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Abstract. Interconnected smart devices in the Internet of Things (IoT)
provide fine-granular data about real-world events, leveraged by service-
based systems using the paradigm of event-based systems (EBS) for in-
vocation. Depending on the capabilities and state of the system, the in-
formation propagated in EBS differs in content but also in properties like
precision, rate and freshness. At runtime, consumers have different dy-
namic requirements about those properties that constitute quality of in-
formation (QoI) for them. Current approaches to support quality-related
requirements in EBS are either domain-specific or limited in terms of
expressiveness, flexibility and scope as they do not allow participants to
adapt their behavior. We introduce the generic concept of expectations
to express, negotiate and enforce arbitrary requirements about informa-
tion quality in EBS at runtime. In this paper, we present the model of
expectations, capabilities and feedback based on generic properties. Par-
ticipants express requirements and define individual tradeoffs between
them as expectations while system features are expressed as capabilities.
We discuss the algorithms to (i) negotiate requirements at runtime in
the middleware by matching expectations to capabilities and (ii) adapt
participants as well as the middleware. We illustrate the architecture for
runtime-support in industry-strength systems by describing prototypes
implemented within a centralized and a decentralized EBS.

Keywords: event-based systems, quality of information, self-adaptive
systems, runtime negotiation, malleability.

1 Motivation

Having information of adequate quality available at the right time in the right
place is vital for software systems to react to situations or support decisions. Sup-
ply chain management based on the Internet of Things (IoT) and data centre
monitoring are just two examples of reactive systems where information provided
by data sources has to be interpreted and where false alarms, missed events or
otherwise information of inadequate quality carries a cost [18]. Event-based sys-
tems (EBS) and service-oriented architectures (SOA) complement each other
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well to leverage those streams of dynamic real-time information in enterprise
software systems and react on meaningful events in a timely manner: software
components can be exposed as services for direct communication while also act-
ing as participants of an EBS to follow an indirect communication model [8,10].
EBS are anonymous, information-centric systems with many-to-many commu-
nication: loosely-coupled software components (publishers) publish notifications
about events they are confident to have detected (e.g., critical workload at node)
as messages which are pushed to interested components (subscribers) by a mid-
dleware. Information exchanged in EBS is characterized by type (e.g., tempera-
tureEvent), content (e.g., temperatureCelsius=50) and quality-related properties
(e.g., rate of publication, confidence, precision, trustworthiness) [14].

Subscribers in EBS require information with sufficient quality of information
(QoI) to decide whether to react or not: being notified too late or causelessly due
to false positive can have severe consequences [18]. Whether some QoI is sufficient
depends on the information’s properties fitting the purpose it is intended to be
used for; this is application-specific and dynamic as it depends on the context
of each subscriber [6]. For example, monitoring data about a virtual machine
delivered at a given rate and confidence might be (i) sufficient for the purpose
of one subscriber while another subscriber might need the same type of data at
a higher rate but would tolerate less confidence; (ii) sufficient for a subscriber as
long as there is no indication of malfunction at the monitored entity - in case of
anomalies the same data is required at high rate for root cause analysis [18].

QoI in EBS depends on the system satisfying individual requirements about
quality-related properties at runtime [4]. Subscribers have to be able to (i) define
requirements about arbitrary quality-related properties of information they want
to consume; (ii) expose individual tradeoffs between those requirements if they
are willing to accept degradations in exchange for getting other requirements
satisfied; (iii) adapt requirements at runtime to reflect changes to their current
situation; and (iv) get feedback about the state of their requirements to decide
if their needs are satisfied or if they have to adapt. At the same time, delivering
information with specific properties comes at a cost for the system as it depends
on the current configuration of available publishers and the middleware [3]. Thus,
the system has to decide at runtime how to satisfy which requirements.

