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Abstract. Recently, there is a strong need for the fused visualization of differ-

ent objects in many simulation fields, especially for the medical domain (e.g., 

the fusion of different organs). That is because it is desirable and advantageous 

to show the different objects and analyze the relationship between them. Never-

theless, such a simulation date is always resulted in a large-scale time-varying 

volume data, which make the fused visualization even more difficult. To solve 

this problem, we use a sorting-free rendering technique, Adaptive Particle-

based Rendering (APBR), to visualize the large-scale time-varying volume da-

ta. Because this method visualizes the volume data by generating opaque parti-

cles from the original volume data and projects these particles to the image 

plane, the visibility sorting is not needed. This makes the fusion of different ob-

jects and handling of large-scale volume data is very easy. Moreover, our pro-

posed APBR method can adaptively apply different particle generation process 

to visualize the volume data based on different viewpoints. This feature can 

make our system keep an interactive frame rate and also a relatively high image 

quality. With the APBR, we also develop a time-varying rendering into our sys-

tem so that the rendering for the large-scale time-varying data also becomes 

possible. To verify the efficiency, we apply our APBR system to the large-scale 

blood flow dataset. The experimental results and the user feedbacks show that 

our system can fuse different objects efficiently while keeping an interactive 

frame rate and a good image quality, which is very meaningful in the visual 

analysis. 

Keywords: fused visualization, large-scale volume data, time-varying visuali-

zation, particle-based rendering. 

1 Introduction 

Large-scale simulations can be found in many scientific fields (e.g. computational 

fluid dynamics, electromagnetic field simulation or ocean prediction). A good visuali-

zation result for these large-scale simulation results is always needed to clearly show 

detailed spatial features. However, effective visualization of such large-scale data is 

always difficult to achieve due to the complexity of illustrating the high-complicated 



structure of the volume data. It becomes even more difficult for the time-varying sim-

ulation data, because the complex temporal features are also need to be shown clearly. 

Moreover, in some recent researches, the large-scale simulations may also need to 

fuse different objects together to observe and analyze the relationship between these 

objects. This need is especially urgent for the medical simulation field [5]. For exam-

ple, medical researchers may need to fuse different human organs together to observe 

the interaction of them. Because the medical simulation data may also be a large-scale 

volume data, the fused visualization for this data becomes much more difficult. 

To visualize such a huge size of volume dataset and perform the fusion of different 

objects, the traditional visualization is always based on the extracted surfaces (poly-

gon) or 2D images to realize the fusion of different objects [4] [5] [6] [16]. That is 

because different objects can also be converted into different surfaces, and the fusion 

of polygons and 2D images make the rendering be easy to be realized. However, a 

fusion of the original different objects, including volume/surface, but not the extracted 

surfaces, can provide a more realistic result for the positional information of these 

objects and can help the researchers to analyze the result more efficiently. At a result, 

we need a good rendering method to render the large-scale volume data and fuse dif-

ferent objects efficiently. 

To solve this problem, we employ our particle-based rendering technique, which 

can handle large-scale volume datasets and easily fuse different objects, since it uti-

lizes proxy geometries that are a set of opaque particles. The number of the particles 

is not in proportion to that of volume cells, but in inversely proportional to the square 

of the particle radius. If we determine an appropriate radius, the number of the parti-

cles can be reduced so that it can fit the GPU memory. This fitting is mandatory for 

interactive rendering. To develop a particle rendering algorithm, we revisited a 

brightness equation in the volume rendering algorithm and reconsider the definition of 

opacity which is usually derived from a user-specified transfer function. This leads to 

two approaches, object space approach and image space approach. In the former one, 

we define a density function of emissive opaque particles. According to the density 

function, we generate particles in a given volume dataset and project them onto an 

image plane. Since we use an opaque particle, no visibility sorting is required. In the 

latter approach, we regard the brightness equation as the expected value of the lumi-

nosity of a sampling point along a viewing ray, and we propose a sorting-free ap-

proach that simply controls the fragment rendering by using the evaluated opacity 

value to calculate a rendered image. These two approaches are called Object-space 

Particle-based Rendering (O-PBR) and Image-space Particle-based Rendering (I-

PBR). Because we use the opaque particles which do not need the visibility sorting, 

the fusion of volumes and surfaces becomes very easy to be realized. 

