Qτ ⊆ H \ {v}, it
holds that P ′ ⊆ H \ {v} and |P ′| ≤ |Pτ |+ 4, as required.

Case (2): Qτ was not bought. Let x ∈ Cv(φτ ) be defined as follows. If φτ satisfies both
properties (N1) and (N2) of Def. 4.16, then using Obs. 4.20, let x ∈ Cv(φτ ) be the vertex satisfying
that v /∈ π(s, x). Otherwise, if φτ did not satisfy (N1) or (N2) (or both), let x = φτ . Note that in
any case, it holds that x, φτ ∈ Cv(φτ ). We have the following.

Lemma 4.22 Ps,x,v ⊆ H \ {v}.

Proof: If x = φτ , then it implies that φτ did not satisfy both of the properties (N1,N2). By Def.
4.16, in such a case φτ is the vertex incident to the first missing edge on Ps,t,v \ E(Gτ ) and hence
Ps,t,v[s, x] = Ps,x,v ⊆ Gτ \ {v}.

Otherwise, if x 6= φτ , then x ∈ Cv(φτ ) and by the selection of x, v /∈ π(s, x). Hence, Ps,x,v =
π(s, x) ⊆ H \ {v}.

Recall that C1(τ) = Cv(φτ ) and C2(τ) = Cv(t). In addition, since v ∈ πfar(s, t), it holds that
v ∈ Vf (C2(τ)).

Case (2.1): Pτ is cheap. Since Qτ was not added, Eq. (26) did not hold and hence

dist(φτ , t, Pτ ) ≥ dist(C1(τ), C2(τ), Gτ \ Vf (C2(τ))) . (31)

Let w1 ∈ C1(τ) and w2 ∈ C2(τ) be a closest pair satisfying that dist(w1, w2, Gτ \ Vf (C2(τ))) =
dist(C1(τ), C2(τ), Gτ \Vf (C2(τ))). Since the failing vertex v is in Vf (C2(τ)), both auxiliary vertices
w1 and w2 are in G\{v}. Consider the following s− t path: P = P0 ◦P1 ◦P2 ◦P3 where P0 = Ps,x,v,
P1 = [x, zv(φτ ), w1], P2 ∈ SP (w1, w2, Gτ \Vf (C2(τ))), and P3 = [w2, zv(t), t]. For an illustration see
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Fig. 4. By Lemma 4.22, P0 ⊆ H\{v}. Note that since x,w1 ∈ Cv(φτ ), the path P1 exists in H\{v}.
Combining with the definitions of the vertices zv(x), zv(t), w1, w2, it holds that P ⊆ H \ {v}. So, it
remains to bound the length of the path.

dist(s, t,H \ {v}) ≤ |P0|+ |P1|+ |P2|+ |P3|
= dist(s, x,G \ {v}) + dist(w1, w2, Gτ \ Vf (C2(τ))) + 4

≤ dist(s, φτ , G \ {v})
+ dist(w1, w2, Gτ \ Vf (C2(τ))) + 6 (32)

≤ dist(s, φτ , G \ {v}) + dist(φτ , t, Pτ ) + 6 = |Pτ |+ 6, (33)

where Eq. (32) follows by the fact that x, φτ ∈ Cv(φτ ) and since G∆ ⊆ H, it holds that the
intracluster path R = [x, zv(φτ ), φτ ] exists in G \ {v}, Eq. (33) follows by Eq. (31).

Case (2.2): Pτ is costly. Let Us,t,v = {u1, . . . , uκ′} ⊆ Qτ for κ′ = bκ/3c ≥ 1 be as defined by
Def. 4.17. Since by Obs. 2.3, the diameter of each cluster is 2, each uk ∈ Us,t,v belongs to a distinct
cluster Ck = Cv(uk) ∈ C. Hence there are at least κ′ distinct clusters on Qτ .

A cluster Ck = Cv(uk) is a contributor if addingQτ toGτ improves either the C1(τ)−Ck distance
(i.e., (C1(τ), Ck) ∈ ValSet1(Pτ )) or the C2(τ) − Ck distance (i.e., (Ck, C2(τ)) ∈ ValSet2(Pτ )) in
the corresponding appropriate graph. Otherwise, Ck is neutral. There are two cases to consider. If
all clusters are contributors (i.e., there is no neutral cluster) then all the κ′ clusters contribute to
Val(Pτ ) (either with C1(τ) or with C2(τ) or both). It then holds that Val(Pτ ) ≥ κ′ ≥ Cost(Pτ )/4.
Hence, by Eq. (29), we get a contradiction to the fact that the suffix Qτ was not added to Gτ .

