
Towards Modular Verification of
Software Product Lines with mCRL2?

Maurice H. ter Beek1 and Erik P. de Vink2,3

1 ISTI–CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it

2 Eindhoven University of Technology
3 CWI, Amsterdam, The Netherlands

evink@win.tue.nl

Abstract. We introduce by means of an example a modular verification
technique for analyzing the behavior of software product lines using the
mCRL2 toolset. Based on feature-driven borders, we divide a behavioral
model of a product line into a set of separate components with interfaces
and a driver process to coordinate them. Abstracting from irrelevant
components, we verify properties over a smaller behavioral model, which
not only simplifies the model checking task but also makes the result
amenable for reuse. This is a fundamental step forward for the approach
to scale up to industrial-size product lines.

1 Introduction

Modular or compositional verification by means of model checking has been
widely studied as a way to cope with the state space explosion phenomenon
(see, e.g., [1, 23] or the survey papers in [16]). Traditionally, the idea is to exploit
the native modular structure of a design to decompose system properties into
properties over system modules or components. In practice, it turns out that this
is far from trivial in practice, mainly due to the difficulty to (de)compose prop-
erties. A major reason for this difficulty is the misalignment between behavioral
properties and the modular design structures that tend to reflect conceptual
rather than behavioral borders. Hence, for modular verification to be successful,
it is important that a design can be decomposed into components that align well
with the properties under consideration. Fisler and Krishnamurthi were the first
to notice that this characteristic is inherent to software product lines or feature-
oriented system designs, since most properties of interest concern features and
system modules or components, and naturally decompose around features [19,
27, 28]. In line with their findings, in this paper we present a feature-oriented
modular approach to the verification of software product lines with mCRL2.

In [5] we showed how the formal specification language mCRL2 and toolset
can be exploited to model and analyze software product lines. In particular, we
? Research partly supported by the EU FP7-ICT FET-Proactive project QUANTI-
COL (600708) and by the Italian MIUR project CINA (PRIN 2010LHT4KM).

presented a basic example to illustrate the use of mCRL2’s parametrized data
language to model and select valid product configurations, in the presence of
feature attributes and quantitative constraints, and to model and check the
behavior of valid products. This is in line with the analysis recommendations
from [3] to “adopt and extend state-of-the-art analysis tools” and to “examine[s]
only valid product variants”. We also hinted at the use of model reduction. In this
paper, we concretize this. Using the example from [5], we show how its behavioral
model can be modularized (in a feature-oriented fashion) into components, with
interfaces that allow a driver process to glue them back together on the fly. This is
a powerful abstraction technique that allows mCRL2 to concentrate on the relevant
components (features) for the specific property under scrutiny, and in accordance
with the modeling recommendation from [3] to “support (feature) modularity” in
order “to visualize and (manually or automatically) analyze feature combinations
corresponding to products of the product line”.

Formal methods and analysis tools are gaining popularity in software prod-
uct line engineering, as can be witnessed from the successful FMSPLE workshop
series affiliated with the last four editions of SPLC. While initial approaches fo-
cused on their use in proving structural properties, recently a lively community
of researchers is verifying behavioral properties in the presence of variability [9].
Given the rise of software product line engineering in embedded, distributed and
safety-critical systems, it is important to provide a means of quality assurance.
The work closest to ours are the process-algebraic approaches of [26, 6] and, orig-
inating from [18], the transition system-based approaches of [25, 2, 12]. However,
a product line’s variability is exponential in the number of features. So, a major
challenge is to make the proposed techniques (more) scalable, in particular by
mitigating the input problem with the help of abstraction. Since mCRL2 is highly
optimized and comes with powerful behavioral abstraction techniques, it fosters
the hope that scalable verification of product lines is not an utopy.

The goal of this paper is to contribute towards making the variability analysis
approach introduced in [5] scale to industrial-size product lines. In that approach,
a product line is modeled as an mCRL2 process consisting of two (sequential)
parts. The first part concerns feature selection and its output are consistent and
complete product configurations; the second part capture product behaviour. By
keeping the two parts together, model checking can be treated on the system
as a whole without restricting to a specific product a priori. This way, also
feature interaction is reflected in product behaviour as the execution of an action
depends on the presence or absence of the corresponding feature.

The focus of the present paper is on the second part of an mCRL2 specification
of a product family, which models product behavior. Based on feature-driven
borders, we divide the behavioral mCRL2 model into a set of separate components
with interfaces in the form of exit and (re-)entry transitions, and we define
an additional driver process that coordinates them into exhibiting the same
behavior as before. As a result, we can concentrate property verification on
part of the state space, by considering on a specific (set of) components only,
abstracting from the other components, i.e. the environment.

2

Overall the approach with mCRL2 runs like this. An attributed feature model
and FTS are represented by a ‘sequential’ composition of a selection process
Sel and a parametrized product behaviour process Beh. Next, the Beh process is
refactored in a driver process Driver in parallel with a number of components
depending on disjoint sets of features. When verifying a specific property for a
component Comp0, an abstraction of the irrelevant components Comp1, . . . , Compn
is formulated called Stub. If it is the case the the specification Sel ; (Driver ‖
Comp0 ‖ Stub) is branching bisimilar to the specification Sel ; (Driver ‖ Comp0 ‖
Comp1 ‖ . . . ‖ Compn) the property holds for the latter specification exactly when
the property holds for the former. However, the state space of the abstracted
process is signifiantly smaller in general.

The technique is implemented in our mCRL2 model by creating a ‘stub’ to re-
place the environment, creating a smaller model that is branching bisimilar [20]
with the original one, hence enjoying the same behavioral properties. In pro-
gramming, stubs are used as placeholders for unknown implementations whose
interfaces are known. Such stubs contain just enough code to allow them to be
compiled and connected with the rest of the program. In our approach, a stub
makes use of the interface of the selected component(s) to simulate the tran-
sition sequences from every possible output (exit transition) of the component
to each reachable input ((re-)entry transition) for the component. This makes
it possible to abstract from other, irrelevant components and thus verify local
properties over a smaller behavioral model. This not only simplifies the model
checking, in the sense that standard algorithms suffice and limited computing
power is required, but it moreover allows the result to be reused for other veri-
fications. Under conditions, as long as the interface with the chosen component
remains unaltered, and the complete environment and stub are equivalent pro-
cesses (i.c. branching bisimilar), the property of the component verified already
remains valid. In this sense the obtained result can be reused in a subsequent
but different setting. We believe this to be an important step towards scaling
the approach to industrial-size product lines.

In this paper, we present our ideas on the basis of a toy example, but we
have started to work on a larger industrial case study that we hope to present in
the near future. The contribution of this paper is a proof-of-concept for feature-
based modular verification of software product lines using the mCRL2 toolset.
To this end, Section 2 introduces the type of feature models we use and the
coffee machine product line we use as a running example. Section 3 provides
the background on mCRL2 necessary to understand Sections 4 and 5, where our
approach to modular verification is illustrated by applying it to our example
product line. Section 6 discusses related work, while Section 7 closes the paper
with concluding remarks and ideas for future work.

2 A Product Line as Running Example

Our running example is an extension of the family of coffee machines from [2]
and a slight adaptation of the one in [5]. It has the following list of requirements:

3

– To start operation, money must be inserted: either one euro, exclusively for
European products, or one dollar, exclusively for Canadian products.