In order to get an interactive frame rate analysis while keep a good image quality, 

we combine both of O-PBR and I-PBR into the system. The O-PBR method can han-

dle a large-scale time-varying data while keeping an interactive frame rate. However, 

the particle shape is noticeable when we enlarge the view to observe local details, 

which will influence the image quality (Figure 4). On the contrary, I-PBR is able to 

provide a very high-quality rendering result even for much enlarged view, but the 

renderable data size is limited. As a result, during the rendering process, our system 



adaptively switches the rendering methods of O-PBR and I-PBR automatically by 

taking into account of the data size within the view frustum and the computer re-

sources at all time. By doing this, we can get a smooth rendering result of the whole 

high-resolution data, and also observe a high-quality rendering result for some en-

larged local part with interest. We call this adaptively switching rendering method as 

the Adaptive Particle-based Rendering (APBR). We also develop a time-varying ren-

dering into our system so that the rendering for the large-scale time-varying data also 

becomes possible. 

To verify the efficiency, we apply our APBR system to the large-scale blood flow 

dataset. The experimental results and the user feedbacks show that our system can 

fuse different objects efficiently while keeping an interactive frame rate and a good 

image quality, which is very meaningful in the visual analysis. 

2 Related Work 

There is a big need for the fusion of different objects in many visualization fields. 

That is because it is desirable and advantageous to show the different objects and 

analyze the relationship between them [5]. 

The fused visualization has a very important application in medical domain, and 

many approaches have been proposed. Baum et al. [5] has proposed a fusion view to 

fuse the different date measured from CT (computed tomography), MRI (magnetic 

resonance imaging), PET (positron emission tomography) and so on. The fusion result 

can provide a detailed analysis for the measured data. However, the measured data are 

2D images, for the simulation data in 3D, the fusion cannot be realized by this system. 

Prckovska et al. [6] also develop a multi-field visualization framework to fuse the 

measured results from DTI (diffusion tensor imaging) and HARDI (high-angular 

resolution diffusion imaging), which is also based on the 2-dimensional image. 2D 

image based fusion visualization can also be found in other related work [16], which 

cannot fit the needs of the fused visualization for 3D volume objects and semi-

transparent surfaces. 

As for the fused visualization for the three-dimensional objects, how to sort the 

multiple objects and fuse the together comes to be a main challenge. Generally, sur-

face-based visualization techniques, such as isosurfaces, sectional slices, and bounda-

ry faces, are useful in understanding the geometrical structure of a scalar field. Aaron 

et al. [7] proposed a volume ray-casting technique using peak-finding, which can 

integrally render the volumes and the isosurfaces extracted from the volumes, and 

confirmed the effectiveness of the technique by rendering several structured grid da-

tasets. However, since this system use the ray casting rendering method, it needs to 

store the whole data into GPU. If the data size of the volumes and surfaces is over the 

GPU memory size, these data cannot be visualized. Other approaches of fused visual-

ization for volume and opaque isosurface rendering can be found in [8] and a trans-

parent rendering technique of semi-transparent multi-isosurfaces [9] have also been 

proposed. All of these methods cannot render the large-scale data with the data size 

over the GPU memory.  