Runtime support for quality-related properties in EBS is currently limited
in terms of expressivity, extensibility and scope; feedback is not provided at
runtime [2,11]. Requirements about quality-related properties in EBS can be
implicitly supported by publishers either by using types that encode quality-
related properties in their name (e.g., CpuUsage_rate50_confidence70), or by
adding metadata to the content of each published message (e.g., rate=50, con-
fidence=70 ). Subscribers can express their requirements by subscribing to the
type they are interested in using the common API of EBS [22]. However, this
restricts the set of available properties to those determinable by publishers at
design-time, excluding important runtime properties like latency and reliabil-
ity that are provided by the middleware. For encoded types, it would also re-
sult in an unmanageable growth of available types for different combinations of
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Fig. 1. Our concept extends the model of EBS (top) with capabilities, expectations
and bidirectional feedback for runtime adaptation (bottom, bold)

quality-properties, as well as, traffic overhead as the same information has to be
processed for multiple encoded types [9]. Systems providing explicit support for
quality-related properties like IndiQoS [9], Adamant [15] or Harmony [28] focus
on a fixed set of middleware-related properties at a low level of abstraction. They
try to satisfy requirements by adapting the middleware on the transport proto-
col level and do not enforce requirements about properties that would require
publishers to adapt at runtime, limiting the scope of runtime flexibility.

In this paper, we propose the concept of expectations as a generic approach
to support QoI in EBS as a first-class citizen and enable participants to adapt
at runtime. Fig. 1 shows how our approach complements the paradigm of EBS.

Our key idea is to define quality-related properties like rate, confidence or
latency in a generic way together with actions that define how those properties
can be adjusted at runtime. Requirements (expectations) and the system state
(capabilities) defined as ranges over such properties can be efficiently matched in
the middleware at runtime to identify the extent to which the system would have
to adapt to satisfy requirements. Based on this assessment, requirements can be
declined or satisfied by adapting the system using platform-specific instantiations
of the associated actions. Subscribers receive feedback about the state of their
requirements while publishers get feedback about the usage of their capabilities,
including advice to adapt if necessary.

For example, application M has to monitor the temperature of a chemical pro-
cess during manufacturing to detect anomalies and trigger a dedicated workflow.
In terms of QoI, M subscribes to notifications for temperatureEvent with an
expectation about rate and confidence: it requires notifications to be of 75-95%
confidence (minimizing false-positives/negatives) while they could be published
at a low rate of 5-10 events/minute. A temperature sensor P, currently publishing
2 events/minute with 90% confidence, is able to publish up to 60 events/minute
with a maximum confidence of 80%, expressing this as capabilities for rate and
confidence. Matching M ’s expectation to available capabilities, the middleware
realizes that P is suitable but has to adapt, advising it to do so.

Subscribers can express requirements and individual tradeoffs between them as
expectations in a consistent and information-centric way over arbitrary properties.
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Publishers expose their general capabilities as well as the state they are currently
operating at to brokers as capabilities. Support for new properties can be realized
by extending the set of available properties, their relationships and by associating
suitable actions for manipulating them at the middleware.

Expressing expectations and capabilities as ranges of accepted and provided
values over properties automates the process of runtime negotiation: matching
requirements to the system state is reduced to a range matching problem be-
tween corresponding properties. Furthermore, requirements become malleable
due to the individual tradeoffs defined by subscribers, giving the system more
degrees of freedom when deciding on the extent of adaptation necessary. Feed-
back enables participants to adapt their behavior at runtime and extends the
scope of supported properties to those influenced by publishers.

The concept of expectations complementary extends the paradigm of EBS with-
out compromising the model of indirect many-to-many communication, making
it backward compatible. As shown in Fig. 1, expectations and capabilities can
be defined independently of advertisements, notifications or subscriptions. They
are matched only at the middleware, preserving the anonymity of the associated
participants necessary for scalability in EBS. Bidirectional feedback enables par-
ticipants to assess their current situation and adapt their behavior at runtime if
necessary. Our concept encompasses related approaches by treating them as ded-
icated actions for enforcing requirements for specific properties.
This paper makes the following contributions to support QoI in EBS:

1. a generic model to express malleable requirements and capabilities for arbi-
trary quality-related properties in EBS at runtime (Sec. 2);

2. algorithms for negotiating requirements at runtime in the middleware by
(i) matching expectations and capabilities to identify satisfied, satisfiable
and unsatisfiable requirements; (ii) deciding on the requirements to satisfy
based on strategies for optimization and load balancing; (iii) enforcing those
requirements by adapting participants, the middleware or both (Sec. 3); and

3. runtime support in industry-strength systems illustrated by prototypes im-
plemented in Java within the centralized ActiveMQ JMS messaging broker
and the decentralized REDS middleware (Sec. 4).

