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Abstract. Distributed storage systems (e.g. clustered filesystems - HDFS, GPFS
and Object Stores - Openstack swift ) often partition sequential data across stor-
age systems for performance ( data striping) or protection (Erasure-Coding) .
This partitioning leads to logically correlated data being stored on different phys-
ical storage devices, which operate autonomously. This un-coordinated opera-
tion may lead to inefficient caching, where different devices may cache segments
that belong to different working sets. From an application perspective, caching
is effective only if all segments needed by it at a given point in time are cached
and a single missing segment may lead to high application latency. In this work,
we present C2P: a middleware for co-operative caching in distributed storage.
C2P uses an event-based architecture to co-ordinate caching across the storage
devices and ensures that all devices cache correlated segments. We have imple-
mented C2P as a caching middleware for hosted Openstack Swift Object Store.
Our experiments show 4-6% improved cache hit and 3-5% reduced disk IO with
minimal resource overheads.

1 Introduction

Distributed storage systems often partition sequential data across storage systems for
performance ( data striping) or protection (Erasure-Coding) . Data striping [5][4] is a
technique in which logically sequential data is partitioned into segments and each seg-
ment is stored on different physical storage device(HDD). This helps improve aggregate
I/0O performance by allowing multiple I/O requests to be serviced in parallel from differ-
ent devices. Striping has been used in practice by storage controllers to manage HDD
storage arrays for improved performance for more than a decade (e.g., RAID 0 [15])
. Most of the popular enterprise cluster/distributed filesystems IBM GPFS[13], EMC
Isilon OneFS[14], Luster[17] etc. support data striping. Also, popular blob-storage like
Amazon S3[2], Openstack Swift[20], Microsoft Azure[18], Google Cloud Storage[11]
support segmented blob uploads.
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Logically correlated data in storage systems also gets partitioned due to new data
protection techniques like Erasure-Coding (E'C')[3][12][24], which deliver higher mean
time between data loss (MTBDL) as compared to RAID. For example, with 9:3 EC' data
protection policy, when a new data is written, it is first partitioned into 9 equal-sized seg-
ments. Next, 3 additional code segments are computed from the data segments. These
12 segments are then stored on different storage nodes. Any 9 of these 12 segments then
can be used to satisfy subsequent read requests for the data.This provides availability
of the data for maximum up to 3 disk failures. Thus, either for performance or for re-
dundancy, we are increasingly seeing data segmentation in distributed storage systems
today.

1.1 Our Contributions

In this work, we specifically study and analyze cache efficiency for distributed stor-
age systems. Typically, the placement policy in these systems is to store each segment
on a different storage device/node, which operate autonomously with their own cache
management policies. This leads to inefficient caching across all nodes, where different
devices may cache segments that belong to different working sets. From an application
perspective, caching is effective only if all segments needed by it at a given point in
time are cached and a single missing segment may lead to high application latency.

We build the C2P system, which implements co-operative caching for distributed
storage. C2P implements a reliable communication protocol between the cache con-
trollers of individual storage nodes. Through this protocol, each controller communi-
cates relevant local cache events (not the data) to the peer nodes. Each node leverages
their local cache events and events communicated from peer nodes to implement a co-
ordinated caching policy, which ensures that all the logically co-related segments of
data will remain in the cache. We have implemented C2P for Openstack Swift, which is
one of the most popular object stores. Our experiments show that C2P improves cache
hit for objects by 4-6% and allows 5% of the additional requests to be serve from cache,
with minimal resource overheads.

1.2 Paper Overview

The rest of this paper is organized as follows. We provide some background and mo-
tivate our problem and solution in Section 2. We also discuss the main challenges we
faced, describe the architecture of C2P, and discuss certain key design choices. Sec-
tion 3 describes our implementation of C2P and certain optimizations we performed.
We evaluate C2P and report the results in Section 4. Section 5 discusses related work,
and Section 6 highlights the limitations and other potential applications of C2P. We
finally conclude this paper in Section 7.

2 Design

In this section, we first motivate the need for co-operative caching in distributed storage
systems. We discuss few key design challenges for C2P and our approach.
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Fig. 1. Distributed Systems with (a) Independent and (b) Co-operative Caches
2.1 Motivation

Let’s consider a distributed storage application with 3 storage nodes as shown in Fig.1.
Each node has a cache capacity to host only 2 segments. We store 3 objects - A, B, C in
this storage system. Each object is segmented into 3 partitions and placed on different
storage nodes as shown. Also, consider the latency to access a segment from cache to be
50ms compared to the disk latency of 200ms. We identify an object access as complete
only when all its segments are read. Hence, access latency is defined as the maximum
time taken to read any segment for the object. Disk 10 is measured as the total segments
read from disk across all storage nodes.