To make a fused visualization with an efficient sorting and handle a large-scale da-

ta, recently utilizing proxy geometries that are a set of opaque particles have been 

proposed.  Koyamada et al. proposed the particle-based volume rendering (PBVR) 

method [10] [11] which uses tiny particles as rendering primitives. Since this method 

only need to project the generated opaque particles, this method does not require any 

sorting and applicable to large-scale data. Moreover, this method also enables volume 

fusion [12]. A stochastic-based particle-generation on curved surfaces has been pro-

posed by Tanaka S. et al [13]. They also combine this approach to particle-based ren-

dering so that the rendering for semi-transparent surfaces with this method is also 

possible [14]. Moreover, Hasegawa et al. show the effectiveness of this particle-based 

fused visualization and they demonstrate volume–volume, volume–surface, and sur-

face-contour fusions especially for medical volume data [15]. From these related 

work we can see, a great advantage of the particle-based rendering is that 3D fused 

visualization of different volume/surface and other objects becomes possible simply 

by merging particles prepared for each element to be fused. However, because the 

particle-based rendering used in the above research, generate particles in object space 

(in this paper we call this as object-space particle-based rendering O-PBR), when we 

enlarge the view to observe some detailed local features, the particle shape becomes 

noticeable and the image quality becomes not fine. 

As a result, in this paper, we propose an adaptive particle-based rendering method 

(APBR) by combining an image-space particle rendering (I-PBR) to the O-PBR to 

fuse the multiple volumes, surfaces. The I-PBR is originally proposed as Stochastic 

Projection Tetrahedra (SPT) [3]. In this method, we regard the brightness equation as 

the expected value of the luminosity of a sampling point along a viewing ray, and we 

simply controls the fragment rendering by using the evaluated opacity value to calcu-

late a rendered image. This method is originally proposed to render the tetrahedra 

mesh, and in this paper, we expand it to the uniform grid and call is as the image-

space particle rendering. Even though the I-PBR is not so good at handling large-scale 

data (generally, I-PBR cannot handle the data size over the GPU memory), the gener-

ated particle of I-PBR is in pixel scale so that we can also get a high quality rendering 

even for a very enlarged view. Our system can automatically switch O-PBR to I-PBR 

when we enlarge the view, and switch back I-PBR to O-PBR when we need to ob-

serve the entire volume so that our fused visualization system can keep a scalability to 

render the large scale data while keep a good rendering quality. 

3 Proposed Method 

In this paper, we propose an adaptive particle-based rendering (APBR) to visualize 

the large-scale volume data. Because this particle-based rendering use the opaque 

particles, the fusion of different objects and the handling of large-scale data become 

possible. The APBR contains two kinds of particle-based rendering: object-space 

particle-based rendering (O-PBR) and image-space particle-based rendering (I-PBR). 

During the rendering process, APBR can adaptively switch the rendering method of 

O-PBR and I-PBR depending on the view point to provide an interactive frame rate 



and a good image quality. In this section, we will introduce the O-PBR and I-PBR 

separately and introduce how APBR works to switch rendering method adaptively 

depending on the view point. After that, the rendering process for the large-scale 

time-varying volume data is also shown in this section. 

3.1 Object-space Particle-based Rendering (O-PBR) 

Object-space particle-based rendering technique is a rendering technique based 

opaque particles in the object space. The original version is proposed by Koyamada et 

al. [1] [10] [11] [12]. In this technique, a set of opaque particles is generated from a 

given 3D scalar field based on a user-specified transfer function. The final image is 

then generated by projecting these particles onto the image plane. The particle projec-

tion does not need to be in order since the particle transparency values are not taken 

into account. During the projection stage, only a simple depth-order comparison is 

required to eliminate the occluded particles. The algorithm is listed as following. 

Assuming that the volume data is a set of light-emitting cloud particles, the bright-

ness B at the eye position can be solved numerically as follows [2]: 

 

𝐵0 = ∑ 𝑐𝑖 × (𝛼𝑖 ∏(1 − 𝛼𝑗)

𝑖=1

𝑗=1

)

𝑛

𝑖−1

                                        (1) 

 

Here, a viewing ray is evenly subdivided into n segments, and  𝑐𝑖 and 𝛼𝑖 repre-

sent luminosity and opacity values at the i-th sampling point, which is a central point 

of the interval [𝑡𝑖−1, 𝑡𝑖]. Usually, the opacity is specified through a transfer function, 

which is set by user. In the density emitter model, the opacity 𝛼𝑘 in the k-th ray seg-

ment is defined as: 