– Optionally, input of money can be canceled via a cancel button, after which
the machine returns the inserted coin.

– Once the machine contains money, the user may indicate whether (s)he wants
sugar, by pressing one of two buttons, after which (s)he can select a beverage.

– The choice of beverage (coffee, tea, cappuccino) varies, but all products must
offer coffee while only European products may offer cappuccino.

– Optionally, a ringtone may be rung after delivering a beverage. However, a
ringtone must be rung by all products that offer cappuccino.

– After the beverage is taken, the machine returns idle.

In this paper, we reserve the term feature diagram for an and/or-hierarchy of
features of a product line, regulating their presence in products, whereas we
speak of a feature model when a feature diagram is also equipped with cross-
tree constraints. Finally, by adding (non-functional) attributes to features and
quantitative constraints we obtain an attributed feature model [8].

Figure 1 depicts the attributed feature model of our example product line,
with root feature M and the set Feature consisting of the 10 non-trivial features
S, O, R, B, X, E, D, P, C, and T. As usual, we identify a product from the product
line with a non-empty subset of Feature united with the root feature. The cost
function cost : Feature→ N, associated to the attribute cost, extends to products
straightforwardly: cost (product) =

∑
{ cost (feature) | feature ∈ product }.

Our particular example only involves binary cross-tree constraints, non-inter-
acting feature-wise quantifiable attributes and a single optimization objective.
However, more general and complex constraints, properties and objectives can
be treated as well [8, 37]. The feature diagram, i.e. ignoring the cross-tree con-
straints, gives rise to 25 valid products out of the 210−1 possible non-empty sets
of non-trivial features. The feature model reduces this number to 20, while the
number is further reduced to 16 valid products if the attributed feature model is
considered (e.g. cost ({M,S,O,R,B,X,E,C, T}) = 33 exceeds the limit of 30).

3 Analyzing System Behavior with mCRL2

mCRL2 is a formal specification language with an associated toolset for the mod-
eling and verification of distributed and/or concurrent system behavior and pro-
tocols [22]. For about a decade, mCRL2 is actively being maintained and targeting
industrial-size applications. Its specification language originates from the process
algebra ACP [4]. The user can use abstract datatypes to parametrize actions
and has maximal access to artifacts constructed during analysis, allowing tai-
lored manipulation. To this aim, the toolset consists of a wide range of tools and
supports simulation, visualization, behavioral reduction and model checking, as
well as dedicated optimization techniques and back-ends to other tools.

The mCRL2 toolset has successfully been applied in various settings, among
which the massive data collection system used for the high-energy experiments

4

Fig. 1. Attributed feature model of family of coffee machines (with shorthand names)

conducted at the large hadron collider of CERN [35] and the FlexRay communi-
cation protocol used in the automotive industry to equip car components with a
reliable, high-bandwidth communication channel [13]. The toolset is open source
and the associated boost license allows free use for any purpose. Its binaries and
lots of further documentation can be downloaded from www.mcrl2.org.

We will not use the full expressivity of mCRL2 in our approach here. Relatively
simple structured models suffice, which extends the range of the toolset. A sim-
ple example is the labeled transition system (LTS) below, which can be modeled
by the mCRL2 process Foo, with integer st as a state parameter and actions a to e:

proc Foo(st:Int) =
(st==0) -> (b.Foo(1) + a.Foo(2)) +
(st==1) -> (c.Foo(3)) +
(st==2) -> (b.Foo(1) + b.Foo(3) + a.Foo(4)) +
...

Another construction that is typical for the specification of parallel processes
in mCRL2 is the combined use of the communication and encapsulation operator.
Consider the following three processes:

proc A = (send_a(1) + send_a(2) + send_a(3)) .
sum n:Int . receive_a(n) . A;

proc B = sum n:Int . receive_b(n) . send_b(n) . B;
proc C = sum n:Int . receive_c(n) . send_c(n) . C;

Thus, process A starts with sending value 1, 2, or 3. Next it is willing to receive
any integer value n and then starts all over again. Note that the summation over
integers should be interpreted as an infinite non-deterministic choice. Processes
B and C are similar to A. However, these processes first receive a value n, send it
out, and start again.

To enforce matching of actions, e.g. to arrange for A sending to B, B sending
to C, and C sending to A, we make use of a communication function. The function
states which actions combine into other actions, e.g. send_a and receive_b may
combine into the action msg_ab, similar to a synchronization of actions a and ā

5

yielding τ in CCS [32]. In mCRL2, for successful synchronization it is required that
the parameters of the actions, if any, are the same. In our case the net result is
communication: a receive action with a parameter bound by a summation gets
instantiated by the parameter value of the sending action. On top of this, to
constrain the interaction of processes and to prune the state space, we forbid
unmatched actions by explicitly listing which actions are allowed to happen,
excluding actions that are supposed to resolve into another. Note that in mCRL2
synchronization is multi-party, hence not restricted to handshaking as in CCS.

For the above three processes we may have:

allow({ msg_ab, msg_bc, msg_ca },
comm({ send_a | receive_b -> msg_ab,

send_b | receive_c -> msg_bc,
send_c | receive_a -> msg_ca },

A || B || C));

The resulting state space of the communicating processes is depicted on the right
above. We see that only the allowed actions msg_ab, msg_bc, and msg_ca occur,
hence no occurrences of unmatched send and receive actions. Also, in the three
cycles the same parameter value is mentioned, viz. either 1, 2, or 3; the infinite
sums of the processes B and C have been resolved.

A system property can be expressed as a formula in a variant of the modal
µ-calculus [21]. Subsequently, the property can be verified against a mCRL2 spec-
ification of the system using the model checking facilities of the toolset. Here are
some properties that hold for the Foo process above:

– [true*]< true > true: absence of deadlock, i.e. after any sequence of ac-
tions, an action can be done.

– [true*.b.true*.a] false: after any sequence where the action b precedes
the action a, false will hold. As the latter never holds, the formula can be
reformulated: no a-action is possible after a b-action has happened.

– mu Y.(< d > true || [true] Y): a least-fixed-point construction. Always, af-
ter a finite amount of steps, a d-action can be done (or deadlock occurs
earlier). The smallest set of states Y that can do a d-action or cannot step
outside of Y, can be computed by iteration: Start from the empty set Y0 = ∅.

6

Then include state 3 which can do d, yielding Y1 = {3}. Then add states 1
and 4 since their single step leads to Y1, yielding Y2 = {1, 3, 4}. Then include
2 and 5 since all their steps lead to Y2, yielding Y3 = {1, 2, 3, 4, 5}. The next
step adds 0 and yields the fixed point Y4 = {0, 1, 2, 3, 4, 5}. Since the initial
state 0 ∈ Y4, the formula holds.

– mu Y.((nu Z.(<d.e> Z)) || [true] Y): a nesting of a least-fixed-point
and a greatest-fixed-point construction. Always, after a finite amount of
steps, an infinite repetition of d and e is possible.

