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Abstract. Embedded software is at the heart of implantable medical de-
vices such as cardiac pacemakers, and rigorous software design method-
ologies are needed to ensure their safety and reliability. This paper gives
an overview of ongoing research aimed at providing software quality as-
surance methodologies for pacemakers. A model-based framework has
been developed based on hybrid automata, which can be configured with
a variety of heart and pacemaker models. The framework supports a
range of quantitative verification techniques for the analysis of safety,
reliability and energy usage of pacemakers. It also provides techniques
for parametric analysis of personalised physiological properties that can
be performed in silico, which can reduce the cost and discomfort of test-
ing new designs on patients. We describe the framework, summarise the
results obtained, and identify future research directions in this area.

Keywords: model-based design; quantitative verification; hybrid au-
tomata; heart modelling; cardiac pacemakers.

1 Introduction

The growing reliance on implantable medical devices controlled by embedded
software calls for rigorous software design methodologies to ensure their safe op-
eration and to avoid costly device recalls. We focus here on cardiac pacemakers,
which are battery-powered devices implanted under a patient’s skin that sense
the electrical signals in the heart and regulate the heart rhythm. Of paramount
importance here is the safety of the device’s operation, but analysis of char-
acteristics such as energy usage are also needed to improve the designs. An
important observation is that evaluating the operation of the pacemaker must
take into account the characteristics of the heart rhythm of the patient, and
therefore personalisation of the methodology is desirable.

Several models for pacemakers have been proposed, to mention [21, 24, 10,
19, 25, 16, 17]. Since the basic function of the pacemaker is to maintain a normal
heart rhythm of 60-100 beats per minute (BPM), the models need to capture real-
time, in addition to being able to sense electrical signals, typically (non-linear)
continuous flows. Therefore, natural models for the pacemaker are (determinis-
tic) timed or hybrid automata, which are then composed with a heart model,
typically a hybrid automaton, for the analysis. An important consideration in
our work has been stochasticity, which manifests itself in several ways: sensor
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noise, modulated rate in response to activity level, as well as the randomness
in the timing of the heart beats, which is specific to the patient and can switch
between normal and diseased behaviours. We have thus concentrated our efforts
on developing effective methodologies to provide software quality assurance for
pacemakers in presence of stochasticity through quantitative verification tech-
niques.

This paper reports on a comprehensive model-based framework to provide
software quality assurance for cardiac pacemakers developed within the VERI-
WARE and VERIPACE projects and described in [4–6, 18]. The framework is
based on hybrid input-output automata models, and can be instantiated with
a number of heart models, including a model based on synthetic ECG that can
be learnt from patient data and a physiologically-relevant heart model built
as a network of cardiac cells. Models of pacemakers of differing functionalities
can be plugged into the framework for analysis: we consider a basic pacemaker
design inspired by [17], an advanced design that can handle pacemaker me-
diated tachycardia, as well as a rate-adaptive pacemaker. We implement the
framework in Simulink and provide a broad range of analysis techniques, which
are based on simulation, as well as approximate quantitative verification, for
checking safety, reliability and detailed energy-usage. We also develop analysis
methods for advanced physiological properties, including pacemaker mediated
tachycardia correction and parametric analysis to support in silico testing of the
rate-modulation functionality under different personalised scenarios, e.g., age of
the patient and activity level. We demonstrate the usefulness of our methodology
through a range of experiments. Finally, we summarise future research directions
and challenges in this area.

2 Model-based Framework for the Verification of

Pacemakers

Our framework for modelling and quantitative verification of pacemaker models
is based on the formalism of hybrid input-output automata [20], and supports
the composition of a heart model and a pacemaker model on which verification
is performed. We consider a discrete-time simulation semantics, which enables a
sound and straightforward encoding of the formal specification into MATLAB
Simulink/Stateflow models. In the following, we recall the basic details of the
framework that we introduced in [6].

Let X = {x1, . . . , xd} be a set of variables in R. An X -valuation is a function
η : X → R assigning to each variable x ∈ X a real value η(x). Let V(X )
denote the set of all valuations over X . A constraint on X , denoted by grd, is
a conjunction of expressions of the form x ⊲⊳ c for variable x ∈ X , comparison
operator ⊲⊳ ∈ {<,≤, >,≥} and c ∈ R. Let B(X ) denote the set of constraints
over X . Let Y(X ) denote the set of all real-valued functions over 2X . We define
L(X ) := {x := u | x ∈ X ∧ u ∈ X ∪ {0}} to be the set of update assignments
over the set of variables X .
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Definition 1 (Hybrid I/O Automaton). A hybrid I/O automaton (HIOA)
A = (X , Q, q0, E1, E2, Inv,→,Diff) consists of:

– a finite set of variables X ;
– a finite set of modes Q, with the initial mode q0 ∈ Q;
– a finite set E1 of input actions and a finite set E2 of output actions with

E = E1 ∪ E2;
– an invariant function Inv : Q → B(X );
– a transition relation →⊆ Q× (E ∪ {ς})× B(X )× 2L(X ) ×Q, where ζ is the

internal action; and
– a derivative function Diff : Q × X → Y(X ) that assigns a function to a

variable x ∈ X .