 

𝛼𝑘 = 1 − 𝑒𝑥𝑝 (− ∫ 𝜋𝑟2𝜌(𝜆)𝑑𝜆
𝑡𝑘−1

𝑡𝑘

)                                   (2) 

 

Here, 𝜌 and 𝑟 represent the number of particles in the unit volume and the radius 

of a particle, respectively. Since the Poisson distribution is assumed for the number of 

particles in the density emitter model, the opacity describes the possibility that more 

than one opaque particle exists along the ray segment. If we assume that the density 

function is constant in the segment, and that the ray segment length can be described 

as 𝛥𝑡 = 𝑡𝑘−1 − 𝑡𝑘, we have: 

 

𝛼𝑘 = 1 − 𝑒𝑥𝑝(−𝜋𝑟2𝜌𝑘𝛥𝑡)                                          (3) 

 
From Equation (3), the opacity can be generally expressed as: 

 

𝛼𝑘 = 1 − 𝑒𝑥𝑝(−𝜋𝑟2𝜌𝛥𝑡)                                             (4) 

 



As a result, the particle density used in the particle generation can be estimated us-

ing the radius, an opacity value in the user-specified transfer function, and the ray-

segment length used in the ray- casting. From Equation (4), we have: 

 

𝜌 =
−log (1 − 𝛼)

𝜋𝑟2𝛥𝑡
                                                     (5) 

 

With this particle generation function, O-PBR is composed of three parts (Figure 1):  

Fig. 1. The three steps of PBVR: particle generation, particle projection, ensemble average. 

 Particle generation: A set of particles is internally generated for each volume 

dataset using the density distribution function (5) from a user-specified transfer 

function. The generation process is done in a cell-by-cell manner.  

 Particle projection: For the second step, the generated particles are then projected 

onto the image plane to create a rendered image for the volume dataset. At the 

same time, the calculation of the particle size and the shadow processing are also 

performed by using the normal vector. 

 Ensemble average: This process means that for the group of particles generated 

by using different random numbers, the particle projection process is performed 

multiple times, and the generated images are superimposed on each other to obtain 

the average. The multiple times is called the repetition level. In general, a larger 

repetition level can provide a higher image quality but needs more computational 

resources. 

Fig. 2.   Comparison of the image quality of the pump data in an enlarged view obtained by 

using O-PBR (a) and I-PBR (b). (Lr: repetition level) 

(b) I-PBR 

Lr=1 Lr=49 Lr=100 

(a) O-PBR 

Lr=1 Lr=49 Lr=100 



Since this method generates particles in object space, we call this method as object-

space particle-based rendering. With this O-PBR method, because the projection of 

opaque particles does not need any visibility sorting, a high-speed rendering can be 

realized. When we need to fuse the different volumes, we only need to combine the 

different particles generated from these volumes together and project them to the 

image plane. As a result, our O-PBR is very suitable for the fused visualization of 

large-scale volume data. However, the problem is that when we enlarge the view to 

observe the local details, the shape of the object-space particles is noticeable, which 

will reduce the image quality (the (b) figure in Figure 2). 

 

3.2 Image-space Particle-based Rendering (I-PBR) 

To get a high image quality with an enlarged view, we use an Image-space Particle-

based Rendering (I-PBR) method to generate particles with the pixel scale during the 

rasterization process and deploy them on the screen (Figure 3). Compared with the O-

PBR, I-PBR is able to provide a high image quality even with an enlarged view (the  

(b) figure in Figure 2).  

Fig. 3. The particle generation of image-space particle-based rendering. 