In the other case, there exists at least one neutral cluster C` such that

dist(C1(τ), Ck, Ĥ1) ≤ dist(φτ , uk, Pτ ) and (34)

dist(Ck, C2(τ), Ĥ2) ≤ dist(uk, t, Pτ ) ,

where Ĥ1 = Gτ \ Vf (Ck) and Ĥ2 = Gτ \ Vf (C2(τ)). Let w1 ∈ C1(τ) and w2 ∈ Ck be the pair of

vertices satisfying dist(w1, w2, Ĥ1) = dist(C1(τ), Ck, Ĥ1). In addition, let y1 ∈ Ck and y2 ∈ C2(τ)
be the pair satisfying dist(y1, y2, Ĥ2) = dist(Ck, C2(τ), Ĥ2).

Let Q1 = [x, zv(φτ ), w1], Q2 = [w2, zv(uk), y1] and Q3 = [y2, zv(t), t] be the intracluster paths in
C1(τ), Ck and C2(τ) respectively. Note that by definition x,w1 ∈ Cv(φτ ).

Since by Lemma 4.19(c), v ∈ Vf (Ck) ∩ Vf (C2(τ)), it also holds that Q1, Q2, Q3 ⊆ H \ {v}. Let

P ′ = P0 ◦Q1 ◦ P1 ◦Q2 ◦ P2 ◦Q3 where P0 = Ps,x,v, P1 ∈ SP (w1, w2, Ĥ1) and P2 ∈ SP (y1, y2, Ĥ2).
By Lemma 4.22, P0 ⊆ H \ {v} and by the above explanation, P ′ ⊆ H \ {v}. So, it remains to
bound the length of the s− t path P ′.

dist(s, t,H \ {v}) ≤ |P ′| = |P0|+ |P1|+ |P2|+ 6

= dist(s, x,G \ {v}) + dist(w1, w2, Ĥ1) + dist(y1, y2, Ĥ2) + 6

≤ dist(s, φτ , G \ {v}) + dist(w1, w2, Ĥ1) + dist(y1, y2, Ĥ2) + 8

= dist(s, φτ , G \ {v}) + dist(C1(τ), Ck, Ĥ1)

+ dist(Ck, C2(τ), Ĥ2) + 8

≤ dist(s, φτ , G \ {v}) + dist(φτ , uk, Pτ ) + dist(uk, t, Pτ ) + 8

= |Ps,t,v|+ 8 ,
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where the first inequality follows by the fact that x, φτ ∈ Cv(φτ ) and hence the intraclusrer path
R = [x, zv[φτ ], φτ ] exists in G \ {v} and last inequality follows Eq. (34). The claim follows.
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Figure 4: Schematic illustration of the path-buying procedure of Alg. Cons8SWSpanner. The
horizontal path is Pτ = Ps,t,v whose segment Qs,t,v = Ps,t,v[φs,t,v, t] was considered to be bought
at time τ . The green paths correspond to the shortest paths in T0(s). Red edges correspond to
missing edges on Ps,t,v \ E(Gτ ). The vertex φs,t,v satisfies properties (N1) and (N2), hence it is
incident to a missing edge and the failing vertex v occurs on π(s, φs,t,v) strictly below the LCA
vertex LCA(φs,t,v) = LCA(s, Cv(φs,t,v)). The vertex x ∈ Cv(φs,t,v) satisfies that v /∈ π(s, x). The s− t
replacement path in H \ {v} is given by traveling from s to x on π(s, x) and then use the closest
vertex pairs w1, w2 and y1, y2.

Finally, we turn to bound the size of H8(S) and claim the following.

Lemma 4.23 |E(H8(S))| = Õ(max{|S| · n, n2/|S|2}).

Proof: Let H = H8(S). By the size-analysis of Alg. Cons4SWSpanner, it remains to bound the
number of edges added due to the path-buying procedure of step (4.2).

Let B ⊆ Pfarindep be the set of paths corresponding to the paths segments that were bought
in the path-buying phase. For every ordered pair of clusters, C1, C2 ∈ C let B(C1, C2) = {Pτ ∈
B | (C1, C2) ∈ ValSet(Pτ )}.

Clearly, B =
⋃
C1,C2∈C B(C1, C2). We next claim that since the diameter of each cluster is small,

it holds that the cardinality of each subset B(C1, C2) is small as well.

Lemma 4.24 |B(C1, C2)| ≤ 5 for every C1, C2 ∈ C.