We use a network of HAs for the composition of more than one HA. In order
to obtain a deterministic network we impose some restrictions on HAs as follows:

– they must be input enabled, meaning that, for each mode and each input
action, there is an edge labelled by the input action;

– the output actions have the highest priority, meaning that they are always
urgent, i.e., if at any state the output action is enabled, the system must
execute that action;

– the input actions are never enabled unless the corresponding output actions
from the environment synchronise with them: once they can be synchronised,
they are urgent;

– for each mode, there is a self-loop labelled by the internal action.

Definition 2 (Network of hybrid automata). Let m be the number of HAs
in the network. A state of the network is

(
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– either, for each 1 ≤ k ≤ m, (q
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i ) has a continuous evolution;

– or, for each 1 ≤ k ≤ m, (q
(k)
i , η

(k)
i ) has a discrete transition. If, for some k,

(q
(k)
i , η

(k)
i ) enables an output action a ∈ E

(k)
2 , then all the other (q
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i )

must take a corresponding input action a ∈ E
(k′)
1 (notice that this is guar-

anteed by input enabledness); otherwise, each state evolves by taking the in-
ternal action.

We assume in our framework that both the heart model and the pacemaker
model are specified as hybrid input-output automata. To allow user-specified
models, we define fixed component interfaces for the heart and pacemaker mod-
els, as shown in Figure 1. The heart and the pacemaker communicate via in-
put and output actions which are marked by ? and ! respectively. The pace-
maker communicates with the heart through four output actions, Vs(at)!, Vs(at)!,
Vs(vt)! and Vs(vt)!. The actions Vs(at)! and Vs(at)! denote the beginning and
the end of the atrial stimulus, respectively, while Vs(vt)! and Vs(vt)! denote the
beginning and end of the ventricle stimulus. The heart communicates with the
pacemaker using two output actions Aget! and Vget!.
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Heart
Aget!

Vget!

Vs(at)? Vs(at)?

Vs(vt)?

Vs(vt)?

(a) Heart model

Pacemaker
Aget?

Vget?

Vs(at)!

Vs(at)!

Vs(vt)! Vs(vt)!

(b) Pacemaker model

Fig. 1. Interfaces for the heart and pacemaker models.

3 Heart Modelling

In this section we present two heart models, the ECG and the cardiac cell net-
work model, and we show how they can be connected to the pacemaker and
integrated within the overall verification framework. Each heart model has its
own advantages and disadvantages. For instance, the ECG heart model can be
easily adapted to a given patient, whereas the cardiac cell heart model is more
physiologically relevant. By providing a common interface to the pacemaker, we
can effectively evaluate and compare the behaviour of multiple heart models in
a modular fashion.

3.1 The ECG heart model

This heart model is based on synthetic ECG rhythms developed by Clifford
et al. [8]. An ECG is a signal recorded from the surface of the human chest,
which describes the activity of the heart. The ECG signal is an approximation
of the electrical activity inside the human heart. An example ECG is given in
Figure 2(a).

Typically, an ECG signal describes a cardiac cycle composed of three main
waves, P, QRS and T. The P wave denotes the atrial depolarisation. The QRS
wave reflects the rapid depolarisation of the right and left ventricles. The T wave
denotes the repolarisation of the ventricles. In Figure 2(b) we present the hybrid
automaton for the ECG heart model. It is based on a system on nonlinear
ODE with two variables x(t) (the value of the ECG signal at time t) and θ.
Here θ1 represents the beginning of the P wave; θ2 represents the beginning
of the Q wave; αx

i and bxi , respectively, are the amplitude and width of the
Gaussian functions used to model the ECG; θ ∈ [−π, π] is the cardiac phase;
∆θxi = (θ − θxi )mod 2π; and ω = 2πh

60
√
hav

is the angular velocity, where h is

the instantaneous (beat-to-beat) heart rate in BPM and hav is the mean of the
last n heart rates (typically with n = 6) normalized by 60 BPM. To use the
ECG heart model one has to define the instantaneous (beat-to-beat) heart rate
function h(t) (t ∈ R≥0), which specifies the distance between two consecutive
R-events (highest peak in Figure 2(a)). Technically, it is equivalent to the so
called RR-series χ(n), n ∈ {1, . . . , N}, where N denotes the length of the series.
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(a) Example electrocardiogram [23]
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{Vget!}, {θ = θ2}, {∅}
(b) ECG hybrid automaton

Fig. 2. ECG heart model.