Considering the brightness equation (1) we can construct a brightness calculation 

model in which there are n ray segments along a viewing ray, and the k-th particle 

occurs at the probability of αk. Thus, the brightness can be regarded as the expected 

value of the luminosity from the ray segment: 

  

𝐵 = ∑ 𝑃𝑘𝑐𝑘

𝑛

𝑘=1

                                                          (6) 

 

where the possibility that the k-th luminosity ck is equal to the brightness value can be 

described as follows by using the opacity value αk:  

𝑃𝑘 = 𝛼𝑘 ∏(1 − 𝛼𝑗)

𝑘−1

𝑗=0

                                                (7) 

 



This represents an event in which there is no particle from the first to the (k-1)-th 

ray segment, and there is more than one particle in the k-th ray segment. In this case, 

the brightness B becomes ck since opaque and emissive particles are used (Figure 4). 

Fig. 4. Brightness calculation using luminosities and opacities. 

Please note that the brightness is not contributed to by the ray segments from the k-

th to the last segments since the (k-1)-th particle completely occludes these segments. 

This interpretation of the brightness equation suggests that a volume rendering can be 

approximated by repeating such events multiple times, as in the following steps: 

 Particle generation: A pixel scale particle is generated with a probability equal to 

the opacity value at each ray segment along a viewing ray. 

 Particle projection: The luminosity of the particle nearest to the viewpoint is as-

signed to the brightness value.  

 Ensemble average: Steps 1 and 2 are repeated, in sequence, N times, and the re-

sulting brightness values are accumulated to obtain the average. 

Fig. 5.   Expected value of brightness. 

Figure 5 shows that the brightness value is calculated as the average of three lumi-

nosities: 0.3, 0.2, and 0.7, in the case of N=3. In this figure, the values in parentheses 

represent luminosity and opacity values, respectively. In addition, the yellow circle 

indicates the generated particle. For example, in the first repetition, from the viewing 

point, the last two particles are generated, and the nearest particle whose luminosity is 

0.3 is selected as the average. The multiple times N is the ensemble number. General-

ly, a larger ensemble number will provide a better image quality. 

With this image-space particle-based rendering, visibility sorting is also not need-

ed, which make the fused visualization be easy. Moreover, because the projected par-

ticles are in pixel scale (Figure 5) so that we can obtain a high quality rendering im-

age with an enlarged view point (the lower figure in Figure 4). However, we need to 

(c1, α1) (ck, αk) (cn, αn) 

(0.2, 0.8) (0.3, 0.5) (0.7, 0.2) 

(0.2, 0.8) (0.3, 0.5) (0.7, 0.2) 

(0.2, 0.8) (0.3, 0.5) 

B = 0.3 

B = 0.2 

B = 0.7 

Final brightness: (0.3+0.2+0.7) / 3 = 0.4 

(0.7, 0.2) 



store the volume data in the GPU memory so that large-scale volume data with a big 

size is not suitable for this rendering technique. 

3.3 Adaptive Particle-based Rendering (APBR) 

In this section, we show how we develop an adaptive particle-based rendering to 

adaptively render large-scale time-varying data with switching the render of O-PBR 

and I-PBR by taking into account of the computer resources at all time. 

Fig. 6. The volume within the range of view frustum 

Since the limitation for I-PBR is the GPU memory size, we can only use the I-PBR 

to visualize the part of volume within the view frustum if such a part of volume size is 

smaller than the available GPU size. As a result, during the rendering process, we 

monitor the available GPU memory and the data size in the range of the view frustum 

(Figure 6) at all the time. 

Fig. 7. Available GPU memory in O-PBR and I-PBR process. 

To calculate the volume size within the view frustum, we use proxy geometry of 

the original volume data to check the volume with the view frustum range. In detail, 

we first uniformly divide the entire volume data into lots of little cubes as the proxy 

structure when we load the data into main memory. During the rendering process, we 

check the each cube that whether this cube is within the view frustum or not. Then we 
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calculate the segmented volume size, which consists of all the cubes within the view 

frustum, as the data size within view frustum. 

In our system, we calculate the available GPU size as the Figure 9. We assume the 

GPU memory, excluding the system used, as the available memory. As shown in 

Figure 7, in the O-PBR process, the particle size and the free memory is the available 

GPU memory. In the I-PBR process, the volume data size and the free memory is the 

available GPU memory. We use CUDA to monitor free GPU memory, and calculate 

the particle data size and the volume data size in CPU before the data is transferred to 

GPU. 