Related work is discussed in Sec. 5 before Sec. 6 concludes with final remarks.

2 Expectations: Support for QoI in EBS

This section describes the challenges supporting QoI in EBS at runtime and our
proposed solution using expectations, capabilities and feedback.

2.1 Background: Event-Based Systems in a Nutshell

Participants in EBS are independent but cooperative software components with
different roles that communicate indirectly using notifications: publishers send
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advertisements once before they publish notifications to announce the type of
event to be provided. Different kinds of data sources can act as publishers: sen-
sors, services or other software components. Subscribers are components that
express interest about notifications with a specific type or content by registering
subscriptions at the middleware. Subscribers and publishers are fully decoupled
by the middleware. It matches subscriptions to advertisements and processes
notifications from publishers to subscribers based on routing trees, following a
many-to-many communication pattern. The middleware can consist of a single,
centralized message broker or a distributed network of brokers. Brokers perform
efficient en-route filtering and selective forwarding of notifications based on their
content. As the message flow is unidirectional, from publishers to subscribers,
subscribers are anonymous to publishers, and vice versa.

2.2 Challenges Supporting QoI in EBS at Runtime

Support for QoI means to deliver information with specific quality-related prop-
erties that satisfy individual, sometimes vague, requirements while balancing
the costs for provisioning against it [3,18]. EBS are designed for heterogeneous
and dynamic populations: publishers and subscribers can join, leave or change
at runtime. Multiple publishers can provide information of the same type and
content but with different quality-related properties as those depend on each
publisher’s configuration (e.g., available hardware, setup) and can change dy-
namically based on a publisher’s current context (e.g., enforced energy-saving
mode for battery-powered sensors). Information is only propagated by the mid-
dleware in a many-to-many fashion, preventing direct negotiation.

2.3 The Model of Expectations and Capabilities

The basic building blocks of our approach are properties that characterize in-
formation in addition to its content or type. Examples for properties are pre-
cision, rate, transport latency, trustworthiness, order, or confidence [20]. Prop-
erties do not have to be comparable (e.g., trustworthiness vs. order) but they
can be conflicting due to system constraints (e.g., rate vs. latency vs. band-
width). Every property can be modeled over a range or a set of values that
apply a total order (ordinal scale) depending on the semantics of the property.
For example, trust can be modeled over the set {none, low,medium,high}, with
none < low < medium < high; confidence can be modeled using the range
[0%; 100%]; transport latency can be modeled as the number of milliseconds
elapsed since publication using the range [0; ∞]. Each property can be improved
by either maximizing or minimizing it, depending on the semantics of the prop-
erty (e.g., improve latency by minimizing it). A value dominates another value
of the same property if it improves it (e.g., a confidence of 88% dominates a
confidence of 25%, a latency of 300ms dominates a latency of 700ms).
Expectations to express QoI requirements. The context of a subscriber
might change at runtime, affecting requirements about quality-related proper-
ties of notifications but not those about content or type as expressed in the
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subscription (c.f. Sec. 1). We introduce the notion of expectations to encapsulate
quality-related requirements, enabling subscribers to manage their requirements
about quality-related properties at runtime.

Definition 1 (expectation). An expectation describes a malleable set of re-
quirements that a subscriber has about quality-related properties of information
it has subscribed to. Each expectation X e

i consists of a set of tuples (pe, lb, ub)
as well as a utility value X e

i .u which reflects the individual importance of this
expectation for the subscriber and allows a ranking.