The value of χ(n) denotes the time between two consecutive heart beats. More
details on the construction of the function h(t) can be found in [23].

3.2 The cardiac cell heart model

This heart model is based on modelling the electrical conduction system (ECS)
of the heart (see [6]). The ECS is a network of nerves whose role is to propagate
the action potential (AP) through the heart tissue. We abstract the conduction
system as a network of cardiac cells, a model that is both physiologically mean-
ingful and computationally tractable (in [6] we model a network of 33 cells).
The ECS of the heart consists of conduction pathways with different conduction
delays. Cells are connected by pathways. The delays of the pathways depend on
the physiology of the tissue considered, and can be tuned to reproduce various
tissue diseases.

Our model consists of the SA node, whose role is to generate sequences of
AP signals which are propagated through the ECS of the heart, and 32 cells that
share similar properties.

The cell model in Figure 3, taken from [26], consists of four modes, each
associated with an AP phase: resting and final repolarisation (q0), stimulated
(q1), upstroke (q2), and plateau and early repolarisation (q3). The cell model is
characterised by two timed periods: effective refractory period (ERP) is the time
period where the cell cannot be stimulated and relative refractory period (RRP)
is the time period where a secondary excitation event is possible.

The variables of the model are: the membrane voltage v, which controls mode
switches; ist, which is the stimulus current; and a restitution-related variable vn,
used to modify the next ERP phase upon a new round of excitation. Specifically,
this is achieved through the function f(λ) = 1+13 6

√
λ (mode q3), where λ = vn

VR

and VR is a model-specific constant called repolarisation voltage [26].
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q3

v < VO

v > VR
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v < VR
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v < VT
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v̇ = α2v
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v > VT
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{Vs?}, {v < VT}, {vn := v}
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{ς}, {v ≥ VT}, {∅}
{ς}, {v ≥

V
T }, {∅}

{ς}, {v ≤ VR}, {∅}

{Vget!}, {v ≥ VO}, {∅}

v̇ = α3vf (λ)

Fig. 3. Hybrid automaton for a ventricular cardiac cell.

We denote with v = [v1 . . . vN ]T the vector of the membrane voltages of a
network with N cells. We define a function gk(v) to express the voltage contri-
bution to a cell k from the neighbouring cells, as follows:

gk(v) =

N
∑

i=1,i 6=k

vi(t− δki) · aki − vk · dk, (1)

where aki is the gain applied to the potential vi from cell i, δki is the time it
takes for the potential to reach cell k, and dk is the distance coefficient. These co-
efficients depend on the conduction system, and in particular on the conduction
delays.

In Figure 4(a) we depict three blocks representing the connection of cells in
the ECS. This component provides a template suitable for potentially including
any kind of multi-cellular model of the cardiac tissue, and defines the interface
with the pacemaker model.

Every cell in the atrium and the ventricle blocks can be stimulated by the
pacemaker using the input actions Vs(at)?, Vs(at)? and Vs(vt)?, Vs(vt)?, respec-
tively. The output actions Aget! and Vget! notify the pacemaker that the AP
in the atrium and the ventricle (where the pacemaker leads are inserted) have
reached a given threshold. The function v(t) is the output voltage from a given
cell, which is the endpoint of the source block.

Figure 4(b) shows the Simulink implementation of a cardiac cell, which is
given by three main blocks: Event generator, Hybrid set and Subsystem. The
Event generator block is responsible for generating the input events to the cell.
The Hybrid set implements the cell hybrid automaton model (see Fig. 3). The
Subsystem block performs the integration procedure to compute the voltage level
of the cell. In Figure 4(c), a simplified network of six cells is depicted. Each cell
block is composed from the three sub-blocks shown in Figure 4(b) and connected
to other cells through delay and gain components.
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SA node
�v(t)

Atrium
�v(t)

Ventricle

Vs(at)?

Vs(at)? Aget!

Vs(vt)?

Vs(vt)? Vget!

Vs?

Vs?

(a) Electrical conduction system model

(b) Cell block (c) Cell connection

Fig. 4. Cardiac cell model

3.3 Switching between Different Heart Behaviours

The introduced heart models can exhibit only a single heart behaviour, such as
normal, bradycardia or tachycardia, which is determined by the frequency of the
RR-series (and sets the firing rate of the SA node in the cardiac cell model).

However, a real human heart exhibits several spontaneous changes of heart
rhythms. In [6], we reproduce such dynamics by modelling the probabilistic
transition between three modes, imposing a Normal (N), Bradycardia (B) and
Tachycardia (T ) rhythm, respectively, according to a prescribed RR-series for
each mode. We also assume an initial distribution α ∈ Distr({N,B, T}) and
transition probabilities Pi ∈ Distr({N,B, T}) for i ∈ {1, 2, 3}. We want to re-
mark that both the initial distribution and the transition probabilities between
behaviours can be learned from patient data, which enables the parametrization
of personalized heart models.