The modal µ-calculus, a.k.a. the ‘Logic of Everything’, is renowned to be highly
expressive and to subsume temporal logics like LTL and (A)CTL [17, 10, 14]. The
model-checking approaches of [12, 6] are based on LTL, that of [26] on the multi-
valued modal µ-calculus, and those of [25, 2] on (A)CTL. Only the approach
of [6] is implemented, viz. in the Maude toolset (maude.cs.uiuc.edu). The
appeal of the modal µ-calculus variant in mCRL2 exploited here is the possibility
to quantify over data. Moreover, well-chosen hiding of actions and minimization
with respect to one of the process equivalences offered by the mCRL2 toolset (e.g.
trace equivalence, weak and branching bisimulation [32, 20]) allow to narrow the
state space and to focus on specific behavioral aspects. The latter technique can
significantly reduce a state space with millions of states to a state space of a few
dozens, making visual inspection feasible.

4 Modeling of the Running Example

To model the product family underlying our example in mCRL2 we follow the
approach set out in [5]. We will have two main processes: a feature selection pro-
cess and a process (actually a combination of a number of component processes
together with a driver process) representing an actual product of the family.

First, a valid feature set is selected by the three-stage non-deterministic pro-
cess Sel. The resolution of the non-determinacy leads to a product configuration
which is checked for its consistency with global constraints. First, a breadth-first
traversal of the feature model selects features, taking ‘mandatority’ and possi-
ble local constraints, like m-out-of-n selection, into account. Second, cross-tree
constraints are checked and violating configurations result in a transition to an
error state. In our example we have two such constraints: the mutual exclusion of
Dollar vs. Cappuccino, and the required inclusion of Ringtone in the presence
of Cappuccino. Finally, attribute constraints are checked. For the example it
is required for the selected features not to exceed a cost limit of 30. Also here,
violating configurations are forced to transit to an error state.

Configurations that have passed through all three stages successfully are gen-
uine sets of features complying to all requirements as expressed by the attributed
feature model. These configurations are passed as an argument to the process
that represents the corresponding product. An excerpt of the process Sel is
depicted next.4

4 The full mCRL2 specification is available from http://www.win.tue.nl/~evink/
research/mCRL2.

7

proc Sel(st:Int,fs:FSet) =
%% feature selection
(st == 0) -> ((M in fs) -> (setS . Sel(1, ins(S,fs)))) +
(st == 1) -> ((M in fs) -> (setO . Sel(2, ins(O,fs)))) +
(st == 2) -> ((M in fs) -> (

tau . Sel(3, fs) + setR . Sel(3, ins(R,fs)))) +
...

(st == 5) -> ((O in fs) -> (
setD . Sel(6, ins(D,fs)) + setE . Sel(6, ins(E,fs)))) +

...
%% cross-tree constraints
(st == 8) -> (((D in fs) && (P in fs)) ->

dollar_cappo_fault(fs) . Sel(801,fs) <> skip . Sel(9,fs)) +
...

%% attribute constraints
(st == 10) -> ((tcost(fs) <= 30) ->

attr_ok . cost(tcost(fs)) . put_config(fs) <>
attr_fault(fs , tcost(fs)) . Sel(1001,fs)) +

...

The selection process Sel has two parameters: a local state st represented by
an integer, and a feature set fs represented as a sorted list of features without
duplicates. As we will see later, the selection process starts with the root fea-
ture Machine, abbreviated as M, chosen. Thus initially we have Sel(0,[M]).
In state 0 of the Sel process, since M in fs holds, the mandatory feature
Sweet is added to the current feature set; Sel continues in state 1 and fea-
ture set ins(S,fs). Similarly, in state 1 the mandatory coin feature is included.
In state 2, the optional ringtone feature is handled, which may or may not
be selected, leading to a non-deterministic choice between tau.Sel(3,fs) and
setR.Sel(3,ins(R,fs). In the former option the Sel parameters remain un-
changed, in the latter the R-feature is added to the current feature set. In the
same vein, but slightly different, is the 1-out-of-2 selection of the dollar or the
euro feature. Here either choice leads to an update of the current feature set.

As outcome of the first stage of the Sel process a feature set fs is selected
that is consistent with the local feature requirements (mandatory, optional, al-
ternative, etc.). Next cross-tree constraints are checked for fs. For example, the
mutual exclusion of Dollar vs. Cappuccino is captured by the test in state 8
of Sel. If both the D and the P feature are present in fs the constraint is violated
and control is transferred to the error state 801. Otherwise the process contin-
ues checking for the next cross-tree constraint. Finally, in the third stage of Sel,
attribute constraints are checked, in the case of the example the costs should
not be higher than 30. If it is too high, Sel moves to a specific error state. If
it is sufficiently low, i.e. tcost(fs) <= 30, the attribute is marked as OK, the
costs are outputted, and moreover, via the action put_config(fs), the eligible
feature set is passed on to the product process modeling actual behavior.

The potential behavior of our example is shown by the LTS in Figure 2 (left),
which is the one from [2] with simplified money insertion. In line with [12, 6],

8

transitions are assumed to be tagged with a feature (not made explicit here for
readability). An action can only occur in a product if the corresponding feature
is selected for the product, i.e. the feature set that configures the product needs
to be checked for the presence of a feature for feature-dependent actions to occur.

From starting state 0, a coin (either a dollar or a euro) can be inserted.
Control then moves to state 1. There, either the user cancels the interaction
with the machine, and control returns to state 0, or chooses for sugar or no
sugar, and control moves to state 2 or 3, respectively. The user chooses one of
the available drinks, a choice of coffee, tea or cappuccino, and control reaches
state 6 or 7, 5 or 8, 4 or 9, depending on the choices made. Then the necessary
ingredients are added, control moves to state 7, 8, or 9 if sugar was added, and
subsequently to state 12 after the drink has been poured. Note that a cappuccino
request leads to an interleaving of pouring coffee and milk. Next, control moves
to state 13, ringing or not according to the feature set. Then the user can take
her/his cup and control returns to state 0.

In our mCRL2 encoding, a product as given by an eligible feature set fs is
represented by a parallel composition of six component processes, one for each
of the features Sweet, Coin, Ringtone, Beverage, Cancel and one for the root
feature Machine. After being woken up by the selection process, the process
belonging to the product with feature set fs as configuration is given by a
system of seven parallel processes

Driver(0) || Sweet(fs) || Coin(fs) ||
Ringtone(fs) || Beverage(fs) || Cancel(fs) || Machine

(1)

It is stressed that although not explicitly mentioned, the selection process Sel
is always part of the mCRL2 specifcations considered below. By taking feature
selection and coupled product behaviour as a whole, verification can be done at
the family level, rather than for each product or subset of products separately.
See [5] for more detail.

In order to enforce the proper control flow the component processes are put
in parallel with a driver process Driver. For example, the Coin process is given
by

proc Coin(fs:FSet) =
cmp_start(0) . (

(D in fs) -> insert(dollar) . raise(1) . Coin() +
(E in fs) -> insert(euro) . raise(1) . Coin()) +

cmp_start(1) . cancel . raise(0) . Coin() ;

On a drv_start(0) request of the driver, the Coin component can execute the
matching cmp_start(0) action upon which either the action insert(dollar) or
the action insert(euro) follows. As the preceding feature selection process has
enforced that exactly one of the two features D and E is included in the product
feature set fs, exactly one of the two actions can be taken. After executing either
of them, the Coin process raises that the driver should proceed in state 1. The
action raise(1) of Coin is matched by the action catch(1) of Driver.