Each tuple in X e
i refers to a requirement about a property like rate, confidence

or latency: it is defined as a range of values [pe.lb;pe.ub] that a subscriber would
accept for property pe and the associated event e. By combining different re-
quirements in a single expectation, each subscriber defines a tradeoff between
the ranges of those properties, making the requirements malleable. For exam-
ple, subscriber M with expectation X e

1 = {(rate, 5, 10), (confidence, 75, 95)} ac-
cepts notifications with {rate = 7, confidence = 90} as well as notifications with
{rate = 10, confidence = 80}. A subscriber can associate multiple expectations
with the same subscription to allow for alternative configurations, ranked by
their utility values [27,13]. For example, M needs highly reliable information
(X e

1 ) but could alternatively do with less reliable information at a higher rate to
compensate false-positives/negatives: X e

2 = {(rate,30,45), (confidence,50,60)}.
Each expectation has a lifecycle that starts with registering it at the broker,

making the system aware of the described requirements. Changes in the con-
text of the subscriber can be reflected by changing the lifecycle of a registered
expectation by updating, suspending/resuming or revoking it. Registered expec-
tations are active unless they are suspended or revoked. When unsubscribing,
all associated expectations are treated as revoked by the broker.

Capabilities to express the system state. In EBS, the system state regard-
ing QoI depends on the extent to which properties are provided by publishers
and supported by brokers. We introduce capabilities to describe this.

Definition 2 (capability). A capability describes the extent to which publisher
j supports property pe. Each capability Ce

j is a tuple (pe,lb,ub,cv,costpe (x)) that
defines (a) the range of values [Ce

j .lb; Ce
j .ub] publisher j in principle is capable

of providing; (b) the value Ce
j .cv within this range that publisher j is currently

operating at; and (c) the cost function costpe(x) for operating at x.

A capability describes the current support for a property by a publisher as
well as the realizable spectrum of values. Providing pe at a specific quality comes
at a cost [3], captured in costpe(). A publisher can provide multiple capabilities
while the same capability can be provided by multiple publishers with different
ranges or costs. Capabilities for some properties like confidence are provided
only by publishers, others depend on assessment and enforcement by the mid-
dleware or a cooperation of publishers and the middleware at runtime (e.g., to
support latency, reliability, order). A capability profile bundles all capabilities of
a publisher for a given event.
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Definition 3 (capability profile). A capability profile CPe
j is a set of capabil-

ities {Ce
1, . . . , Ce

k} associated with publisher j for events of type e. It consists of
capabilities determined by the publisher itself and those determined by the broker.

A capability profile reflects the full set of capabilities available from a spe-
cific publisher for a given event type and can be matched against expecta-
tions. Capabilities determinable only by the broker are added at runtime. Ca-
pability profiles for the same type of event (CPe) but associated with differ-
ent publishers can be heterogenous in terms of the (i) set of properties (e.g.,
CPe

2 = {rate ∧ latency} ⊂ CPe
1 = {rate ∧ latency ∧ confidence}), (ii) ranges,

and (iii) current values.
A capability profile’s lifecycle starts with registering it at the broker and ends

with revoking it. During runtime, the situation of a publisher might change in
a way that requires updating registered capability profiles without changing the
advertisement. For example, a battery powered sensor runs low on energy and
has to switch to an energy-saving mode, decreasing the rate of publication; or
new resources become available at runtime, improving or adding capabilities
(e.g., higher confidence due to better contextual information [16]).

Feedback to subscribers and publishers. At runtime, publishers and sub-
scribers are able and willing to adapt their behavior if they get feedback about
their actions and the system state. As traditional EBS do not give such feedback
at runtime, participants cannot assess if and how they would have to adapt [11].
We introduce bidirectional feedback from the middleware to participants to pro-
vide them with additional information about their actions and support adap-
tation at runtime. Subscribers get feedback about the state of their active ex-
pectations (satisfied or unsatisfied). They are informed about the reason if an
expectation cannot be satisfied by the system at the time. Reasons are expressed
as tuples (X e

i ,pe,α), describing the value currently provided by the system for
each property that is not satisfied. As soon as the expectation can be satisfied,
the subscriber is notified about the new state. Publishers receive feedback about
each active capability profile’s usage together with advice to adapt their publica-
tions if necessary. This includes the list of capabilities to adapt together with the
required target values, expressed as tuples (CPe

j ,Ce,β). We consider publishers
to be able to adapt automatically at runtime if notified as we show in [13].