Proof: Fix C1, C2 ∈ C and let B(C1, C2) = {Pτ1 , . . . , PτN } be sorted according to the time τk
their segment Qτ was added to the spanner, for every k ∈ {1, . . . , N} where N = |B(C1, C2)|. Let
Pτk = Psk,tk,vk . Let pk, qk ∈ Pτk be such that pk is closer to the source sk, and Cvk(pk) = C1 and
Cvk(qk) = C2.
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Recall that φτk is the first vertex of Qτk (see Def. 4.16). Let C` = Cvk(u`) be the cluster of
u` for every u` ∈ Usk,tk,vk (see Def. 4.17). By Obs. 2.3, it holds that C` 6= C`′ for every u`, u`′ ∈
Usk,tk,vk . Recall that for every u` ∈ Usk,tk,vk , Ps,u`,v = Ps,t,v[s, u`]. Since LastE(Ps,u`,v) /∈ Elocal,
it holds that v /∈ {z1(u`), LCA(s, C1(u`))}. Combining that with the fact that u` ∈ Usk,tk,vk did
not satisfy property (N2) (see Def. 4.16 and Def. 4.17), we conclude that vk ∈ πfar(sk, u`). Since
qk ∈ Usk,tk,vk ∪ {tk}, using Lemma 4.19(c), it holds that

vk ∈ Vf (C2) for every k ∈ {1, . . . , N} , (35)

and by Lemma 4.19(b),
Pτk [pk, qk] ⊆ Qτk [pk, qk] ⊆ G \ Vf (C2) . (36)

Since C1 = Cvk(pk) and C2 = Cvk(qk), for every k ∈ {1, . . . , N}, it holds that zv1(p1) = ... =
zvN (pN ) and also zv1(q1) = ... = zvN (qN ). Hence, letting z1 = zv1(p1) and z2 = zv1(q1), it holds
that

z1, z2 /∈ {v1, . . . , vN}. (37)

Denote
Xk = dist(pk, qk, Gτk+1

\ Vf (C2)).

We now show that Xk < Xk−1 for every k ∈ {2, . . . N}.
Each time a path segment Qτk is purchased at time τk, it implies that

Xk ≤ dist(pk, qk, Pτk \ Vf (C2)) (38)

= dist(pk, qk, Pτk) (39)

< dist(C1, C2, Gτk \ Vf (C2)) (40)

≤ Xk−1 , (41)

where Eq. (38) follows by the fact that Pτk [pk, qk] ⊆ Qτk ⊆ Gτk+1
, Eq. (39) follows by Eq. (36),

Eq. (40) follows by the fact that Qτk was bought and by Eqs. (27) and (28), and Eq. (41) follows
by the fact that pk−1 ∈ C1 and qk−1 ∈ C2.

Therefore, we have that
XN ≤ X1 − (N − 1) . (42)

Conversely, we have that

XN ≥ dist(pN , qN , G \ {v1, . . . , vN}) (43)

≥ dist(p1, q1, G \ {v1, . . . , vN})− 4 (44)

= dist(p1, q1, Pτ1)− 4 = dist(p1, q1, Pτ1 \ Vf (C2))− 4 (45)

≥ X1 − 4 , (46)

where Eq. (43) follows as GτN+1 ⊆ G and by Eq. (35), {v1, . . . , vN} ⊆ Vf (C2). To see Eq. (44),
note that p1, pN ∈ C1 and q1, qN ∈ C2 and by Obs. 2.3(3) the diameter of the cluster is 2. It
remains to show that the intracluster paths R1 = [p1, z1, pN ], R2 = [q1, z2, qN ] exist in the surviving
graph G \ {v1, . . . , vN}. This holds since by Eq. (37), z1, z2 /∈ {v1, . . . , vN}, and by Eq. (35) and
(36). Eq. (45) follows by Eq. (36). Finally, Eq. (46) follows by the fact that Pτ1 [p1, q1] ⊆ Qτ1 was
added at step τ1, hence Pτ1 [p1, q1] ⊆ Gτ2 . By combining with Eq. (42), we get that N ≤ 5. The
claim follows.
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Finally, since for every path P ∈ B, it holds that Cost(P ) ≤ 4 · Val(P ), we get that

|E(Gτ ′) \ E(G0)| =
∑
P∈B

Cost(P ) ≤ 4
∑
P∈B

Val(P ) ≤ 4
∑

C1,C2∈C
|B(C1, C2)|

≤ O(|C|2) = Õ((n/|S|)2) .

where the last equality follows by the fact that there are |C| = |Z| = Õ(n/|S|) clusters. The claim
follows.

Additive stretch 6 (for all pairs). Thm. 1.2 follows immediately by Lemma 4.1. This should
be compared with the single source additive FT-spanner H4({s}) of [18] and the (all-pairs, non

FT) 6-additive spanner, both with Õ(n4/3) edges.
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