As the pre-process, we first generate particles from the original volume data. This 

particle data is used in the O-PBR rendering (note that, the I-PBR does not need to 

pre-generate particles because it generate particles in GPU using the segmented vol-

ume). During the rendering process, we first load the particle data and render it with 

O-PBR. Assume the data size within view frustum as 𝑆𝐷 , and the available GPU 

memory as 𝑆𝐺𝑃𝑈, we switch the rendering method with the following rules (Figure 8): 

Fig. 8. The criterion to switch the renderer of O-PBR and I-PBR. 

 If 𝑆𝐷 <  𝑆𝐺𝑃𝑈, 

─ Segment the volume within the view frustum, 

─ Delete the particle data in GPU 

─ Transfer the segmented volume to GPU and render this volume with I-PBR 

 If 𝑆𝐷 >  𝑆𝐺𝑃𝑈 

─ Delete the volume data in GPU 

─ Transfer the particle data to GPU and render it with O-PBR 

With this adaptive visualization system, when we visualize the large-scale volume 

data, we can first get a rendering image of the whole data with O-PBR and then visu-

alize the high-resolution details on an enlarged scale with I-PBR.  
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3.4 Animation Rendering 

With the above adaptive particle-based rendering method, the visualization for the 

large-scale time-varying volume data also becomes simple to be realized. As men-

tioned before, the O-PBR is very suitable to handle the large size volume data, so we 

use the O-PBR to perform the animation rendering. As the preprocess, we first gener-

ate the object-space particle data from the original volume data (Figure 9). The gener-

ated particle data size can be much smaller than the original volume data so that the 

time-varying rendering becomes possible. The generated time-varying particle data is 

rendered with O-PBR time step by time step as an animation, which can clearly show 

the temporal variations of the time-varying data. When we stop the animation at some 

time step, our system load the original volume data at this time step and render this 

time step with our APBR (Figure 9). As a result, the temporal features can be shown 

clearly with O-PBR, and the detailed analysis for some time step can also be realized. 

 

Fig. 9. The rendering process for the time-varying data. 

4 Experiments and Results 

In this section, we apply our system to the large-scale blood flow datasets. The blood 

flow dataset was obtained from a numerical simulation performed on the K computer 

by Sugiyama et al. [4]. The output data have a high resolution of 3,072×640×640. The 

dataset contains volume data for red blood cells and platelets. The entire dataset con-

tains 100 time steps. For each time step, the data size reaches approximately 20 GB 

for the red blood cell volume and platelet volume. This experiment is conducted with 

an Intel Core i7-2820QM CPU (2.3 GHz), an NVidia GeForce GTX580M 2 GB 

GPU, and 16 GB of system memory. The operating system is Ubuntu 12.04 LTS. In 

the experiment, we first convert the data type of double to unsigned char. We fuse the 

red blood cell volume and platelet volume and measure the switching time of the 



renderers, show the rendering image, and obtain the user feedbacks to confirm the 

effectiveness of our system. 

4.1 Visualization Results  

With our proposed system, we are able to fuse the red blood cell volume and platelet 

volume together in the visualization result. As the user interface, we have a time slid-

er to help user choose the interested time step. We also show the details of the details 

for the free GPU memory; data size of the volume within the view frustum and the 

data size of the pre-generated particle data size to monitor the available GPU memory 

(see details in Figure 7). Figure 10 shows the animation rendering result for 9 time 

step (from time step 60 to time step 68). This rendering result can clearly show the 

temporal variations of the red blood cells and platelets and the interaction of them. 