3 Negotiating Requirements for QoI in EBS

Using expectations to model requirements about QoI and capabilities to describe
the corresponding system state, requirements negotiation in EBS can be done
automatically at runtime inside the middleware. For every active expectation
associated with a subscription, the middleware has to check if it could deliver
information with quality-related properties that satisfies the expectation and the
associated subscription. This can be possible already with the current state of the
system or after adaptation, depending on the capabilities of publishers providing
notifications that match the subscription in type or content. In some cases,
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however, a requirement cannot be satisfied even after adapting due to limitations
of the system or cost constraints and has to be declined. The remainder of
this section describes the algorithm for matching expectations to capabilities,
outlines how to decide about satisfiable expectations and illustrates how suitable
reactions are selected at runtime by the middleware.

3.1 Matching Expectations to Capabilities

As publishers are described by their capability profile in terms of QoI, the whole
decision problem is reduced to first a set- and then a range-matching problem
between an expectation X e

i and available capability profiles. The result is either
a set of publishers with capability profiles already satisfying X e

i (CandX e
i
) or a

set of publishers that are capable but would have to adapt (CandX e
i
).

The algorithms for matching an expectation X e
i to a set of capability profiles

{CPe
1,. . . ,CPe

l } are shown in Fig. 3. The whole process is performed for a single
expectation at a time. It can be triggered by a subscriber registering/updating
an active expectation or by changes to capability profiles. A changed capability
profile requires checking all expectations affected by it.

We define the following terms and relationships for a property pe of an expec-
tation X e

i and a matching capability Ce
j of a capability profile CPe

j :

Covered property. A property of an expectation is covered if its range over-
laps with the range of a matching capability (i.e., Ce

j .lb ≤ pe.lb ∨ Ce
j .ub ≥

pe.ub) (c.f., Fig. 2 (a)). A property is fully covered if its range is enclosed or
improved by the range of Ce

j (i.e., Ce
j .lb ≥ pe.ub for maximization).

Dominated property. A property of an expectation is dominated if a match-
ing capability’s current value dominates the lower or upper bound of the
property. A property that is dominated is also covered whereas a covered
property is not necessarily dominated (c.f., Fig. 2 (b)).

Satisfiable expectation. An expectation is satisfiable if all its properties are
covered by matching capabilities of at least one capability profile.

Satisfied expectation. An expectation is satisfied if all its properties are dom-
inated by capabilities of a matching capability profile (c.f., Fig. 2 (c)).

Unsatisfied expectation. An expectation is unsatisfied if no matching set of
capabilities exists (i.e., CPe

j ⊂ X e
i ∨CPe

j

⋂ X e
i = ∅) or if at least one property

is not dominated by any matching capability (c.f., Fig. 2 (d)).

Deciding if an expectation is satisfied, satisfiable or unsatisfied does not re-
quire the middleware to compare it with every known capability profile but only
with the most promising ones. Thus, each broker B maintains a SuperSet Se

B

per event type e that represents the skyline [7] of capabilities available at this
broker: For every set of capabilities in CPe it contains those capability profiles
that are as good or better than all other capability profiles known at this bro-
ker in all capabilities and dominating in at least one capability as illustrated in
Fig. 4. The SuperSet is updated with every change to a capability profile.

An expectation X e
i is satisfied (X e

i ∈ Sat) if it is dominated by the SuperSet,
satisfiable (X e

i ∈ Sat) if covered by it and unsatisfiable (X e
i ∈ Sat) if not.
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global: Sat, Sat, Sat,Cand,Cand

function match(X e
i , CPe

1, . . . , CPe
l )

