
HAL Id: hal-01095977
https://hal.science/hal-01095977

Submitted on 16 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Construction of Abstract Domains for Heterogeneous
Properties (Position Paper)

Xavier Rival, Antoine Toubhans, Bor-Yuh Evan Chang

To cite this version:
Xavier Rival, Antoine Toubhans, Bor-Yuh Evan Chang. Construction of Abstract Domains for Het-
erogeneous Properties (Position Paper). Leveraging Applications of Formal Methods, Verification
and Validation. (ISOLA), Oct 2014, Corfu, Greece. pp.489 - 492, �10.1007/978-3-662-45231-8_40�.
�hal-01095977�

https://hal.science/hal-01095977
https://hal.archives-ouvertes.fr

Construction of Abstract Domains

for Heterogeneous Properties

(Position Paper) ⋆

Xavier Rival1, Antoine Toubhans1, and Bor-Yuh Evan Chang2

1 INRIA, ENS, CNRS, Paris, France
2 University of Colorado, Boulder, Colorado, USA

rival@di.ens.fr, toubhans@di.ens.fr, bec@cs.colorado.edu

Abstract. The aim of static analysis is to infer invariants about programs that are

tight enough to establish semantic properties, like the absence of run-time errors.

In the last decades, several branches of the static analysis of imperative programs

have made significant progress, such as in the inference of numeric invariants

or the computation of data structures properties (using pointer abstractions or

shape analyzers). Although simultaneous inference of shape-numeric invariants is

often needed, this case is especially challenging and less well explored. Notably,

simultaneous shape-numeric inference raises complex issues in the design of the

static analyzer itself. We study the modular construction of static analyzers, based

on combinations of atomic abstract domains to describe several kinds of memory

properties and value properties.

Static analysis to infer heterogeneous properties. Static analysis by abstract interpreta-

tion [4] utilizes an abstraction to over-approximate (non-computable) sets of program

states, using computer-representable elements, that stand for logical properties of con-

crete program states. As an example, for numerical properties, the interval abstract

domain [4] uses constraints of the form n ≤ x and x ≤ p to describe possible values of

variable x, where n, p are scalars.

To construct a static analyzer capable of inferring sound approximations of program

behaviors, one designs an abstract domain, which consists of an abstraction, and abstract

operations for sound post-condition operators, join and widening:

1. An abstraction is defined by a set of abstract elements A and a concretization

function γ : A → P(C), which maps each abstract property a into the set of

concrete elements γ(a) that satisfy it. The set A of abstract elements will be assumed

to be defined by a grammar of admissible logical predicates (e.g., for intervals,

a(∈ A) ::= a ∧ a | n ≤ x | x ≤ p).

2. A post-condition operator is a function f : A → A which over-approximates a

concrete operation f : C → P(C) encountered in programs (as, e.g., a test).

⋆ The research leading to these results has received funding from the European Research Council

under the FP7 grant agreement 278673, Project MemCAD, from the ARTEMIS Joint Un-

dertaking under agreement no 269335 (ARTEMIS Project MBAT) (See Article II.9 of the

Joint Undertaking Agreement), and the United States National Science Foundation under grant

CCF-1055066.

2 Xavier Rival, Antoine Toubhans, and Bor-Yuh Evan Chang

state 1:

&x

−8

n :

d : 18

n :

d : 5

n :

d : 81

n :

d : 23

0x0n :

d :

state 2:

&x

−5

n :

d : 29

n :

d : 36

0x0n :

d :

Fig. 1. Heterogeneous property abstraction

3. Abstract join computes an over approximation of union and widening [4] enforces

the termination of abstract iterates for the analysis of loops.

The combination of post-condition operators and widening operators allows us to define

a sound static analyzer [4].

In the following, we discuss the design of an abstraction able to handle heterogeneous

properties, about both data-structures and values. For instance, Figure 1 shows a couple

of concrete states containing lists of numbers that are all positive except for the first

one, which belongs to interval [−10, 0]: our goal is to engineer abstract domains able to

express such properties, yet can be applied to many static analysis problems.

Abstraction of dynamic memory properties. For instance, a memory abstract domain

consists of a set of predicates describing memory regions, together with operators for

the analysis of memory operations (look-ups, assignments) and widening. XISA [3, 2]

relies on points-to predicates, inductive predicates and segment predicates. A simplified

version of this abstraction, where the only inductive predicates and segments that are

considered are lists boils down to the following:

symbolic variables α, α′, . . . denote values and addresses

m(∈ M) ::= m ∗ m separating conjunction of predicates

| α · f 7→ α′ cell field f at address α containing value α′

| list(α) a list at address α

| list(α′) =∗ list(α) a list segment starting at α and ending at α′

The XISA [3] implementation actually represents a larger set of predicates, with arbitrary

inductive definitions (including trees, doubly-linked lists and others). Other analysis

frameworks utilize other sets of logical properties, such as, e.g., TVLA [9], which is

based on reachability predicates.

Adding tracking for value properties, and departing from monolithic abstract domains.

