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Abstract. While conversion of atomic and back-end services from centralized
servers to cloud platforms has been largely successful, the composition layer,
which gives the service-oriented architecture its flexibility and versatility, often
remains a bottleneck. The latter can be re-engineered for horizontal and vertical
scalability by moving away from coarser concurrency model that uses transac-
tional databases for keeping and maintaining composition internal state, towards
a finer-grained model of concurrency and distribution based on actors, state mes-
saging, and non-blocking write-only state persistence. In this paper we present
a scheme for automatically transforming the traditional (orchestration-style) ser-
vice compositions into Cloud-friendly actor networks, which can benefit from
high performance, location transparency, clustering, load balancing, and integra-
tion capabilities of modern actor systems, such as Akka. We show how such ac-
tor networks can be monitored and automatically made persistent while avoiding
transactional state update bottlenecks, and that the same networks can be used for
both executing compositions and their testing and simulation.

Keywords: Service Composition, Actor Systems, Cloud Service Provision.

1 Introduction

In recent years, the use of private and public clouds for providing services to users
has proliferated as organizations of all sizes embraced the Cloud as an increasingly
technically mature and economically viable way to reach markets and meet quality re-
quirements on the global scale. This is especially true for simple (atomic and back-end)
services that perform individually small units of work. Such services can be distributed
on different cloud nodes, and the requests are routed to different instances based on node
availability and load balancing. The key enablers here are distributed databases, which
offer high availability and distribution at the price of limited, eventual consistency [7].

Service compositions typically need to store their internal state (point of execution
and state variables) along with the domain-specific user data on which they operate.
That is needed because service compositions may be long-running and may involve
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many internal steps, so that it would be inefficient to let them occupy the scarce server
resources (such as threads and database connections) for the whole duration of their
execution, most of which is typically spent waiting for responses from other services.
Besides, saving the composition state in a persistent store allows resumption after server
restarts or network failures. This leads to an essentially event-driven implementation of
most composition engines, where incoming events (messages or timeouts) either create
new composition instances or wake up dormant ones, which perform a short burst of
processing and then either terminate or go to sleep until the next wake-up event.

However, even when eventual consistency on user data is permitted, any inconsis-
tency in the saved internal state of an executing composition may lead to wrong or
unpredictable behavior, and must be avoided. That is why most service composition
engines, such as Apache ODE [5], Yawl [1], and Orchestra [17], rely on a transactional
database to ensure state consistency of long-running processes. This presents a prob-
lem for scaling the SOA’s composition layer in the Cloud, as concurrent processing of
events within the same composition instance implicitly requires access synchronization,
transactional isolation, and locking or conflict detection on a central database.

In this paper, we argue that SOA’s service composition layer can more successfully
exploit the advantages offered by the Cloud if it is based on state messaging rather than
mutable shared state kept in a database. This means basing the design of composition
engines on well-defined, fine-grained, and Cloud-friendly parallelism and distribution
formalisms, rather than “hacking” the existing centralized implementations.

In Section 2, we motivate our approach and outline it in Section 3. Section 4 presents
the details of the approach, and Section 5 gives some implementation notes and presents
an experimental validation of the approach. We close with conclusions in Section 6.

2 Motivation

According to the Reactive Manifesto [4], the ability to  ,:=0;
react to events, load fluctuations, failures, and user re-  while —empty(in) do begin
quirements is the distinguishing mark of reactive soft- join begin
ware components, defined as being readily responsive to send head(in) to P;
stimuli. In this paper, we try to facilitate some of those receive x from P
capabilities in service compositions, starting with ser- end and begin.
vice orchestrations with centralized control flow. senc! head(in) to 0;
. receive y from Q

Take, for instance, an example currency exchange end:
composition whose pseudo-code is shown in Figure 1. ri= r+max(x,y):
(The syntax and semantics of a sample composition lan- in := tail(in)
guage is given in Section 4.1.) This composition takes a  end;
list of amounts in different currencies (in), and tries to  send r to caller
find the maximal amount of Euros to which they can be
converted, using two external currency conversion ser- Fig. 1. Sample composition
vices, P and Q. Each amount/currency pair (head(in))
is sent to P and Q in parallel, and the responses (x and y) add to the result () before
continuing with the rest of the input list (tail(in)). Finally, the result is sent to the caller.