4 Pacemaker Modelling

In this section we provide the specification of two pacemaker models in our
framework. We consider the model by Jiang et al. [17], hereafter called the basic
pacemaker, which is specified as a network of Timed Automata (TA); and an
extension of the basic pacemaker presented in [6, 18], which we call the enhanced
pacemaker, with advanced features such as sensing noise, energy consumption,
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and the ability to adapt the pacing rate depending on the physical activity of
the patient.

4.1 Basic pacemaker model

The pacemaker is implanted under the chest skin and sends impulses to the
heart at specific time intervals. The role of the basic pacemaker is to keep the
heart rhythm at a given rate. It has two leads: one for the atrium and one for
the ventricle. Each lead has the ability to sense or deliver an electrical signal.

The basic pacemaker model consists of five core TA components, named
according to their specific function: LRI, AVI, URI, PVARP and VRP. The
lower rate interval (LRI) component (Fig. 5(a)) has the function of keeping the
heart rate above a given minimum value. The atrio-ventricular interval (AVI)
component (Fig. 5(c)) is designed to maintain the synchronisation between the
atrial and the ventricular events. An event is when the pacemaker senses or
generates an action. The AVI component also defines the longest interval between
an atrial event and a ventricular event. The post ventricular atrial refractory
period (PVARP) component (Fig. 5(b)) notifies all other components that an
atrial event has occurred. The upper rate interval (URI) component (Fig. 5(d))
sets a lower bound on the times between consecutive ventricular events. Finally,
the ventricular refractory period (VRP) component (Fig. 5(d)) filters noise and
early events that may cause undesired behaviour.

Three additional components, Interval, Counter and Duration (Figure 5(e)
and (f)), are included in the basic pacemaker to detect and correct pacemaker
mediated tachycardia (PMT), an event occurring when the pacemaker increases
the heart rate inappropriately. Such components switch the functioning modes
of the pacemaker from DDD (pacing and sensing of the atrium and ventricle)
to VDI (pacing and sensing only the ventricle). More details will be given in
Section 5.1, and can be found in [17, 6].

There are four actions in the pacemaker model that serves as the interface
with a generic heart model: the input actions Aget? and Vget? notify the pace-
maker when there is an AP from the atrium or from the ventricle, respectively
(see also Sect. 3.2), and likewise for the output actions AP! and VP! are respon-
sible for pacing the atrium and the ventricle.

4.2 Enhanced pacemaker model

In this section, we extend the functionalities of the basic pacemaker model by
considering noise, energy consumption and rate modulation through physiolog-
ical sensors.

Pacing Noise. One of the important design issues of pacemakers is the need to
tolerate noise. For instance, when the pacemaker tries to deliver a beat, the beat
might get lost due to noise on the channel. The basic pacemaker is constructed
under the simplified assumption that it can pace the heart perfectly. Here we
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(a) LRI component (b) PVARP component (c) AVI component

(d) URI and VRP
components

(e) Interval component

(f) Counter and Duration component

Fig. 5. Timed automata of the five core pacemaker components (a,b,c,d), and of In-
terval, Counter and Duration components for PMT analysis (e,f). Locations labelled
with C indicate committed locations that do not allow time to elapse.
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consider a more realistic scenario, modelling the so called “failure-to-capture”,
a kind of sensing noise due to insufficient contact between the lead and the
myocardium, or due to lead fracture [11]. In particular, we add to the fixed
stimulus current ist (cf. Figure 3) a normally distributed noise with mean µ and
variance σ2 each time the pacemaker wants to pace the cell.

In this way, if the noise added to the channel is too high, a “missing stimulus”
is generated, i.e. the stimulus from the pacemaker will not be high enough to
stimulate the cell.

Energy. Pacemaker’s life time is limited and is crucially dependent on the
battery embedded into the devices. When the battery depletes, the pacemaker
needs to be re-implanted, and hence the analysis of energy usage and, ultimately,
the design of more energy-efficient devices are indispensable.

In our framework, we consider the so called Kinetic Battery model (KiBaM)
[22] to describe the dynamics of energy consumption. The model consists of the
following system of ODEs:

dy1(t)

dt
= −ι(t) + k

(

y2(t)

1− c
−

y1(t)

c

)

,
dy2(t)

dt
= −k

(

y2(t)

1− c
−

y1(t)

c

)

. (2)

The battery charge is distributed in two wells: the available-charge y1(t) and the
bound-charge y2(t). The current applied to the battery at time t is described by
the function ι(t). When the value of ι(t) is zero the battery enters the recovery
mode, where the energy from the bound-charge well flows to the available-charge
well. This mode allows a nearly discharged battery to recover in a period of zero
or low current by increasing its available-charge. When the current ι(t) is not
zero, both charges y1(t) and y2(t) decay over time. The battery is considered to
be empty when there is no charge in the available-charge well, i.e., y1(t) = 0.
For details on the composition between the KiBaM and the pacemaker model
see [6].