Then we choose one time step (here it is the time step 8) to perform the detailed 

analysis. Figure 11 shows the automatically switching from O-PBR to I-PBR. With 

the O-PBR, we can observe the entire state of the blood stream Then, we enlarge the 

view and our system automatically switches the renderer to I-PBR. We can get a high 

quality rendering to analyze the local features for the enlarged view. The detailed 

distribution of the red blood cell and the platelets are very clear to be observed. Fur-

thermore, when we zoom out, our system automatically switches the render to O-

PBR. During the rendering we use a repetition level (ensemble number) of 15 for O-

PBR , and a repetition level of 50 for I-PBR to keep a frame rate larger than 10 while 

maintain a good image quality. We also measured the switching time between the O-

PBR and I-PBR. When the renderer is switched from O-PBR to I-PBR, it cost about 

2.16s. But for the switching from I-PBR to O-PBR, it only costs about 6.44×10-2s. 

4.2 User Feedbacks 

We also show this system to some domain experts and get user feedbacks from them. 

The main feedbacks are summarized as following: 

1. The interactive visualization for such a large-scale dataset is possible on a normal 

computer. This is very helpful for the visual analytics. In the previous work, the 

visualization for this data need to be performed with a super computer. 

2. The fused visualization for the red blood cell volume and platelet volume is very 

helpful to know the he positional relation of them. This is very important to ana-

lyze some blood diseases such as deformable vesicle problem. 

3. The animation rendering can show the time-varying changes very clearly. This is 

very meaningful to know the dynamic motions and interactions. 

4. The whole view for the entire data and detailed analysis for the enlarged local part 

is provided. Detailed and high precise visual analysis becomes possible. 

5. The image quality is good enough to perform the visual analysis. 

6. During the switching of renderer from O-PBR to I-PBR, it costs a little long time. 

 

 



Fig. 10.    This animation rendering for different time step. 

Fig. 11.  The rendering result with APBR. The above figure is the rendering result with O-

PBR, the bottom figure is the rendering result with automatically switched I-PBR. 



5 Discussion & Conclusion 

The above experimental results show our system can fuse different objects efficiently 

while keep an interactive frame rate and a good image quality for the visualization of 

large-scale time-varying volume datasets. With this system, the interactive visual 

analytics is possible with even a normal computer. The user feedbacks of 1, 2, 3, 4 

and 5 also confirm that the proposed system is very efficient to perform the visual 

analytics. The image quality of both O-PBR for the global view point and I-PBR for 

an enlarged local view point is also good enough to perform the analysis. 

However, there are also some disadvantages of our system. As commented in the 

user feedbacks 6, the switching from O-PBR to I-PBR cost much time (2.16s). The 

main reason for this is that the volume segmentation process is needed, and such a 

process can cost much time. Compared with this, the switching from I-PBR to O-PBR 

is fast because such process is not needed. Such long switching problem can give a 

bad influence for the interactivity if user perform many scaling operation. In our fu-

ture work, we would like to develop some efficient volume segmentation method to 

accelerate the switching process from O-PBR to I-PBR 

In this paper, a fused visualization system to visualize the large-scale blood flow 

datasets with adaptive particle-based rendering (APBR) has been proposed. Because 

the APBR does not need any visibility sorting, it can handle a large-scale volume 

datasets, and the fusion of different objects is also easy to be realized. To get an inter-

active frame rate analysis while keep a good image quality, APBR is combined with 

two rendering methods: O-PBR and I-PBR. O-PBR can render the large-scale data at 

a high speed and a high quality for the entire data, but the image quality is not so fine 

when we enlarge the view to observe some interested local details. I-PBR is able to 

provide a very high-quality rendering result even for much enlarged view, but the 

renderable data size is limited. In the proposed system, to achieve an interactive 

frame-rate rendering while keep a good image quality, we developed an adaptive 

particle-based rendering which to switch the above two rendering methods automati-

cally by taking into account of the data size within the view frustum and computer 

resources. Such adaptive particle-based rendering can provide a smooth rendering 

result of the whole high-resolution data, and also observe a high-quality rendering 

result for some enlarged local part with interest. We also developed a time-varying 

rendering into our system so that the rendering for the large-scale time-varying data 

also becomes possible. The experimental results show that our system is very efficient 

to visualize the large-scale time-varying volume datasets. 
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