9

The driver process is relatively simple. It proclaims the current state of the
product via a drv_start(st) action, allowing any component with an active
transition in state st to perform an action. Next it catches the new state num-
ber st’, raised by the component, and the driving starts anew from that state:

proc Driver(st:Int) =
drv_start(st) . sum st’:Int . catch(st’) . Driver(st’) ;

Now, in state 1 three actions are possible: a cancel from the Cancel process, or
a sugar action or a no_sugar action from the Sweet process, partly defined by

proc Sweet(fs:FSet) =
cmp_start(1) . (S in fs) -> sugar . raise(2) . Sweet() +
cmp_start(1) . (S in fs) -> no_sugar . raise(3) . Sweet() +
...

The non-determinacy in state 1 reflects the user’s choice. (S)he can press a
button to cancel the interaction with the coffee machine or opt for sugar or no
sugar. However, the action cancel will only be offered if the feature set fs of
the product actually holds the X. This explains the guarding by the check for X
in fs of the cmp_start(1) action of Cancel in

proc Cancel(fs:FSet) =
(X in fs) -> cmp_start(1) . cancel . raise(0) . Cancel() ;

Fig. 2. LTS modeling family behavior (left) and its beverage component (right)

5 Analysis of the Running Example

To illustrate our approach to feature-oriented modular verification we focus on
the beverage component. Its isolated sub-LTS is depicted in Figure 2 (right).

10

Note that the transitions belonging to other components do not appear in this
representation. However, next to the component’s behavior the interface to the
environment is given, as mediated through the driver. It can receive requests
from the driver on its unlabeled incoming (re-)entry transitions (red), while it
can provide input to the driver via its unlabeled outgoing exit transitions (blue).

An obvious requirement for the beverage component to hold is that coffee is
delivered at least when coffee is asked for. We may express this by the formula

[true* . coffee . (!pour_coffee)* . take_cup] false

However, this does not guarantee that a pour_coffee will take place, rather that
a take_cup is avoided. Another disadvantage of the formula is that the action
take_cup does not belong to the beverage component but to the machine com-
ponent instead. This can be remedied using a minimal fixed point construction.
This is reflected by the modal µ-calculus formula

[true*.coffee](mu X. [!pour_coffee] X) (2)

i.e., after a coffee action a pour_coffee action happens within a finite number
of steps. Thus, a coffee request is answered by the pouring of coffee eventually.
To ensure that the pour_coffee action matches the occurrences of the coffee
action mentioned, we can forbid that the beverage component is left:

[true*.coffee](mu X. ([!pour_coffee] X && [event(12)] false))

i.e., after a coffee request coffee will be poured eventually and this happens before
the beverage component is exited. Note that the mCRL2 toolset supports modal
µ-calculus with data.

If control enters the beverage component via the no_sugar entrance state 3,
clearly property (2) holds. After the coffee request of the transition from state 3
to state 7 there is no other action than the pour_coffee action of the transition
from state 7 to state 12, as control may enter at state 7, but may not leave. This is
all different when control enters the beverage component via the sugar entrance
state 2. Then a coffee request issued by the transition from state 2 to state 6
relies on the environment, in particular the sweet component, for a transition (or
sequence of transitions as far as the beverage component is concerned) leading
to state 7 so that the pour_coffee action becomes enabled.

In fact, as the actions coffee and pour_coffee belong to the beverage com-
ponent, it suffices that the environment caters for (i) a transfer from state 4 to
state 9, (ii) a transfer from state 5 to state 8, and (iii) a transfer from state 6 to
state 7. Additionally, the environment is expected to allow a return to states 2
and 3 after the beverage component is left via state 12.

To model this in mCRL2 we introduce a process BeverageStub, a stub for the
behavior of the environment of the Beverage component, given by

proc BeverageStub =
cmp_start(0) . other . (raise(2) + raise(3)) . BeverageStub +
cmp_start(4) . other . raise(9) . BeverageStub +

11

cmp_start(5) . other . raise(8) . BeverageStub +
cmp_start(6) . other . raise(7) . BeverageStub +
cmp_start(12) . other . (raise(2) + raise(3)) . BeverageStub ;

With BeverageStub in place, rather than considering the 7-process system used
previously, i.e. the driver and the six component processes in equation (1), we
can now deal with three processes only:

Driver(0) || Beverage(fs) || BeverageStub (3)

Note the summand with the cmp_start(0) action of BeverageStub to be able
to pick up the simulation of the environment right from the start. Also, the stub
process does not have a feature set as an argument. This is in line with the
intuition that it is not for the beverage component to make specific assumptions
on the configuration of the environment nor on its behavior, beyond the enter-
ing and exiting of control regarding the beverage component itself. Rephrased
more technically, the 7-process system of the driver and all six components is
branching bisimilar to the 3-process system of the driver, beverage component
and its stub. Therefore, modal µ-formulas in the CTL*-fragment without the
next operator [15], like the one of (2), equally hold for the two systems.

Fig. 3. LTS modeling alternative family behavior

Next we modify the sweet component according to the LTS in Figure 3. Now, as
an improved service, whenever the machine is out of sugar, it returns the inserted
money instead of delivering the chosen beverage (without sugar). Apart from an
adaptation of the Sweet process to accommodate the ‘not-available’ action n/a
from states 4, 5, and 6 to the new state 14, the Cancel process is extended to re-
turn the inserted money via the return transition from state 14 back to state 0.

Because of the transition to the new state 14, from the point of view of the
beverage component, the flow of control may unexpectedly be diverted. A request
for coffee with sugar, i.e. the action coffee leaving state 2, may be followed by

12

the action n/a leading away from further handling by the beverage component.
Thus no action pour_coffee is performed (in case the n/a is always taken at
that point). So, counterintuitively, while the sweet and cancel component have
changed, a basic requirement for the beverage component becomes violated.

The crucial point we want to underline is that no model checking is needed
for the designer to be warned. The full 7-process system (1), with the ‘improved’
sweet and cancel component, is no longer branching bisimilar to the smaller
3-process system (3) that includes the beverage stub. The ltscompare tool in
the mCRL2 toolset, which can decide e.g. on the branching-bisimilarity of two
systems, finds this quickly. Thus, a simple check suffices to alert the designer that
a property of the component that was valid previously, may not hold anymore.

If this new behavior to deal with the lack of sugar is to be maintained, the
coffee vs. pour_coffee requirement needs to be weakened. One may propose

[true*.coffee](mu X. ([!(pour_coffee || return)] X))

i.e., a coffee request is answered by either pouring the coffee or a refund. As
the action return does not belong to the action set of the Beverage process,
the system to be model checked needs to comprise the Cancel process as well,
possibly combined with an adapted stub process to replace the other four com-
ponents. However, from a scalability perspective it is less attractive to deal with
specific combinations of components.