Rate adaptive pacemaker. Physiological sensors are an essential component
of the so-called rate adaptive (RA) pacemaker, where the pacing rate is ad-
justed according to the levels of activity (physical, mental or emotional) de-
tected in the patient. RA pacemakers represent the only choice for individuals
with chronotropic incompetence, that is, when the heart rate cannot naturally
adapt to increasing demand (e.g. AV block). A number of different pacing meth-
ods and sensors have been developed so far [2]. However, they require extensive
testing on cardiac patients especially to assess the device under varying levels
of physical exercise. Our model-based framework provides an effective test-bed
for these kinds of devices, where different (and possibly multiple) sensors can be
integrated into available pacemaker models, and formal verification enables the
automated design and debugging of rate modulation protocols in order to ensure
safe behaviour of the heart under the different stress levels which the patient can
undergo.
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In [18], we develop a HIOA model of a VVIR pacemaker (sensing and pacing
of the ventricle, and with rate modulation) based on a QT interval (QTI) sensor,
a highly specific metabolic sensor that exploits the fact that physical activity
shortens the QT interval (see Fig. 2a), and thus requires an increased heart rate.
We implement the QT sensor through a runtime ECG detection algorithm that
allows to simulate and validate the model with patient ECG data.

The RA component (Fig. 6) is connected to the components of the VVI
pacemaker and is responsible for changing the pacing rate (TLRI) according to
the signals from the QT sensor, which outputs an action TE! whenever a T wave
is detected. To this aim, we established a relationship between QTI lengths and
TLRI by means of a non-linear regression analysis performed over ECG data
from the PhysioNet database [1], and described by the following equation

RR(QT) = −
log ((a− QT)/b)

k
(3)

where a, b and k are the estimated regression parameters; QT is the QTI length;
and RR is the RR interval length which is used to update TLRI.

From the initial state q0, the RA component waits for a ventricle sense or
pace event (Vget or VP, resp.) to start timers tVP and tQT. tVP defines the re-
fractory window of size TR where the RA component disables the pacemaker
inputs, while tQT models the duration of the QT interval and is terminated by
the synchronization with a TE! signals. If the obtained tQT falls within an admis-
sible interval [T l, Tu], the corresponding adapted value for TLRI is calculated
through function fQT, which applies the above regression law over the mean of
the last four detections. This averaging mechanism ensures prompt response to
fast changing QTIs and, at the same time, allows us to mitigate the effects of
wrongly sensed intervals.

The ECG detection algorithm implemented in the QT sensor component
relies on a signal processing algorithm based on [27, 12], and is thoroughly ex-
plained in [18]. Note that the behaviour of the QT sensor is inherently stochastic,
since it processes and filters ECG signals that are subject to random noise. How-
ever, other sources of uncertainty can be incorporated, like random under- and
over-sensing.

5 Pacemaker Verification

In this section, we report some experimental results obtained in the evaluation
of our framework with the basic and the enhanced pacemaker models. All the
following experiments have been performed with the cardiac cell model. First,
we show how the pacemaker corrects bradycardia when the probability of devi-
ating from the normal behaviour is varied, and how cases of pacemaker mediated
tachycardia are solved by mode switching. Second, we evaluate the behaviour of
our model under different levels of sensing noise; we analyse the energy consump-
tion of the pacemaker and its dependence on the pacing rate; and we conduct
experiments for the rate-modulation property, considering multiple inputs from
the QT sensor and physical exercise curves.
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q0 q1 q2

Vget?/

{tVP := 0},

{tQT := 0}

VP?/

{tVP := 0},

{tQT := 0}

tVP ≥ TR

{tQT≥Tl^tQT≤Tu}^TE?/
{TLRI := fQT(tQT)}

{tQT>Tu}

Fig. 6. Hybrid automaton of the rate adaptive component

5.1 Verification of the basic pacemaker model

Probabilistic Switching. We conduct experiments considering the probabilis-
tic transitions between different heart behaviours, as explained in Sect. 3.3.
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Fig. 7. Paced ventricular beats at varying
probabilities of Bradycardia behaviour.

In this analysis, we obtain a re-
lationship between the probability to
generate bradycardia and the num-
ber of pacemaker beats to the ven-
tricle, shown in Figure 7. We range
the probability from 0.05 to 0.95 and
run 40 experiments, each representing
8 minutes of heart beat. We clearly
observe that, by increasing the proba-
bility of a bradycardia behaviour, the
pacemaker delivers more beats to the
ventricle. This gives evidence for the
ability of our pacemaker to correct
random bradycardia episodes.