Fig.1 (a) shows the cache state at some point in time of a traditional system without
any cache co-ordination and (b) shows the cache state of a co-operative co-ordinated
cache system. At this stage if objects A, B and C are accessed from application, then
we can observe the system characteristics as shown in Tab.1. As we can see, for both
traditional and C2P system total segments hit (6) and miss (3) in the cache are same.
Also, number of disk 10s (3) are same. However, applications experience very different
access latency with the two systems. In the traditional system without any cache co-
ordination, each of the object suffers disk latency (200 ms) in their access. On the other
hand, in a co-operative cache system with co-ordination, we are able to reduce the
access latency for 2 objects (A, B) to cache latency (50 ms) and only 1 object (C) incurs
disk latency. Hence, if all cache controllers are able to achieve a distributed consensus
on the segments to cache, this can lead to improved response time for served objects.

Table 1. Comparison between (a) Independent and (b) Co-operative Caches

Traditional System C2P System
Cache Hits cache Miss Access latency Disk IO Cache Hits Cache Miss Access latency Disk 10
read(A) 2 1 200 1 3 0 50 0
read(B) 2 1 200 1 3 0 50 0
read(C) 2 1 200 1 0 3 200 3
Total 6 3 - 3 6 3 - 3

2.2 Design Challenges and Approach

A key appeal of distributed storage systems is their scale and reliability as there are no
single points of contention or failure. A co-operative caching system needs to ensure
that core distributed nature of the systems is not impacted. Hence, our design space
is restricted to peer-based caching, where caching decision on each node is made in
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a completely distributed manner in contrast to a central controller that makes caching
decisions. Each cache controller will implement an identical algorithm and the only
change from classical independent cache controller is that each cache controller in C2P
has access to relevant cache events from all peers. This kind of peer-based co-operative
caching poses the following key challenges.

— Distributed Consensus for Cache Management: Each node in the C2P will have
2 sets of cache information - namely Local Cache Metadata or LMD and Remote
Cache Metadata or RMD. LMD on a node is the repository of the cache events
generated by that node while RMD is the repository of the cache events received
from the peer nodes. In an ideal situation, all cache controllers need to arrive at
a consensus on the objects to be cached in a fully distributed manner. Designing a
distributed consensus is challenging and we address this problem by defining global
metrics based on the local metrics and remote metrics. Our defined metrics lead to
consistent values for objects across all storage nodes in a probabilistic sense. This
ensures that even though each cache controller executes a cache eviction policy in
isolation, all of them converge to the same object ordering in most cases.

— Identifying Relevant Events: Every data operation (READ/WRITE/DELETE) has
associated one or more cache event(s). Moreover, same data operation can create
different cache events. E.g. READ request for some data might cause <cache miss
>or <cache hit >event. It is important to snoop these events very efficiently with-
out adding any overhead to the data path. These captured events then need to be
classified into predefined categories. These categories then help implement cache
management policies in C2P system. E.g. prefetching policy would need <cache
miss >category.

— Peer node discovery: A set of nodes are identified as peer if they are hosting the
segments for the same objects. Set of peer nodes is different for each object. Peers
are created dynamically and need to be identified quickly to ensure that relevant
cache events are quickly communicated to peer. We had two design choices here:
1) each node broadcast their events to all nodes but only peer nodes will match and
process those events. 2) each node send the events only to its peer nodes. The former
option clearly had the downside of overloading the network. Consider, a storage
system with 100 nodes where an object with 2 segments is stored will generate
200 events on the network (100 by each node) for each object access. Later option
would certainly minimize this overhead. But it has challenge on how a node will
discover it’s peers for a given object. Storage applications typically decide on the
placement of segments for an object dynamically and also stores this mapping.
Thus, we could have an application-tailored peer node discovery for this purpose.
In C2P we selected the latter option.