Reconsidering the very idea of isolating the beverage component, we need to
make the distinction between the ‘acceptable’ action pour_sugar and the ‘non-
acceptable’ action n/a visible in the stub process. We introduce for the process
BeverageStub2 below the action escape to represent behavior that may/will
affect the behavior of the beverage component, besides the indifferent action
other that was used earlier. The code for BeverageStub2 reads as follows.

proc BeverageStub2 =
cmp_start(0) . other . (raise(2) + raise(3)) . BeverageStub2 +
cmp_start(4) .(

escape . (raise(2) + raise(3)) . BeverageStub2 +
other . raise(9) . BeverageStub2) +

cmp_start(5) . (
escape . (raise(2) + raise(3)) . BeverageStub2 +
other . raise(8) . BeverageStub2) +

cmp_start(6) . (
escape . (raise(2) + raise(3)) . BeverageStub2 +
other . raise(7) . BeverageStub2) +

cmp_start(12) . other . (raise(2) + raise(3)) . BeverageStub2;

E.g., the stub captures that in state 6, right after the request for coffee, control
either ‘escapes’ from the neighborhood of the beverage component and may
return via the entrance state 2 or 3, or control remains in the vicinity of the
component, having ‘other’ activity but picking up the beverage thread in state 7.
With the BeverageStub2 in place, the enhanced 7-process system and adapted
3-process system can again be shown to be branching bisimilar.

13

6 Related Work

In this section, we continue the discussion of related work on the compositional
verification of software product lines (SPL) initiated in the introduction. In [29],
improving part of the pioneering work of [19, 27, 28] mentioned already, an in-
cremental compositional model checking approach for SPL is presented. It uses
variation point obligations expressed in CTL to guarantee that the (sequential)
feature-based composition satisfies a property if and only if the added features
satisfy the relevant variation point obligations. Whenever possible, verification
results are reused in an incremental fashion within the product being composed,
which reduces the overall verification effort, but the approach does not aim to
reuse properties of behavioral feature models across different products.

In [36], an existing compositional verification technique for safety properties
of flow-graph behavior of general-purpose programs is adapted to programs from
the SPL domain, that are organized according to a hierarchical variability model
defining variation points and interfaces. This compositional approach scales well,
but it is not feature-based and limited to control-flow behavior, for which it can
express properties in a fragment of the modal µ-calculus.

In [33], feature Petri nets are introduced as a modular (feature- and interface-
based) behavioral modeling formalism. A few correctness criteria, based on
bisimulation, for the preservation of properties in composed models are given.
This is a promising approach that deserves further study, as does the precise
relationship with our approach, apart from the fact that model checking is not
addressed nor the question for the reuse of verification results.

In [31], for each feature of an SPL two finite state machines with variability
(implemented by guarded variables on transitions) are built, one for the re-
quirements and one for the design level, after which their conformance can be
checked in a compositional, feature-based fashion. The prototype tool SPLEnD
makes use of the SPIN model checker (spinroot.com) to implement such con-
formance checking. Reuse of verification results is not considered. Recent work
on delta-oriented SPL analysis using mCRL2 is reported in [30].

Some of the other behavioral variability models mentioned in the introduction
come with a special-purpose tool for SPL model checking. SNIP [11] is a model
checker for product lines modeled as featured transition systems [12] specified
in a language based on that of SPIN. The tool VMC [7] (fmt.isti.cnr.it/vmc)
is a model checker for product lines modeled as modal transition systems with
additional variability constraints [2] specified in a modal process algebra. Neither
of these currently make use of modular or compositional verification.

7 Discussion and Future Work

We have presented a proof-of-concept of a feature-oriented modular verification
technique for analyzing the behavior of SPL with mCRL2. We use branching bisim-
ulation techniques to isolate the behavior of a specific feature (set) by abstracting
from the environment. This eases the model checking and allows the result to be

14

reused in other settings; if adapted behaviour leads to an environment that is
brnaching bisimilar, say, to the stub used, a verified property is also valid in the
new situation. mCRL2 is a toolset that has already shown its merits in dealing
with huge state spaces consisting of billions of states. Although at present stubs
are crafted manually, we believe that scalable verification of SPL can success-
fully be achieved with mCRL2 along the lines of the modular verification strategy
illustrated in this paper. A demonstration of this fact is left for future work.

Our approach thus differs from modular or compositional verification in the
classic sense of (re)composing smaller verification results on modules or com-
ponents to derive properties of the composed system. It remains to investigate
whether we could apply compositional model checking under sequential com-
position as defined in [24] to our feature-oriented modularization of behavioral
SPL models. Likewise it remains to study whether a notion like modular validity
(a property holds over a module if it holds over any system that includes that
module [34]) can be effectively used in our setting.

Another challenge for our feature-oriented modular verification approach
stems from the fact that, ideally, we want to be able to handle dynamic feature-
based composition. If a feature is added, then on the one hand we want to prove
that properties of the system continue to hold, while on the other hand we want
to verify new properties that the new system should now satisfy. This is com-
plicated by the well-known fact that features may interact. We have seen this
problem arise in our running example when we modeled the ‘improved’ service
signaling the lack of sugar in a coffee machine.

This brings us to concrete future work on our running example. If we consider
the notion of a neighborhood of a component, then we can distinguish (re-)entry
points, exit points, and interrupt points. The latter come in these three flavors:

Type 1 like pour_sugar of the other or continue type; other components do
their business, but control is picked up again by the component at hand.

Type 2 like n/a of the escape or break type; another component takes over
control and control re-enters the component at a re-entry point rather than
continuing its thread.

Type 3 (not encountered in the above discussion) of the diverge type; another
component takes over control and the component itself is never visited again.

We may claim that with these three corresponding types of actions (continue,
break, and diverge) a sufficiently rich class of stubs can be constructed that can
simulate the environment. Checking a component property would then mean:

1. Verify the property for the 3-process system of driver, component, and stub.
2. Check branching bisimilarity for the 3-process system and the complete all-

process system.

Finally, we need to identify which class of properties exactly fits within our ap-
proach. Evidently, further work is to be done on larger examples and convincing
case studies to support our claims.

15

References

1. M. Abadi and L. Lamport. Conjoining Specifications. ACM Transactions on
Programming Languages and Systems, 17(3):507–534, 1995.

2. P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi. Formal Description of
Variability in Product Families. In Proc. SPLC’11, pages 130–139. IEEE, 2011.

3. J. M. Atlee, S. Beidu, N. A. Day, F. Faghih, and P. Shaker. Recommendations
for Improving the Usability of Formal Methods for Product Lines. In Proc. For-
maliSE’13, pages 43–49. IEEE, 2013.

4. J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equational
Theories of Communicating Processes. Cambridge University Press, 2010.

5. M. H. ter Beek and E. P. de Vink. Using mCRL2 for the analysis of software
product lines. In Proc. FormaliSE’14, pages 31–37. IEEE, 2014.

6. M. H. ter Beek, A. Lluch-Lafuente, and M. Petrocchi. Combining declarative and
procedural views in the specification and analysis of product families. In Proc.
SPLC’13, volume 2, pages 10–17. ACM, 2013.

7. M. H. ter Beek, F. Mazzanti, and A. Sulova. VMC: A Tool for Product Variability
Analysis. In D. Giannakopoulou and D. Méry, editors, FM’12, volume 7436 of
LNCS, pages 450–454. Springer, 2012.

8. D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated Analysis of Feature
Models 20 Years Later: a Literature Review. Information Systems, 35(6), 2010.

9. P. Borba, M. B. Cohen, A. Legay, and A. Wąsowski. Analysis, Test and Verifica-
tion in The Presence of Variability (Dagstuhl Seminar 13091). Dagstuhl Reports,
3(2):144–170, 2013.