Pacemaker Mediated Tachycardia. In human hearts, the atrium can beat
faster than the ventricle, at ratio 2:1 or 3:1. The resulting heart beat can still
be regular due to a special cell called the AV node, which has a blocking period
longer than the other cells. The AV node connects the ECS of the atrium to
the ECS of the ventricle. The pacemaker tries to maintain a 1:1 AV conduction
through the AVI component. Thus, in the event of PMT, the pacemaker increases
the beats in the ventricle inappropriately. In order to avoid this behaviour we
need to switch the pacemaker from the DDD mode to the VDI mode when the
PMT event is detected. After PMT is successfully corrected and a normal heart
beat is re-established, the pacemaker can switch back to the DDD mode.

In Figure 8 we show an experiment where a tachycardia episode in the ven-
tricle due to PMT (red curve), is corrected by a mode switch from DDD to VDI
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at time 13. As a result, the number of ventricle beats decreases and the regular
heart rhythm is recovered (blue curve).
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Fig. 8. AP in the ventricle during a PMT episode. The red curve shows a tachycardia
frequency, corrected through mode switch at time 13 (blue curve).

5.2 Verification of the enhanced pacemaker model

Noise. Here we address the occurrence of random “failure to capture” events,
generated by the presence of random noise on the pacemaker leads (illustrated
in Section 4.2). In the following experiments, two parameters are considered: the
mean µ and the variance σ2 of the normally distributed noise. Figure 9(a) shows
the number of ventricular beats for different values of µ (red line with µ = −0.3,
green line with µ = −0.2 and blue line with µ = −0.1). We choose a negative µ
in order to simulate the undersensing effect. In each experiment with fixed mean
µ, we make the variance range from 0.1 to 1 with step of 0.1.

The results demonstrate that, when Gaussian noise with small mean (indicat-
ing a high degree of undersensing) is added to the stimulus, the number of beats
in the ventricle decreases, since more beats induced by the pacemaker will be
lost. On the other hand, increasing the variance of the normal distribution will
yield a higher number of beats. Indeed, higher variance to the noise, when cen-
tred at negative mean, produces better chances of picking positive samples from
the normal distribution. This, in turn, implies a better chance for the stimulus
to be high enough to stimulate the cell.

Energy. In this analysis, we are interested in the energy consumption of the
pacemaker when setting the SA node to induce bradycardia, thus forcing the
device to deliver paced beats. Figure 9(b) shows the results obtained by varying
two parameters, TAVI and TURI, which are the default programmable param-
eters used by technicians to ensure a heart beat between 60 and 100 BPM. We
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make TAVI range in the interval [70 − 300] ms with 10 ms increment, and the
value of TURI in [50 − 175] BPM with 5 BPM increment. Fig. 9(b) evidences
a steep increase in energy consumption when TURI< 50 or TAVI> 200. This
behaviour is caused by the fact that we are forcing the pacemaker to wait less
between two consecutive ventricular events. Therefore, the pacemaker will initi-
ate most of the ventricular beats before the occurrence of a natural beat, thus
leading to a more prominent depletion of battery charge.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

55

Variance

N
u

m
b

e
r 

o
f 

v
e
n

tr
ic

le
 b

e
a
ts

 

 

mean = 0.1

mean = 0.2

mean = 0.3

(a) Number of ventricle beats with ran-
dom undersensing at different variances.

100

150

200

250

300

20
40

60
80

2000

2200

2400

2600

2800

3000

TAVI [msec]

TURI [msec]

E
n

er
g

y

(b) Battery charge in 1 min period under
Bradycardia, at varying TAVI and TURI.

Fig. 9. Sensing noise (a) and energy consumption (b) experiments in the enhanced
pacemaker verification.

Parametric Analysis and Sensor Induced Tachycardia. We perform an
exhaustive parameter exploration for evaluating the behaviour of the rate adap-
tive pacemaker model over a wide spectrum of firing rates of the sinus node (SA
node) and QTI lengths. The SA frequency models the ideal heart rate demand
and expresses the levels of stress and activity; the QTI lengths detected by the
QT sensor are used to update the pacing rate as illustrated in Sect. 4.2. For
evident vital reasons, the application on real devices and patients of this kind of
quantitative analyses can involve only a limited range of safe parameter settings
and feasible activity levels, and is therefore insufficient for assessing the effects
of sensors faults and of extreme SA rates.