State ← unsatisfied
for all CPe

j ∈ {CPe
1, . . . , CPe

l } do
tS ← CheckState(X e

i , CPe
j )

switch tS do
case satisfiable

CandXe
i
.add(CPe

j)
State ← satisfiable

case satisfied
CandXe

i
.add(CPe

j)
State ← satisfied

end switch
end for

switch State do
case satisfied: Sat.add(X e

i )
case satisfiable: Sat.add(X e

i )
case unsatisfied: Sat.add(X e

i )
end switch

end function

function CheckState(X e
i ,CPe

j)
Satpe , Satpe , Satpe

← ∅
for all pe ∈ X e

i do
if Satisfies(Ce

j .cv,pe) then
Satpe .add(pe)

else if Covers(Ce
j ,pe) then

Satpe .add(pe)
else Sat

pe
.add(pe)

end for

if Sat
pe

�= ∅ then return unsatisfied
else if Satpe = X e

i then return satisfied
else return satisfiable

end function

function Satisfies(v, pe)
if pe.minimize then

if v ≤ pe.ub then return true
if pe.maximize then

if v ≥ pe.lb then return true
return false

end function

Fig. 3. Algorithms in pseudocode for matching expectations to capabilities; function
Covers (checking if pe is covered) is omitted due to space limitation

In a distributed setup, each broker forwards its SuperSet to its directly con-
nected neighbors along the routing tree after modifying it: each contained ca-
pability profile is associated with the forwarding broker, masking the identity
of the locally known provider (i.e., CPe

j → CPe
bk

). Broker-related capabilities
like latency have to be updated as well. Forwarded SuperSets are handled like
capability profiles registered by local clients at each neighboring broker, starting
an iterative update that generates a global skyline at the edge brokers.

Example: Matching in distributed EBS. Consider a distributed EBS with an
acyclic routing topology as shown in Fig. 4 (top), consisting of brokers B and
C, five publishers and four subscribers for events of type e. Expectations and
capabilities are defined over properties pa and pb (improvable by minimization).
Publishers P1 → {CPe

1}, P2 → {CPe
2}, P3 → {CPe

3} register their capability
profiles at broker B (c.f. Fig.. 4 (bottom left)), P4 → {CPe

4} and P5 → {CPe
5}

at broker C. Broker B forwards its SuperSet Se
B = {CPe

1, CPe
2} to broker C,

masking the identity of P1 and P2. Note that Se
C = Se

B as Se
B dominates all other

local capability profiles at broker C. At broker C, the sequentially registered
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Fig. 4. Example for matching expectations to capabilities in a distributed broker net-
work (top): Broker B forwards the SuperSet of its capability profiles (bottom left) to
broker C where it is merged with the capability profiles of local publishers (CPe

4, CPe
5)

and matched to expectations X e
4 (not satisfied), X e

2 & X e
3 (satisfied), and X e

1 &
X e

5 (satisfiable), (bottom right). Axes show improvement direction.

expectations (S1 → {X e
3 , X e

1 }, S2 → {X e
2 }, S3 → {X e

5 }, S4 → {X e
4 }) are each

matched against Se
C (c.f., Fig. 4 (bottom right)) using Match(X e

i , Se
C) (c.f.,

Fig. 3). This results in: Sat = {X e
3 , X e

2 } (satisfied), Sat = {X e
1 , X e

5 } (satisfiable)
and Sat = {X e

4 } (not satisfiable as it is not covered by any capability profile).

3.2 Deciding on Satisfiable Expectations

The matching algorithm marks an expectation as satisfiable if the system could
satisfy it by self-adaptation. As this comes at a cost, the middleware has to
assess if the expectation should be satisfied or declined. Different optimization
strategies can be applied to such a decision problem [21]. For example, we can
apply a strategy aiming at pareto-optimal states for subscribers: we decline an
adaptation to satisfy X e

i ∈ Sat for subscriber i only if another expectation X ′e
i

is already satisfied for subscriber i (i.e., X ′e
i ∈ Sat) and satisfying X e

i would
be more expensive than the current state; we decide to adapt in all other cases.
Referring to the example in Fig. 4, we assume S1 to register X e

1 after X e
3 has been

satisfied. The middleware would approve satisfying X e
1 by adapting publisher P1

if
∑X e

1
pe

CPe
1.costpe(pe.ub) <

∑X e
3

pe
CPe

1.costpe(pe.lb)

3.3 Select Suitable Adaptations

The last step of the runtime negotiation process is to adapt the system and give
feedback to subscribers. While system adaptation is limited to routing adjustments
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based on load-balancing strategies for satisfied expectations, approved satisfiable
expectations require further adaptation. In this paper, we focus on runtime adap-
tation to satisfy an expectation X e

i ∈ Sat; adaptation to free up resources or op-
timize system costs is part of future work.