10. J. C. Bradfield and C. Stirling. Modal µ-calculi. In P. Blackburn, J. F. A. K. van
Benthem, and F. Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in
Logic and Practical Reasoning, pages 721–756. Elsevier, 2007.

11. A. Classen, M. Cordy, P. Heymans, A. Legay, and P.-Y. Schobbens. Model checking
software product lines with SNIP. International Journal on Software Tools for
Technology Transfer, 14(5):589–612, 2012.

12. A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and J.-F. Raskin.
Featured Transition Systems: Foundations for Verifying Variability-Intensive Sys-
tems and Their Application to LTL Model Checking. IEEE Transactions on Soft-
ware Engineering, 39(8):1069–1089, 2013.

13. S. Cranen. Model Checking the FlexRay Startup Phase. In M. Stoelinga and
R. Pinger, editors, FMICS’12, volume 7437 of LNCS, pages 131–145. Springer,
2012.

14. R. De Nicola and F. W. Vaandrager. Action versus State based Logics for Transi-
tion Systems. In I. Guessarian, editor, Semantics of Systems of Concurrent Pro-
cesses, volume 469 of LNCS, pages 407–419. Springer, 1990.

15. R. De Nicola and F. W. Vaandrager. Three logics for branching bisimulation.
Journal of the ACM, 42(2):458–487, 1995.

16. W. P. de Roever, H. Langmaack, and A. Pnueli, editors. Compositionality: The
Significant Difference, volume 1536 of LNCS. Springer, 1997.

17. E. A. Emerson. Model Checking and the Mu-calculus. In N. Immerman and
P. G. Kolaitis, editors, Proc. of DIMACS Workshop on Descriptive Complexity
and Finite Models, volume 31 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 185–214. AMS, 1996.

18. D. Fischbein, S. Uchitel, and V. A. Braberman. A foundation for behavioural con-
formance in software product line architectures. In R. M. Hierons and H. Muccini,
editors, Proc. ROSATEA’06, pages 39–48. ACM, 2006.

16

19. K. Fisler and S. Krishnamurthi. Modular Verification of Collaboration-Based Soft-
ware Designs. In Proc. ESEC/FSE’01, Vienna, pages 152–163. ACM, 2001.

20. R. J. v. Glabbeek and W. P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. Journal of the ACM, 43(3):555–600, 1996.

21. J. F. Groote and R. Mateescu. Verification of Temporal Properties of Processes
in a Setting with Data. In A. M. Haeberer, editor, AMAST’98, volume 1548 of
LNCS, pages 74–90. Springer, 1998.

22. J. F. Groote, A. Mathijssen, M. A. Reniers, Y. S. Usenko, and M. J. van Weer-
denburg. Analysis of Distributed Systems with mCRL2. In M. Alexander and
W. Gardner, editors, Process Algebra for Parallel and Distributed Processing, pages
99–128. Chapman & Hall, 2009.

23. O. Grumberg and D. E. Long. Model Checking and Modular Verification. ACM
Transactions on Programming Languages and Systems, 16(3):843–871, 1994.

24. K. Laster and O. Grumberg. Modular Model Checking of Software. In B. Steffen,
editor, TACAS’98, volume 1384 of LNCS, pages 20–35. Springer, 1998.

25. K. Lauenroth, K. Pohl, and S. Töhning. Model Checking of Domain Artifacts
in Product Line Engineering. In Proc. ASE’09, Auckland, pages 269–280. IEEE,
2009.

26. M. Leucker and D. Thoma. A Formal Approach to Software Product Families.
In T. Margaria and B. Steffen, editors, ISoLA’12, volume 7609 of LNCS, pages
131–145. Springer, 2012.

27. H. C. Li, K. Fisler, and S. Krishnamurthi. The Influence of Software Module
Systems on Modular Verification. In D. Bosnacki and S. Leue, editors, SPIN’02,
volume 2318 of LNCS, pages 60–78. Springer, 2002.

28. H. C. Li, S. Krishnamurthi, and K. Fisler. Interfaces for Modular Feature Verifi-
cation. In Proc. ASE’02, Edinburgh, pages 195–204. IEEE, 2002.

29. J. Liu, S. Basu, and R. R. Lutz. Compositional model checking of software product
lines using variation point obligations. Automated Software Engineering, 18(1):39–
76, 2011.

30. M. Lochau, S. Mennicke, H. Baller, and L. Ribbeck. DeltaCCS: A Core Calculus
for Behavioral Change. In this volume, 2014.

31. J.-V. Millo, S. Ramesh, S. N. Krishna, and G. K. Narwane. Compositional Verifi-
cation of Software Product Lines. In E. B. Johnsen and L. Petre, editors, IFM’13,
volume 7940 of LNCS, pages 109–123. Springer, 2013.

32. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
33. R. Muschevici, J. Proença, and D. Clarke. Modular Modelling of Software Product

Lines with Feature Nets. In G. Barthe, A. Pardo, and G. Schneider, editors,
SEFM’11, volume 7041 of LNCS, pages 318–333. Springer, 2011.

34. A. Pnueli. In Transition from Global to Modular Temporal Reasoning about Pro-
grams. In K. R. Apt, editor, Logics and Models of Concurrent Systems, pages
123–144. Springer, 1985.

35. D. Remenska, T. A. C. Willemse, K. Verstoep, W. Fokkink, J. Templon, and H. E.
Bal. Using Model Checking to Analyze the System Behavior of the LHC Production
Grid. In Proc. CCGrid’12, pages 335–343. IEEE, 2012.

36. I. Schaefer, D. Gurov, and S. Soleimanifard. Compositional Algorithmic Verifica-
tion of Software Product Lines. In B. K. Aichernig, F. S. de Boer, and M. M.
Bonsangue, editors, FMCO’10, volume 6957 of LNCS, pages 184–203. Springer,
2012.

37. N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, S. Apel, and G. Saake.
SPL Conqueror: Toward optimization of non-functional properties in software
product lines. Software Quality Journal, 20(3-4):487–517, 2012.

17

A mCRL2 Code

1 driver and 6 components

sort
Feature = struct M | S | O | R |

B | X | D | E | P | T | C ;
FSet = List(Feature);
Currency = struct Dollar | Euro ;

act
setS, setO, setR, setB, setX,
setD, setE, setP, setT, setTP, setC ;
ctc_tree_ok, attr_ok ;
dollar_cappo_fault,
ring_cappo_fault : FSet ;
attr_fault : FSet # Int ;
cost : Int ;
loop ;

act
put_config, get_config, set_config : FSet ;

act
insert : Currency;
sugar, no_sugar, pour_sugar;
coffee, tea, cappuccino,
pour_coffee, pour_tea, pour_milk;
ring, skip;
cancel;
take_cup;
drv_start, cmp_start, start : Int;
raise, catch, event : Int;
nothing;

map
isSorted: FSet -> Bool;
noDuplicates: FSet -> Bool;
isSet: FSet -> Bool;

var
ft,ft’: Feature;
fset: FSet;

eqn
isSorted([]) = true;
isSorted([ft]) = true;
isSorted(ft |> (ft’ |> fset)) =

ft <= ft’ && isSorted(ft’ |> fset);
noDuplicates([]) = true;
noDuplicates(ft |> fset) =