Instead, with our formal framework, we can distinguish the parameter regions
under which the pacemaker correctly operates from those where phenomena of
sensor-induced tachycardia (SIT) occur, i.e. when sensors malfunctioning (in
our case, wrongly detected short QTIs) lead to inappropriately fast pacing rate.
Figure 10 compares the number of ventricular beats in healthy conditions (a)
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and in presence of AV block (b), over 552 different combinations of QTI lengths
and SA firing rates.

Such analysis provides evidence of a diagonal threshold of ideal QTI lengths
and SA rates, below which we observe a SIT phenomenon, characterized by a
ventricular rate constantly higher than the SA rate, which is amplified as the
QTI decreases. This faulty behaviour is slightly less evident in the AV block
scenario, because of the number of beats lost by the defective AV node. On
the other hand, if for each SA rate appropriate QTIs are considered (above the
ideal threshold), we observe a regular pattern in the number of ventricular beats.
With a healthy AV node, they increase linearly in the number of SA beats, thus
reproducing a correct conduction system. In the case of AV block, the frequency
in the ventricle grows linearly before reaching a final plateau, indicating the
inability to deliver high frequencies.
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Fig. 10. Number of ventricular beats (z-axis) over multiple QTIs (x-axis) and SA node
firing frequencies (y-axis).

Modulation during Physical Activity. We validate our VVIR model by
comparing it to its fixed-rate counterpart (VVI) over typical exercise curves of
a young (Fig. 11(a)) and old (Fig. 11(b)) individual. Heart rate during physi-
cal exercise is characterized by four stages: neural slope (initial fast increase);
metabolic slope (slower increase); decay (fast decrease during recovery); and
resting. Since old subjects cannot generally provide the same exercise intensity
as young individuals, their activity curves are characterized by a lower maximum
heart rate.

Results during a 20 minutes exercise demonstrate that our VVIR imple-
mentation successfully manages to modulate the pacing rate according to the



16 Marta Kwiatkowska et al.

intensity of physical activity in both classes of patients. Minor rate discrepan-
cies occur in the most intense phases; these are, however, negligible if compared
to the behaviour of the fixed rate pacemaker (unable to provide an appropriate
rate at SA rates higher than 110 BPM). Moreover, no SIT events are detected
during exercise, regardless the intensity of physical activity.
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Fig. 11. Rate modulation during exercise in young (a) and old (b) patients. The SA
rate (black dashed line) gives the metabolic demand following typical activity curves.
The number of ventricular beats is compared between the VVIR (green curve) and the
VVI (red curve) pacemakers.

6 Future Directions

In the previous section we described the verification of the pacemaker model to-
gether with two heart models: the ECG and the cardiac cell network. In future,
we plan to use more advanced heart models to capture the physiological char-
acteristics of the heart. Also, we plan to synthesise crucial timing parameters of
the pacemaker model such that it satisfies a given specification.

6.1 The minimal ventricular cardiac cell heart model

As an alternative to the previous heart models we propose to use the minimal
ventricular (MV) model of Bueno-Orovio et al. [3]. Unlike the previous two
models, the MV model can reproduce realistic and important AP phenomena,
e.g. alternans [14], and yet is computationally more efficient than some of the
other models in the literature. Using the techniques from Grosu et al. [13], we
can abstract the MV model into a network of hybrid automata (see Figure 12)
that fits our developed framework for pacemaker verification. For details see [15].

The MV model describes the flow of currents through a cell. The model is de-
fined by four nonlinear PDEs representing the transmembrane potential x1(d, t),
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the fast channel gate x2(d, t), and two slow channel gates, x3(d, t) and x4(d, t).
All of the four variables are time and position d := (dx, dy, dz) ∈ R

3 depen-
dent. For one dimensional tissue, i.e., d := dx, the evolution of transmembrane
potential is given by:

∂x1(dx, t)

∂t
= D

∂2x1(dx, t)

∂d2x
+ e(x1, t)− (Jfi + Jso + Jsi), (4)

where D ∈ R is the diffusion coefficient, e(d, t) is the external stimulus applied
to the cell, Jfi is the fast inward current, Jsi is the slow inward current and
Jso is the slow outward current. The currents Jfi, Jso and Jsi are described by
Heaviside function. For more details see [3]. To define the propagation of the
action potential on a cardiac ring of length L, we set the boundary conditions
to: xi(0, t) = xi(L, t) for all i ∈ {0, . . . , 4} and t ∈ R.

Fig. 12. Left: top-level Simulink/Stateflow model for a ring of five cardiac cells; the
Pacemaker block stimulates one cell. Center: Stateflow model of a single cardiac cell.
Right: dynamics and guards in 3 locations of a single cell.