— Load-proportional Communication Overhead: Peak load in storage systems are
co-related with high number of cache activities (reads, evictions, writes). Hence,
more cache activities across nodes generate large number of cache events in the
system. As a consequence, the network may become a bottleneck during high load
and lead to inefficient caching. We address this problem by implementing an aggre-
gation scheme, which ensures a communication overhead that is almost oblivious
to application I/O load. In aggregation, cache events are buffered for short duration
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Fig. 2. Architecture of C2P

before transmitting and multiple cache events to the same peer node are coalesced
together. We also use filtering to prioritize and drop low priority events.

Implementation

The design for C2P in itself can be implemented as an extension to any distributed
storage system that supports data segmentation. As a concrete implementation, we have
implemented C2P into a filesystem cache for open-sourced and widely accepted Open-
stack Swift - a highly available, distributed, eventually consistent object/blob store. We
next discuss the implementation details.

31

Filesystem Cache

Filesystem: For implementing C2P into a filesystem cache, we decided to use
Filesystem in user space (FUSE) [10]. FUSE allows us to develop a fully func-
tional filesystem in user’s space with simple API library, and it has a proven track
record of stability. We call our filesystem implementation C2P-FS. In C2P-FS we
have primarily extended read() and write() API calls and other calls are simply
redirected to the lower filesystem.

Cache: Similar to ’page cache” in traditional filesystem, we have defined ’segment
cache” in C2P-FS. We have implemented cache using a fixed-size shared memory.
Based on size of the workload used during the experiments and heuristics derived
from real world scenarios, we configured cache size to be /128 MB on each storage
node. Further, cache line size is changed from page size to segment size i.e. from
4KB to 1 MB. Thus, C2P-FS cache can hold maximum of 128 segments. This
change in the cache line size is motivated by three facts: 1) swift application is going
to be used for storing/accessing segmented dynamic large objects with segment
size of 1 MB 2) partial object access is not available in swift 3) Thus, any object
10 (GET/PUT) in swift will cause file IOs (read/write) on C2P-FS on each storage
node in the unit of 1 MB. And, having a cache line aligned with the size of 10
request is going to boost the performance for any storage system.
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Table 2. C2P Data Structures
Event ID Definition

1 (cache replace)

data flushed from the MD field Definiition
R faCh}f @ MD field Definition path lq(;c?:] lepath of the

caclie a path local filepath of the . seg .

new data added to cache timestamp global access time
3 (cache miss) segment of an object
) cachie miss) . timestamp local access time of . )

data is read from disk and hitcount global hit count of

added to cache segment an object

. hitcount local hit count of .. . . AJ .,

4 (cache hit) segment Object in Cache (OiC) fraction of object’s

data read from the cache seg all segments present
5 (cache delete) in the cache

data is deleted from disk

and cache (b) Local cache Metad. (c) Global Cache Metad

. . ocal cache Metadata c) Global Cache Metadata
(a) Cache Event Classification (LMD) (GMD)

3.2 Peer Nodes Co-ordination

— Cache Events: We first identified and classified the important cache operations
that needs to be communicated to the peer nodes as shown in Tab.2(a). For each
file IO request in C2P-FS there are going to be one or more cache operations in
cache controller. E.g. if the cache is full and there is a read request for data which
is not present in the cache, then there will be cache miss and cache replacement
operations in cache controller. For each operation, cache controller then generates
a cache event and asynchronously sends it for communication. Cache event is a
tuple with <event id, file path, timestamp>and size less than 100 bytes. Cache
controller also adds this cache event to the Local Cache MD (discussed below).

— Peer nodes discovery: In object stores, data has different namespaces in storage
application (like swift) and filesystem on storage node where it is stored. When
user uploads a data, it is identified as ”’/<container(s)>/<objectid>" by swift. And
when it is stored on filesystem is has a filepath like <objectid>/ <timestamp>/
<size>/ <segment>. E.g. for uploading 5 MB data with IMB segment size user
will have command like ”swift upload mycontainer myfile” and say on storage
nodes nodel, node2,...node5 these segments gets stored with filepaths like my-
file /1401080357/ 1000000/ 01, myfile/ 1401080357/ 1000000/ 02 ,../05. Since, we
have a cache implemented at filesystem, in cache events we can only get filepath for
segments. For finding the peer nodes storing the segments for the same objects we
made following two changes: 1) inverse lookup for object path from filepath, we
changed swift-client to add an extra header ”X-Obj-Name: <objpath > for each
segment. This header gets stored as an xattr of the segment file, which we can read
to get an object path for a segment. 2) We have developed a new swift service called
”swift-discovery” implementing the same protocol as a swift’s ring service. Given
an object path this discovery service returns a list of peer nodes storing the segments
for the same objects and the local filepaths of those segments on the respective
storage nodes. For example, calling discovery service on nodel with filepath my-
file/../01, will return a peer nodes map as node2:myfile/../02, node3:myfile/../03,....