The system adapts to increase (↑) or decrease (↓) properties to turn a suitable
capability profile Ce

j into one satisfying X e
i . This can be achieved by adapting the

middleware itself or by using feedback to advise the publisher associated with Ce
j

to adapt. Actions define dedicated activities such as adaptPublisher. They are
associated with properties as tuples (pe, ↑ ∨ ↓, action, costsaction). Please note
that sequences of actions can be defined as a new action. Alternative actions can
be defined by associating multiple tuples for a property. They can have different
costs but we assume costsaction = 0 if there is no alternative action available.
For example, rate can be decreased by adapting a publisher or by applying a
filter at the broker before delivering notifications to the subscriber [13]. This can
be modeled in our concept by associating two tuples: (rate,↓,adaptPublisher,
costsadaptPublisher) and (rate,↓,applyFilter, costsapplyFilter).

We are currently selecting the least expensive action for a property to apply.
Using other selection strategies at runtime is out of scope of this paper.

4 Implementation

Runtime support for QoI in EBS using expectations and capabilities is realized
by extending the middleware with an ExpectationController and providing ad-
ditional handlers to participants as shown in Fig. 5. We have implemented two
prototypes in Java, extending the ActiveMQ JMS messaging broker1 and the
distributed REDS middleware2. We chose these two platforms for their different
features: ActiveMQ is representative of an industrial-strength messaging system
focussing on high performance, while the modular REDS systems allows us to
exploit routing strategies and broker topologies for adaption. Both systems are
easy to extend without affecting existing code. We use our prototypes to support
QoI at runtime within the open-source monitoring system Ganglia3 [13]. In this
paper, we focus on describing the key components for a single broker setup.

4.1 Broker Extension: ExpectationController

We require access to the broker state for monitoring the system and to ap-
ply broker-related reactions like filtering messages or routing adaptation [12,13].
Thus, we provide ExpectationController as a plugin using BrokerPluginSup-
port on ActiveMQ and as an extended NodeDescriptor class defining a new bro-
ker type on REDS. Other components are implemented in an platform-agnostic
way while platform-specific messages are used to communicate with participants.
An ExpectationController consists of five key components (c.f. Fig. 5 (centre)):
1 https://activemq.apache.org
2 http://zeus.ws.dei.polimi.it/reds/
3 http://ganglia.sourceforge.net/

https://activemq.apache.org
http://zeus.ws.dei.polimi.it/reds/
http://ganglia.sourceforge.net/
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Fig. 5. Runtime support for QoI in EBS with expectations and capabilities showing
additional components (dark gray) for participants and middleware (gray)

RessourceMonitor monitors the broker’s state and the system’s population, re-
porting changes to the Registry.

Registry stores all expectations and capabilities registered at this broker with
the definitions of available properties and their matching. Changes trigger a
negotiation of requirements at the Balancer.

Balancer matches expectations to capabilities (c.f., Sec. 3) while applying differ-
ent optimization strategies. Triggers ReactionCoordinator upon completion.

ReactionCoordinator selects applicable actions from the MechanismRepository
and coordinates their execution by adapting the broker, advising selected
publishers to adapt using feedback or notifying subscribers.

MechanismRepository stores available actions for specific properties (c.f., Sec.
3.3). Actions are objects implementing generic or platform-specific activities.

4.2 Handlers for Participants

We provide participants with handlers to deal with feedback by the middleware
and use platform-agnostic APIs for managing the lifecycle of expectations and
capabilities: ExpectationHandlerClient allows subscribers to store, load, register,
revoke, update, suspend or resume expectations. CapabilityHandlerClient enables
publishers to store, load, register, revoke or update capabilities and access their
usage statistics; publishers can register to be triggered by adaptation advices.
Otherwise, an optional ReactionManagerClient adapts its associated publisher if
advised by the ReactionCoordinator. For example, within our Ganglia scenario
we implemented it as a wrapper that changes the configuration of each gmond
publisher on the fly before restarting it, realizing adaptation within 26ms.