(a) (b)

Fig. 13. Reach set projected on x11 (AP) for stimulation period of 1000 msec (a) and
600 msec (b) with x-axis for time and y-axis for voltage.
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HA approximation. One alternative to solving these highly nonlinear PDEs
is to discretize space and hybridize the dynamics. The result is the HA model.
Following the approach of [13], we first hybridize the dynamics and obtain a HA
with 29 locations. The basic idea is to approximate the Heaviside function from
Jfi, Jso and Jsi with a sequence of ramp functions. Each location of the resulting
HA contains a multi-affine ODE such as:

ẋ1 = −0.935x1 + 12.70x2 − 8.0193x1x2 + 0.529x3x4 + 0.87 + st

ẋ2 = −0.689x2; ẋ3 = −0.0025x3; ẋ4 = 0.0293x1 − 0.0625x4 + 0.0142,

where st is the time-varying stimulus input. The 29 locations represent the final
HA model of a single cardiac cell. By discretising the spatial location we obtain
a network of cells that can be connected in a ring or in a tree depending on the
physiological characteristics of the heart that we would like to model. In Figure
12 we depict a Simulink/Stateflow implementation of 5 cardiac cells connected
in a ring; in Figure 13 we depict the voltage level of a cardiac cell for a set of
initial conditions.

In [15] we have developed techniques on how to compute the over-approximation
of the reach set, i.e., the voltage level of the cardiac cell at a given time moment,
for a network of cardiac cells given by the MV model. As a future direction we
plan to connect the minimal ventricular cardiac cell heart model to the pace-
maker model, and investigate more advanced specifications such as linear dura-
tion properties [7].

6.2 Automated Synthesis of Pacemaker Software

Pacemaker devices have a limited number of programmable parameters and there
is considerable agreement among manufacturers on the appropriate values to set
according to the considered heart condition, implying that the same pacemaker
settings are used for large classes of cardiac patients exhibiting the same disease.

We believe that model synthesis methods can significantly advance the auto-
mated design of highly personalized pacemaker devices where, instead of choosing
among a limited number of condition-specific settings, parameters are automat-
ically derived according to patient’s clinical history, and continuously adapted
to reflect the real-time monitoring of her/his conditions.

Given that patient-specific models of the heart can be constructed from the
detailed electro-physiological data obtainable with current diagnostic means,
and given a (formal) property describing the desired behaviour of the heart,
synthesis techniques would provide pacemaker models that are correct-by-design,
so that, when composed with the heart model, the required behaviour is ensured
without the burden of formally verifying the property against all the possible
combinations of parameters.

Moreover, synthesis methods for implantable pacemakers need to cope with
a range of uncontrollable parameters, which, unlike the controllable timings of
a pacemaker, cannot be adjusted to our needs. Think, for example, about the
timing at which ventricle beats are fired, or any other physiological parameter
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of the heart. Hence, the purpose is to find a positive solution to an optimal
synthesis problem, which consists in finding optimal values for the controllable
parameters such that the composed heart-pacemaker model meets the required
(healthy) behaviour specification, regardless of the uncontrollable parameters.
As usual, the notion of optimality underlies a quantitative objective function we
want to maximize or minimize (e.g. energy consumption).

In [9], an initial approach to the optimal synthesis of pacemaker devices is
proposed, based on symbolic constraint reasoning, and with application to net-
works of timed I/O automata. We are currently working to extend the approach
towards richer and more complex models, featuring hybrid and probabilistic dy-
namics.

7 Conclusion

In this paper, we presented a model-based framework for the formal analysis of
implantable pacemakers, which supports the plug-in and the integration of differ-
ent heart and pacemaker models by means of a small set of pre-defined interfaces
and modelling templates. In the composed heart-pacemaker model, stochastic-
ity comes into play in several ways, such as in the probabilistic behaviour of the
heart or in the occurrence of random sensor faults. The framework enables the
analysis of a broad range of electro-physiological and device-related properties,
computed through simulation or quantitative verification, thus providing safety
guarantees of the pacemaker in presence of multiple sources of uncertainty. Tool
support is of crucial importance, and we, indeed, provide a sound implementation
of the formal framework in MATLAB Simulink/Stateflow.

We evaluated our framework over two heart models, the ECG and the cardiac
cell model; and over an enhanced pacemaker design, built by modularly adding
advanced functionalities, including energy, sensor noise and rate-adaptation on
top of a basic model inspired by [17]. We reported here only some of the ex-
perimental results obtained in previous work [4–6, 18], showing how quantitative
verification can provide practical guidance for safer and more efficient designs of
pacemaker devices, and, ultimately, give insight into the defective dynamics of
heart diseases.

Current research efforts are directed towards the analysis of more advanced
and physiologically accurate heart models, and to the synthesis of pacemaker
parameters. As future work, we aim to formulate and implement novel synthesis
methods, able to automatically derive not just pacemaker parameters, but also
complete specifications of pacing algorithms and protocols, which are optimal
under safety and cost-effectiveness, and account for the stochastic dynamics of
the heart and sensors.
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