— Message Broker: We use RabbitMQ [22] as a message broker for communicat-
ing cache events between storage nodes. We create one message queue per node.
Then, for a given cache event and list of peer nodes, it publishes each event in
queue of respective peer node. To minimize the network overhead, we implemented
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’Aggregation and Filter’ policy. In aggregation, before publishing the cache event,
we buffer them for short duration of 200 ms. And during this time, if there are more
cache events for the same node, then they are aggregated which reduces the payload
size. While aggregation is an optimization policy, filtering is a throttling policy. In
an overloaded system filtering essentially prioritize and drop some events.

C2P for Cache Replacement

Local cache MD: Local cache MD (LMD) is the metadata about the segments
which are currently present in the segment cache. This MD is maintained in a sep-
arate segment of a shared-memory. Each storage node will have their own LMD.
The metadata primarily contains 3 fields as shown in Tab.2(b). When a new seg-
ment is added to the cache ( for cache add/miss) a tuple with <path, current time,
1>is added into this MD. Them for every segment read (cache hit) from the cache
this tuple is updated with <current time, hitcount++>. Finally, when a segment
is removed from the cache (cache delete/replaced) the MD is removed. In the ab-
sence of any co-operation between the storage nodes, cache controller on each node
can use this LMD to implement Least Recently Used (LRU) replacement policy as
described in Algo 1.

Algorithm 1. LRU Comparator

1:
2
3
4
5:
6
7
8:
9:
10:
11:
12:
13:
14:

15:
16:

procedure LRU-COMPARE(candidate a, candidate b)
af finity, < temporal — af finity — threshold
if (|a.timestamp — b.timestamp|)<af finity., then
if a.timestmap>b.ttimestamp then
return 1
else a.timestamp<b.timestamp
return -1
end if
end if
if a.hitcount>b.hitcount then
return 1
else a.hitcount<b.hitcount
return -1
end if
return 0
end procedure

Global cache MD: Global cache MD (GMD) on a given storage node is the meta-
data about segments hosted on that storage node and which is communicated from
the peer storage nodes. Note that, the segments in this GMD not necessarily be in
present in the cache but it could also be on the disk as well. Fields of the GMD
are shown in Tab.2(c). When an object is read, all it’s segments will be accessed
generating an cache event for their peer nodes. Also, each node will receive cache
event from all peer nodes for a given segment. <timestamp>is the latest timestamp
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received from cache event for a segment. <hitcount>for a segment is incremented
for each cache event received. Thus, when an object is accessed, each node hosting
the segments will have Local hitcount =1 and Global hitcount = 5. We normalise
Global hitcount w.r.t Local hitcount to determine an object size i.e. number of seg-
ments for an object. E.g. For Global hitcount = 5 and Local hitcount =1 object size
= Global hitcount / Local hitcount = 5. Finally, Object in Cache (OiC) is the most
critical field from the GMD and is being used to implement C2P cache replace-
ment policy. OiC is defined as the fraction of all segments of an object available
in cache across all peer nodes. Considering that with swift, there won’t be any par-
tial object access, OiC is reset to 1 for any cache add or cache miss event. And
it is recomputed as follows: first segeval is computed as (1/object size) which is
the fractional value for each segment of an object. Then, for every cache replace
event OiC is decremented as (OiC = OiC - segeval). Fig.3 shows along a timeline,
few sample cache events and how those are reflected into GMD state on one of the
storage node for one segment

________________________________ S e mmm
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Fig. 3. GMD State Transition

Hitcount Decay: We have defined exponentially decay function on hitcount of an
object. If an object is not accessed recently (not within last 60 secs, which is a
heuristically derived period) then, we decrement the current hitcount by factor of
0.8. This decay ensures cache-fairness through normalization of hitcount for objects
which are popular for short period (gets high hitcount in short time).