Once an abstraction has been defined for memory states, it is natural to extend it with

value properties, so as to let the analysis infer constraints over both the structure of data

and their values. A straightforward way to achieve this, and to add interval constraints

over values is to extend the definition of abstract elements by m ::= . . . | m ∧ α ≤ n |
m∧n ≤ α | However, this implies the abstract operations (post-condition operators,

join and widening) have to be extended so as to deal with both structures and value

properties, at the same time: therefore abstract operations are bound to become overly

Construction of Abstract Domains for Heterogeneous Properties (Position Paper) 3

complex. Moreover, this approach is awkward, as it does not build upon existing abstract

operations of value abstractions such as intervals [4] or octagons [8], which means it

will not easily benefit from the efficient algorithms designed to infer such properties

(the same also applies to the memory abstraction). Besides, it makes it harder to switch

from one value abstraction to another at a later point, hence reducing the flexibility of

the analysis.

In the following, we advocate a modular abstract domain design, which:

– separates concerns in the abstract domain designs;

– reuses existing abstract domains algorithms;

– allows one to tune distinct parts of the abstractions independently.

Such design has been extensively used in the ASTRÉE static analyzer [1], which makes

intensive use of reduced product [5] among other abstract domain combination tech-

niques [6]. This design contributed not only to the precision and efficiency of the analysis,

but also to making it easier to extend [6].

Abstraction of value properties, and combined abstract domain. To achieve a modular

abstract domain design, we set up a different abstract domain V that will only track

value properties (and not memory layout as the previously defined M does), and define

a new abstract domain S for states that combines both:

m(∈ M) ::= . . . defined as before

v(∈ V) ::= true | v ∧ v | α ≤ n | n ≤ α value predicates

s(∈ S) ::= m ∧ v conjunction of sub-properties

In essence, S defines a reduced product [5] of the memory abstraction M and value

abstraction V. As such, it completely separates memory and value abstraction concerns,

which makes the abstract domain fully modular [11]. Indeed, both sub-components can

be implemented in distinct ML modules, and S is defined as a ML functor. In practice,

this functor should ensure that the symbolic variables used in the value abstraction are

consistent with the memory cell contents and addresses symbols defined in the memory

abstraction (thus it implements a co-fibered abstract domain [12], which essentially

generalizes the notion of reduced product).

Both concrete states of Figure 1 can be abstracted by α 7→ α0 ∗ α0 · n 7→ α1 ∗
α0 · d 7→ α′

0 ∗ lpos(α1) ∧ α = &x ∧ −10 ≤ α′

0
∧ α′

0
≤ 0, where inductive definition

lpos describes all lists of positive numbers.

Separate combination of memory abstractions. So far, we combined abstract domains

capturing distinct sets of properties. Yet, this abstract domain decomposition approach

can be pushed further. As an example, ASTRÉE [1] relies on a decomposition of the

numerical abstract domain into simpler abstractions that handle specific sets of proper-

ties. Likewise, a similar approach can be applied to the memory abstraction part. One

approach to do this is to split concrete heaps and apply distinct memory abstractions to

disjoint regions [11]:

m(∈ M) ::= m0 ∗ m1 where m0 ∈ M0 ∧m1 ∈ M1

m0(∈ M0) ::= . . . defines a 1st memory abstract domain, e.g., for lists

m1(∈ M1) ::= . . . defines a 2nd memory abstract domain, e.g., for arrays

4 Xavier Rival, Antoine Toubhans, and Bor-Yuh Evan Chang

This construction allows one to apply parsimoniously expensive memory abstractions

to the memory regions that require them, while lighter weight abstractions can be used

for simpler structures. This results in better control of the analysis complexity. A cost

is that the analyzer now has to resolve memory fragments across sub-domains, and to

also select which memory fragment is the most adequate to account for each memory

allocation.

Reduced product of memory abstractions. Likewise, one can design a reduced product [5]

of memory abstract domains [10]:

m(∈ M) ::= m0 ∧m1 where m0 ∈ M0 ∧m1 ∈ M1

Such a composed abstraction is adequate when considering overlaid data structures [7]

(such as lists or trees of objects with a common field pointing to class methods) and

separates the concerns of analyzing each aspects of the structures. In turn, it imposes on

the analysis the burden to let logical predicates represented in one sub-domain be usable

to refine the computations done in the other sub-domain.

Modular abstract domain design. A modular abstract domain significantly simplifies the

design of static analyzers while offering additional flexibility and control. The cost for

this benefit is the innovation needed to design these more complex and general abstract

domain combinators, but this cost is quickly amortized with the ability to reuse these

combinators to realize arbitrary static analyzer configurations.

References

1. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and

X. Rival. A static analyzer for large safety-critical software. In PLDI, 2003.

2. B.-Y. E. Chang and X. Rival. Relational inductive shape analysis. In POPL, 2008.

3. B.-Y. E. Chang, X. Rival, and G. Necula. Shape analysis with structural invariant checkers.

In SAS, 2007.

4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In POPL, 1977.

5. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL, 1979.

6. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Combina-

tion of abstractions in the astrée static analyzer. In ASIAN, 2006.

7. O. Lee, H. Yang, and R. Petersen. Program analysis for overlaid data structures. In CAV,

2011.

8. A. Miné. The octagon abstract domain. HOSC, 19(1):31–100, 2006.

9. M. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with

destructive updating. In POPL, 1996.

10. A. Toubhans, B.-Y. E. Chang, and X. Rival. Reduced product combination of abstract domains

for shapes. In VMCAI, 2013.

11. A. Toubhans, B.-Y. E. Chang, and X. Rival. An abstract domain combinator for separately

conjoining memory abstractions. In SAS, 2014.

12. A. Venet. Abstract cofibered domains: Application to the alias analysis of untyped programs.

In SAS, 1996.