Expectations and capabilities are stored in XML while property definitions
are separately stored using a key-value syntax. We chose these open formats for
maximum portability. We provide a parser to process instances of expectations
and capabilities with their property definitions in Java as well as a graphical
editor to support the user.
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5 Related Work

Work done by Keeton et al. [18] on general considerations about information
quality and by Wilkes [27] on balancing requirements with consumers’ utility
has highly influenced our work; Behnel et al. [4] and Appel et al. [1] identify a
basic set of quality guarantees and the levels of abstractions specific to EBS.

Our model has been inspired by complementary work on specifying and cat-
egorizing QoI for sensor networks: Perera et al. [20] support users in search-
ing for sensor data sources using ontologies while the CommonSens middleware
for assisted living by Soberg et al. [26] automatically selects sensors based on
their domain-specific capabilities. Hossain et al. [16] and Bahjat et al. [3] pro-
pose frameworks to quantify QoI in IoT applications focussing on properties like
uncertainty, precision, integrity or timeliness of detection. Bisdikian et al. [6]
try to separate inherent quality attributes from application-specific ones as do
Sachidananda et al. [23]. Our concept generalizes these application- and domain-
specific properties, allowing requirements and capabilities to be expressed in a
consistent and information-centric way.

We see most approaches proposed in the domain of EBS as complementary
to our concept as they provide mechanisms to enforce dedicated quality-related
properties that we can model using expectations: several systems address the
issue of quality of service (QoS), focussing on network-specific properties like
latency or jitter. We refer to [5] for an extensive overview and a more detailed
discussion. Directly related to our work are the reactive middleware systems
IndiQoS, as proposed by Carvalho et al. [9], Adamant by Hoffert [15] and Har-
mony by Yang et al. [28]. They support requirements about latency, reliability
and bandwidth but focus on a closed set of requirements that is resolved on
the transport protocol level only and omit enforcing publisher-related proper-
ties. We expand the scope of runtime support to include the enforcement of
publisher-related properties by runtime adaptation based on feedback and allow
subscribers to expose individual tradeoffs between requirements.

Related topics actively researched on in the area of (cloud-based) SOA are
concepts for service selection as well as the negotiation of quality requirements
and service-level agreements at runtime. We refer to [19,25] for a detailed discus-
sion due to space limitations and would like to focus on two related contributions:
Kattepur et al. [17] define a QoS metric similar to properties in expectations.
However, they focus on interactions in heterogeneous SOA choreographies while
expectations are information-centric; Pernici et al. [21] use fuzzy parameters for
deciding on web service adaptation. Those approaches, however, are based on
direct contracts between service providers and service consumers, often assuming
the existence of explicitly modeled workflows or a central authority for coordi-
nation. They are not directly applicable to the indirect communication model of
anonymous EBS. Integrating them with our concept is part of ongoing work.
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6 Conclusion, Ongoing and Future Work

Event-based systems (EBS) complement SOA and enable enterprises to react to
meaningful events in a timely manner. While quality of information (QoI) is cru-
cial in these information-centric systems, it is supported only to a limited degree
in today’s EBS. We introduce the concept of expectations as a generic model
to express, negotiate and enforce requirements about QoI in EBS at runtime.
Instead of providing a fixed set of supported properties, our solution enables
participants to define and manage requirements about arbitrary quality-related
properties while exposing individual tradeoffs. Requirements are negotiated and
enforced at the middleware by adapting data sources and brokers based on dif-
ferent optimization strategies and platform-specific mechanisms. Ongoing work
focusses on evaluating our prototypic implementations in terms of performance
and scalability using SPEC Research FINCoS4 and the jms2009-PS bench-
mark [24]. Future work investigates interdependent and conflicting properties
(e.g., adapting the system to support order for satisfying one expectation might
lead to increased latency, violating other expectations). We also plan to extend
our model to handle composite properties of expectations and capabilities such
as alternatives [4] (i.e., notifications have to be provided by a number of differ-
ent publishers all supporting a specific set of properties). Security and privacy
aspects are important but orthogonal to our approach and currently out of scope.
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