C2P Cache Replacement: To demonstrate the effectiveness of co-ordinated caching
in distributed storage systems, we have designed and implemented a cache replace-
ment policy on C2P system named C2P-CR. We have also implemented the LRU
replacement policy to simulate the one in traditional systems. In L RU we sort all the
candidate cache MDs using an LRU-Comparator function as described in Algo. 1.
In this function, we first measure the temporal affinity between the two candidates,
which is essentially difference between their timestamps. If the affinity is less than
a (heuristically derived) threshold, then they are sorted based on their timestamps.
Otherwise, they are sorted from their hitcount. For C2P we have defined a C2P-
Comparator for sorting candidates to be selected for cache replacement as described
in Algo.2. In this we leverage both LMD as well as GMD to select the segment(s)
to be replaced from cache. First Object in Cache(OiC) is computed from GMD as
discussed earlier and candidates are compared based on OiC. If the candidates have
same OiC, then those candidates are sorted using LRU-Comparator. Thus, C2P-CR
is essentially built on top of LRU.
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Algorithm 2. C2P CR Comparator

1: procedure C2P-COMPARE(candidate a, candidate b)
2 if a.0iC>b.0iC then

3 return 1

4 else a.0iC<b.0iC

5: return -1

6 end if

7 return LRU-Compare(a,b)

8: end procedure

4 Evaluation

We evaluate C2P with Openstack Swift Object store. Swift was deployed on a set of 8
VMs running Ubuntu 12.04 LTS. The VMs were hosted on 2 servers each with 24-core
3:07GHz Xeon(R) processor and 64GB memory. Each VM was configured with 2 vC-
PUs, 2 GB memory and a 50 GB disk formatted with ext4 filesystem. We configured 128
MB cache size for C2P-FS on each VM. This cache size was decided based on heuristics
and size of our workloads. We have defined two configurable modes of cache manage-
ment for C2P-FS - namely C:ON and C:OFF. C:ON indicates that co-operative caching
policy is ON for cache replacement on all storage nodes while C:OFF indicates that
each node implements default LRU cache replacement policy. We evaluate C2P based
on several metrics. First, in the baseline experiments, we measured the overhead of our
cache implementation by comparing the performance with native implementation of
fuse. Then, in the case study experiment we specifically measured the cache efficiency
with C2P cache replacement policy against traditional LRU: Least recently used.

We tag all the data access (read) on each of the individual storage node either as
a segment hit or a segment miss. segment hit indicates that the data is read from the
cache while the later indicates that data is read from the disk. More importantly we also
tag each object access. When each segment of an object is a segment hit we identify it
as an Object hit. If there is a segment miss for even a single segment, it is an Object
miss. We further decompose Object miss into Object miss complete and Object miss
partial to indicate whether there is a segment miss for all the segments or some segments
respectively . We define comm latency as the delay between the times when a cache
event is published by any storage node and when it is delivered to peer nodes. We
also measured comm overhead as the number of messages (cache events) generated
per second. Finally, we measured object throughput as size of object (in MB) read per
second.

4.1 Baseline Experiment

In this section, we discuss baseline experiments that we conducted to evaluate the perfor-
mance overhead of our cache implementation with fuse [10] filesystem. We conducted
these experiments in two phases. In the first phase, we used standard swift deployment
wherein each storage node had ext4 filesystem with it’s native LRU cache replacement
policy. In the second phase, we deployed swift with our C2P-FS in C:OFF mode i.e.cache
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co-operation is disabled and default LRU cache replacement policy is used on storage
nodes to match standard setup. We used Swifi-bench [21] which is a standard bench-
marking tool for Openstack Swift. We chose three common IO workloads on any object
store - namely PUT, GET and DELETE for these experiments. We further define the
workload profile with 500 PUTs, 2000 (random) GETs and 500 DELETEs for object
size of 1 MB. Then, we ran this same workload profile in both phases and measured
operation throughput as shown in Fig.4. As we can see, C2P-FS achieves almost the
same throughput as with the standard filesystem deployment for all three kinds of work-
loads. Thus through these baseline experiment we established that our C2P-FS cache
implementation does not incur any performance overhead over a standard swift deploy-
ment. Hence, in the case study experiments below we used C2P-FS in C:OFF mode as
a reference system implementing LRU. Then we compared and contrasted the metric
measurements of C2P system against it.

4.2 Case Study

In case study experiment, we try to motivate application of C2P for distributed storage
system hosting a segmented or striped data for improved cache efficiency.