!(ft in fset) && noDuplicates(fset);
isSet(fset) = isSorted(fset) &&

noDuplicates(fset);

map
ins: Feature # FSet -> FSet;

var
ft, ft’: Feature;
fset: FSet;

eqn
ins(ft, []) = [ft];
(ft < ft’) ->

ins(ft, ft’ |> fset) = ft |> ft’ |> fset;
(ft == ft’) ->

ins(ft, ft’ |> fset) = ft’ |> fset;
(ft > ft’) ->

ins(ft, ft’ |> fset) =

ft’ |> ins(ft, fset);

map
union: FSet # FSet -> FSet;

var
ft, ft’: Feature;
fset, fset’: FSet;

eqn
union([], fset) = fset;
union(fset, []) = fset;
(ft < ft’) ->

union(ft |> fset, ft’ |> fset’) =
ft |> union(fset, ft’ |> fset’);

(ft == ft’) ->
union(ft |> fset, ft’ |> fset’) =

ft’ |> union(fset, fset’);
(ft > ft’) ->

union(ft |> fset, ft’ |> fset’) =
ft’ |> union(ft |> fset, fset’);

map
fcost : Feature -> Int ;

eqn
fcost(M) = 0 ;
fcost(S) = 5 ;
fcost(O) = 0 ;
fcost(B) = 0 ;
fcost(R) = 5 ;
fcost(D) = 5 ;
fcost(E) = 5 ;
fcost(X) = 10 ;
fcost(C) = 5 ;
fcost(T) = 3 ;
fcost(P) = 7 ;

map
tcost : FSet -> Int ;

var
ft : Feature ;
fset : FSet ;

eqn
tcost([]) = 0;
tcost(ft |> fset) =

fcost(ft) + tcost(fset) ;

proc Sel(st:Int,fs:FSet) =
%% feature states
(st == 0) -> (

(M in fs) -> (
setS . Sel(1, ins(S,fs))

)) +
(st == 1) -> (

(M in fs) -> (
setO . Sel(2, ins(O,fs))

)) +
(st == 2) -> (

(M in fs) -> (
tau . Sel(3, fs) +
setR . Sel(3, ins(R,fs))

)) +

18

(st == 3) -> (
(M in fs) -> (

setB . Sel(4, ins(B,fs))
)) +
(st == 4) -> (

(M in fs) ->
tau . Sel(5, fs) +
setX . Sel(5, ins(X,fs))

) +
(st == 5) -> (

(O in fs) -> (
setD . Sel(6, ins(D,fs)) +
setE . Sel(6, ins(E,fs))

)) +
(st == 6) -> (

(B in fs) -> (
tau . Sel(7, fs) +
setT . Sel(7, ins(T,fs)) +
setP . Sel(7, ins(P,fs)) +
setTP . Sel(7, union([T,P],fs))

)) +
(st == 7) -> (

(B in fs) -> (
setC . Sel(8, ins(C,fs))

)) +
%% cross-tree constraints
(st == 8) -> (

((D in fs) && (P in fs)) ->
dollar_cappo_fault(fs) .

Sel(801,fs) <>
tau . Sel(9,fs)

) +
(st == 9) -> (

(!(R in fs) && (P in fs)) ->
ring_cappo_fault(fs) .

Sel(901,fs) <>
ctc_tree_ok . Sel(10,fs)

) +
%% attribute constraints
(st == 10) -> (

(tcost(fs) <= 30) ->
attr_ok . cost(tcost(fs)) .

put_config(fs) <>
attr_fault(fs , tcost(fs)) .

Sel(1001,fs)) +
%% loop on error states
((st == 801) ||

(st == 901) || (st == 1001)) ->
loop . Sel() +

delta ;

proc Driver(drv_st:Int) =
drv_start(drv_st) .

sum e:Int . catch(e) .
Driver(e) ;

proc Sweet(fs:FSet) =
cmp_start(1) .

(S in fs) -> sugar .
raise(2) . Sweet() +

cmp_start(1) .
(S in fs) -> no_sugar .

raise(3) . Sweet() +
cmp_start(4) .

pour_sugar . raise(9) . Sweet() +
cmp_start(5) .

pour_sugar . raise(8) . Sweet() +
cmp_start(6) .

pour_sugar . raise(7) . Sweet() +
delta ;

proc Coin(fs:FSet) =
cmp_start(0) . (

(D in fs) ->
insert(Dollar) . raise(1) . Coin() +

(E in fs) ->
insert(Euro) . raise(1) . Coin()) +

delta ;

proc Ringtone(fs:FSet) =
cmp_start(12) . (

(R in fs) ->
ring . raise(13) . Ringtone() +

!(R in fs) ->
skip . raise(13) . Ringtone()) +

delta;

proc Beverage(fs:FSet) =
cmp_start(2) . (

(C in fs) ->
coffee . raise(4) . Beverage() +

(T in fs) ->
tea . raise(5) . Beverage() +

(P in fs) ->
cappuccino . raise(6) . Beverage()) +

cmp_start(3) . (
(C in fs) ->

coffee . raise(9) . Beverage() +
(T in fs) ->

tea . raise(8) . Beverage() +
(P in fs) ->

cappuccino . raise(7) . Beverage()) +
cmp_start(7) . (

pour_milk . raise(10) . Beverage() +
pour_coffee . raise(11) . Beverage()) +

cmp_start(8) .
pour_tea . raise(12) . Beverage() +

cmp_start(9) .
pour_coffee . raise(12) . Beverage() +

cmp_start(10) .
pour_coffee . raise(12) . Beverage() +

cmp_start(11) .
pour_milk . raise(12) . Beverage() +

delta;

proc Cancel(fs:FSet) =
(X in fs) ->

cmp_start(1) .
cancel . raise(0) . Cancel() +

delta ;

proc Machine =
cmp_start(13) .

take_cup . raise(0) . Machine +
delta;

init
hide({

cancel, insert,
sugar, no_sugar, pour_sugar,
ring, skip,
take_cup,
%%
setS, setO, setR, setB, setX,
setD, setE, setP, setT, setTP, setC,
ctc_tree_ok, dollar_cappo_fault,

19

ring_cappo_fault,
attr_ok, attr_fault,
cost,
loop,
set_config,
start, event,
nothing },

allow({
setS, setO, setR, setB, setX,
setD, setE, setP, setT, setTP, setC,
ctc_tree_ok, dollar_cappo_fault,
ring_cappo_fault,
attr_ok, attr_fault,
cost,
loop,
set_config,
insert, cancel,
sugar, no_sugar, pour_sugar,
coffee, tea, cappuccino,
pour_coffee, pour_tea, pour_milk,
ring, skip,
take_cup,
start, event,

nothing },
comm({

put_config |
get_config | get_config | get_config |

get_config | get_config -> set_config,
drv_start | cmp_start -> start,
raise | catch -> event },

Sel(0,[M]) ||
%%

Driver(0) ||
(sum fs:FSet . get_config(fs) .

Sweet(fs)) ||
(sum fs:FSet . get_config(fs) .

Coin(fs)) ||
(sum fs:FSet . get_config(fs) .

Ringtone(fs)) ||
(sum fs:FSet . get_config(fs) .