Data Store: We first uploaded 500 objects of size 5 MB each. During upload, we
split the object with / MB segment size using swift’s support for dynamic large object.
Ideally, we would expect each segment to be stored on different storage node. But, swift
uses a ring service for placement which does not guarantee this segment isolation for a
given object. We captured segment placements for all the objects across 8 storage nodes
in a heatmap shown in Fig.5. As we can see for some objects maximum of 4 segments
are stored on a same storage node. We also measured total number of segments stored
on each storage node. Fig.6(b) shows the distribution of all (500 x 5 = 2500) segments
across 8 storage nodes. The distribution is not even across the nodes, and this is typically
true for all the distributed systems.

Access pattern: We used powerlaw to generate a long tail distribution series with
2000 numbers in the range [0:500] which would mimic a real-world application access
pattern. Such series typically identifies a workset which contains few popular objects
that are accessed more frequently as shown in Fig.6(a). We numbered all objects from
the data store from 1-500 and then used this series to identify the object number to
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access. When we access an object, we access it completely i.e. all 5 segments. But, even
for partial access C2P efficiency will be the same. We also measured total segments
accessed across all storage nodes as shown in Fig.6(b). As we can see, there is a large

variation in the access load across storage nodes which is again mostly true for all
distributed storage systems.
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Fig. 6. Data Store and Access pattern

Thus, this un-even segment distribution compounded with variant access load creates
an erratic data pressure across storage nodes in distributed storage systems. Thus, there
is a greater need of co-operation to enable highly utilized nodes to mantain their cache
states in consistent with their peer nodes which are less utilized.
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Single-threaded Run. In single-threaded run we used a single swift client which would
read objects from the data store following an access pattern. In the results, first we ana-
lyze the most important aspect from application’s point of view i.e. Object hit ratio. As
shown in Fig.8(a) for C2P systems we get almost 6.7% more Object hit in the cache.
Amongst object misses, we measured around 50% reduction for Object miss partial
and 4% increase for Object miss complete. Putting these numbers in perspective, we
note that for applications storing segmented objects, C2P system can help achieve bet-
ter cache efficiency at object level to reduce an application latency. In Fig.7(b), we also
plot cdf of number of objects against their response time. This is an important measure
which can be translated into SLA assurance of a storage system. For example, for SLA
of response time <0.8 sec C2P system has about 6% more objects satisfying the SLA
than the one implementing LRU. Another interesting observation we made here is that,
for cache missed objects response time for C2P is between 0.7s to 0.9s while that for
LRU is between 0.7s to 1.2s. We conjecture that this increased latency for LRU for
cache missed objects is attributed to the increased disk queue length for missed seg-
ments. Fig.8(b) shows the object throughput measured for each object access. It shows
for C2P, most of the objects have either high throughput around 9 MBps (Object hit) or
low throughput around around 4 MBps(Object miss complete). While for L RU there are
many objects with throughput in between (Object miss partial). As mentioned earlier,
for C2P we increases Object miss complete, but that does not necessarily means disk IO
is also increased. To elaborate on this, for each object accessed we also traced segment
hit ratio on each storage node. As shown in Fig.8(c) on each individual storage node we
get more segment hits. In effect, we reduces disk IO on each storage node and overall
we observed about 5% reduced disk IO across all storage nodes which is a very criti-
cal measure for any storage system. Finally, Fig.10 shows the Rabbit MQ’s monitored
state of the message queue. As we can see, C2P system requires around 20 messages/s
to cache event co-ordination and comm latency less than 200 ms. And considering size
of each message is less than 100 Bytes, the network overhead is very minimal.

Multi-threaded Run. In multi-threaded run we used 4 swift clients. We split the ac-
cess pattern of 2000 objects into 4 access patterns of 500. Then, we ran all the 4 clients
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in parallel requesting objects from the respective split-access pattern. Similar to Single-
threaded run, we measured system characteristics across different metrics. Fig.9(a)
shows 4.5% improved Object hit, and amongst object misses 43% reduced Object miss
partial and around 4% increases for Object miss complete. Fig.7(a) shows the cdf of
number of objects against their response time. Again, compared to LRU in C2P we
measured larger % of objects under any given response time. Fig.9(b) shows object
throughput for object access across all 4 clients. We observe similar pattern to that of a
singlethread run. And Fig.9(c) shows segment hit distribution across all storage nodes.
Again, on each storage node we observe better cache hits for C2P, thus reducing the
disk IO by around 3.5% across all nodes. Fig.11 shows comm overhead in the order of
70 messages/s (7KBps) still very minimal. But, now we get comm latency in around
1 second. Comm overhead and latency are observed to be higher than the respective
numbers in the single-threaded run. This is because in multithreaded run, object request
rate is higher being coming from 4 clients in parallel which in turn increases the rate of
cache activities on individual storage nodes, thus cache events are published at a higher
rate. We observed, Object hit for C2P system in this run is slightly less than that in the
single threaded run. This is attributed to the higher comm latency which increases the
delay between cache co-ordination across storage nodes. In out future work, we will try
to minimize this effect of latency on cache efficiency.
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Fig. 10. Singlethread run overhead Fig. 11. Multithread run overhead