Beverage(fs)) ||
(sum fs:FSet . get_config(fs) .

Cancel(fs)) ||
Machine

%%
)));

Isolated beverage component with stub

sort
Feature = struct M | S | O | R |

B | X | D | E | P | T | C ;
FSet = List(Feature);
Currency = struct Dollar | Euro ;

act
setS, setO, setR, setB, setX,
setD, setE, setP, setT, setTP, setC ;
ctc_tree_ok, attr_ok ;
dollar_cappo_fault,
ring_cappo_fault : FSet ;
attr_fault : FSet # Int ;
cost : Int ;
loop ;

act
put_config, get_config, set_config : FSet ;

act
coffee, tea, cappuccino,
pour_coffee, pour_tea, pour_milk;
drv_start, cmp_start, start : Int;
raise, catch, event : Int;
other,
nothing;

map
isSorted: FSet -> Bool;
noDuplicates: FSet -> Bool;
isSet: FSet -> Bool;

var
ft,ft’: Feature;
fset: FSet;

eqn
isSorted([]) = true;
isSorted([ft]) = true;
isSorted(ft |> (ft’ |> fset)) =

ft <= ft’ && isSorted(ft’ |> fset);
noDuplicates([]) = true;

noDuplicates(ft |> fset) =
!(ft in fset) && noDuplicates(fset);

isSet(fset) = isSorted(fset) &&
noDuplicates(fset);

map
ins: Feature # FSet -> FSet;

var
ft, ft’: Feature;
fset: FSet;

eqn
ins(ft, []) = [ft];
(ft < ft’) ->

ins(ft, ft’ |> fset) =
ft |> ft’ |> fset;

(ft == ft’) ->
ins(ft, ft’ |> fset) =

ft’ |> fset;
(ft > ft’) ->

ins(ft, ft’ |> fset) =
ft’ |> ins(ft, fset);

map
union: FSet # FSet -> FSet;

var
ft, ft’: Feature;
fset, fset’: FSet;

eqn
union([], fset) = fset;
union(fset, []) = fset;
(ft < ft’) ->

union(ft |> fset, ft’ |> fset’) =
ft |> union(fset, ft’ |> fset’);

(ft == ft’) ->
union(ft |> fset, ft’ |> fset’) =

ft’ |> union(fset, fset’);
(ft > ft’) ->

union(ft |> fset, ft’ |> fset’) =
ft’ |> union(ft |> fset, fset’);

20

map
fcost : Feature -> Int ;

eqn
fcost(M) = 0 ;
fcost(S) = 5 ;
fcost(O) = 0 ;
fcost(B) = 0 ;
fcost(R) = 5 ;
fcost(D) = 5 ;
fcost(E) = 5 ;
fcost(X) = 10 ;
fcost(C) = 5 ;
fcost(T) = 3 ;
fcost(P) = 7 ;

map
tcost : FSet -> Int ;

var
ft : Feature ;
fset : FSet ;

eqn
tcost([]) = 0;
tcost(ft |> fset) =

fcost(ft) + tcost(fset) ;

proc Sel(st:Int,fs:FSet) =
%% feature states
(st == 0) -> (

(M in fs) -> (
setS . Sel(1, ins(S,fs))

)) +
(st == 1) -> (

(M in fs) -> (
setO . Sel(2, ins(O,fs))

)) +
(st == 2) -> (

(M in fs) -> (
tau . Sel(3, fs) +
setR . Sel(3, ins(R,fs))

)) +
(st == 3) -> (

(M in fs) -> (
setB . Sel(4, ins(B,fs))

)) +
(st == 4) -> (

(M in fs) ->
tau . Sel(5, fs) +
setX . Sel(5, ins(X,fs))

) +
(st == 5) -> (

(O in fs) -> (
setD . Sel(6, ins(D,fs)) +
setE . Sel(6, ins(E,fs))

)) +
(st == 6) -> (

(B in fs) -> (
tau . Sel(7, fs) +
setT . Sel(7, ins(T,fs)) +
setP . Sel(7, ins(P,fs)) +
setTP . Sel(7, union([T,P],fs))

)) +
(st == 7) -> (

(B in fs) -> (
setC . Sel(8, ins(C,fs))

)) +
%% cross-tree constraints

(st == 8) -> (
((D in fs) && (P in fs)) ->

dollar_cappo_fault(fs) .
Sel(801,fs) <>

tau . Sel(9,fs)
) +
(st == 9) -> (

(!(R in fs) && (P in fs)) ->
ring_cappo_fault(fs) .

Sel(901,fs) <>
ctc_tree_ok . Sel(10,fs)

) +
%% attribute constraints
(st == 10) -> (

(tcost(fs) <= 30) ->
attr_ok . cost(tcost(fs)) .

put_config(fs) <>
attr_fault(fs , tcost(fs)) .

Sel(1001,fs)) +
%% loop on error states
((st == 801) ||

(st == 901) || (st == 1001)) ->
loop . Sel() +

delta ;

proc Driver(st:Int) =
drv_start(st) .

sum st’:Int . catch(st’) .
Driver(st’) ;

proc Beverage(fs:FSet) =
cmp_start(2) . (

(C in fs) ->
coffee . raise(4) . Beverage() +

(T in fs) ->
tea . raise(5) . Beverage() +

(P in fs) ->
cappuccino . raise(6) . Beverage()) +

cmp_start(3) . (
(C in fs) ->

coffee . raise(9) . Beverage() +
(T in fs) ->

tea . raise(8) . Beverage() +
(P in fs) ->

cappuccino . raise(7) . Beverage()) +
cmp_start(7) . (

pour_milk . raise(10) . Beverage() +
pour_coffee . raise(11) . Beverage()) +

cmp_start(8) .
pour_tea . raise(12) . Beverage() +

cmp_start(9) .
pour_coffee . raise(12) . Beverage() +

cmp_start(10) .
pour_coffee . raise(12) . Beverage() +

cmp_start(11) .
pour_milk . raise(12) . Beverage() +

delta;

proc BeverageStub =
cmp_start(0) . other .

(raise(2) + raise(3)) . BeverageStub +
cmp_start(4) . other .

raise(9) . BeverageStub +
cmp_start(5) . other .

raise(8) . BeverageStub +
cmp_start(6) . other .

raise(7) . BeverageStub +
cmp_start(12) . other .

21

(raise(2) + raise(3)) . BeverageStub ;

init
hide({

other,
%%
setS, setO, setR, setB, setX,
setD, setE, setP, setT, setTP, setC,
ctc_tree_ok, dollar_cappo_fault,
ring_cappo_fault,
attr_ok, attr_fault,
cost,
loop,
set_config,
start, event,
nothing },

allow({
setS, setO, setR, setB, setX,
setD, setE, setP, setT, setTP, setC,
ctc_tree_ok, dollar_cappo_fault,
ring_cappo_fault,

attr_ok, attr_fault,
cost,
loop,
set_config,
coffee, tea, cappuccino,
pour_coffee, pour_tea, pour_milk,
other,
start, event,
nothing },

comm({
put_config | get_config -> set_config,
drv_start | cmp_start -> start,
raise | catch -> event },

Sel(0,[M]) ||
%%

Driver(0) ||
(sum fs:FSet . get_config(fs) .

Beverage(fs)) ||
BeverageStub

)));

22