The maximum value of comm latency for optimal performance of C2P system, is a
function of size of cache on each storage node. Although, it is important to note here
that effectiveness of C2P systems is not limited by comm latency of less than a second.
But, since we had a small cache size on storage nodes,

To summarize the case study results we note: 1) compare to traditional LRU cache
replacement policy, C2P achieves 4-6% increase in the object hits thus reducing the
access latency for more objects. 2) In C2P systems, on each of the comprising storage
nodes cache hits are improved reducing the disk IO by around 3-5%. And 3) event-based
architecture to co-ordinate caching incurs a very minimal network overhead.

5 Related Work

Distributed systems and cache coordination techniques in such systems has been around
for a long time[1][23][7][6][16]. But cache cooperation traditionally been applied in
contexts like scaling or disk IO optimization. To our best knowledge C2P is the first
system designed to maximize cache efficiency of distributed storage hosting segmented
data.
Scale: Memcached[9] is a general-purpose distributed memory caching system. For
a large scale cache requirements, hundreds of nodes are setup. And these nodes then
leverages their memory through memcached to build a large in-memory key-value store
for small chunks of arbitrary data. Facebook probably is the world’s largest user of
memcached[19].
Disk 10 optimization: CCM[8] probably is closet to our work. For cluster-based
servers, CCM keeps an accounting information for multiple copies of the same data
(blocks) available in the cache across all nodes. Then, this information is used to for-
ward IO requests between nodes to ensure cache hit. Essentially, they increase network
communication to reduce disk access. Similarly in [1], technique of split caching is
used to avoid disk reads by using the combined memory of the clients as a cooperative
cache. DSC[16] describes the problems of the exposition of one nodes resources to oth-
ers. As they state, cache state interactions and the adoption of a common scheme for
cache management policies are two primary reasons behind the problem. [6] mentions
interesting techniques for data prefetching with Co-Operative Caching. The bottomline
in all these prior work is that - a cache cooperation will happen between the nodes only
if they contains the same data.

In C2P, the primary distinction is that cache cooperation is designed for logically
related data e.g. different segments of the same object. Also, there is no resource expo-
sition between the nodes in the cluster i.e. each node will serve the ONLY IO requests
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for which it is actually hosting the data. Thus, IO requests are not forwarded between
the nodes, but just the cache events are communicated.

6 Limitations and Future Work

C2P design presented in this paper caters to the distributed systems storing segmented
data and ensures better cache efficiency for them. In our current implementation we
have exploited this cache cooperation only for cache replacement policy. We also plan
to implement and exercise cache prefetching for C2P, wherein we can prefetch seg-
ments based on cache events from the peer nodes. We believe such prefetching will
further improve the cache efficiency.

One of the data property we haven’t considered in C2P is - replication. For stor-
age systems, data striping and replication can be applied simulteneously. Here, first we
need to understand placement and access characteristics of such data. Then for these
scenarios, through cache cooperation we can ensure only one copy of the data segment
remains in the cache across all nodes. And these segments in cache might belong to
different replica copy of the data.

Finally, we plan to deploy C2P in some production distributed system and measure
the scalability, overhead for live data.

7 Conclusion

In this paper we present C2P: a coperative caching policy for distributed stoarge sys-
tems. C2P implements a coordination protocol wherein each node communicates their
local cache events to peers. Then based on these additional cache state information of
peers, each node implements a co-ordinated caching policy for cache replacement and
cache prefetching. These policies in turn ensures a consistent caching across nodes for
segments of the data which are logically related. Thus, we can reduce the access latency
for the data and improve the overall performance of the system.
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