To allow the sample composition to scale both up and out, we need to surpass the
limits posed by the shared state store architecture. One way to achieve that is to turn
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Fig. 2. Outline of the approach

the logical flow of control within the composition into a message flow, by transforming
the composition into a network of interconnected stateless, reactive components, each
performing a small unit of work, and forwarding results down the logical control flow.
Ideally, slower components would be automatically pooled and load-balanced in order
to enhance throughput, and/or spread between different nodes in a cluster, depending on
available cloud resources. Instead of being kept in a shared data store, the composition
state would be reconstructed from observed messages and pushed to a persistent store
in a write-only, non-blocking manner.

A major challenge — and the main contribution of this paper — is to find a method
for automatically and transparently transforming compositions into such networks of
readily scalable reactive components. The transformation needs to hide the underly-
ing implementation details and preserve semantics of state variables, complex control
constructs (loops and parallel flows), operations on a rich data model, and message
interchange with external services.

We therefore address a similar problem as the concept of Liquid Service Architecture
[8], but targeting specific issues in the composition layer, based on formal models of
composition semantics and semantically correct transformations.

3 Outline of the Approach

Figure 2 shows the outline of the proposed approach. The starting point is a specifica-
tion of a composition, expressed in some composition language. This source code is
translated into an actor network, which expresses the behavior of the composition as
a (statically inferred) collection of stateless, reactive components that perform individ-
ually small units of processing. The translation ensures that the behavior of the actor
network is consistent with the original semantics of the composition.

We use actor systems [12,13,2,3] as the underlying model of concurrent and dis-
tributed computing. Along with 7-calculus [16], join-calculus [10], and ambient-calculus
[9], actor systems are one of well known approaches to modeling and reasoning
about concurrent and distributed computations. However, their component and open
asynchronous messaging model makes actor systems closer to the conventional
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S ::=skip | begin Send | x:=FE (no-op, grouping and assignment)
| if C then S else S | while C do S (conditionals and loops)
| S; S |join S and S (sequential and parallel flows)
| send E to P | receive x from P (message exchange)

P ::= (partner service name )

x ::= (identifier)
C,E ::=true | false | null | (numeral) | (string) | x
| f(E,....E) | EoE (f, o € Builtins)
[{} | {x:E[,x:E]"} | E{x:E} | Ex (records and fields)

Fig. 3. Abstract syntax of a sample composition language

(e.g., object-oriented and functional) programming languages and facilitates efficient
implementation (cf. Section 5).

At run-time, the actor network is used as a blueprint to instantiate sets of actors that
implement the behavior specified by the network. The instantiated network is deployed
into an actor system, where it can benefit from clustering, load balancing, integration
and other capabilities of the state-of-the-art actor systems. Being stateless and reactive,
the instantiated actors can be scaled both vertically (by organizing them in pools), and
horizontally (by distributing them among different interconnected nodes).

The internal state of the executing compositions is not stored in a database, but is
kept in messages sent and received by the communicating actors. By monitoring these
messages, it is possible to keep an up-to-date snapshot of the state of each executing
composition instance, and to record it to a persistent store.

4 Translating Compositions into Actor Networks

4.1 Sample Composition Language

Figure 3 shows the abstract syntax of a composition language fragment. Our intention
here is not to “invent” a new composition language, but to present a fragment contain-
ing some of the most common control and data handling constructs (found in actual
languages like BPEL) whose semantics — control flow, data operations, and messag-
ing — can be formally specified. Such a formal specification of semantics is crucial for
reasoning about the correctness of our approach.

The composition language fragment includes state updates (assignments), sequential
constructs (such as conditionals and loops), messaging primitives (send and receive),
and join-and parallel flows which wait for both branches to complete. The language is
based on a rich data model that features Boolean, numeric and string literals, the special
null value, as well as records. Expressions include literals, composition state variables,
record constructors, record field accesses, and a set of arithmetic, logical and string
built-ins (always terminating).

Records can be used to represent many other data structures. For instance, a list [A|B]
with the first element A and the remainder B can be modeled with {cons : true, head :
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{Cro|r}si{e'[a'} {-Cno|n}S:{¢"|n'}

COND SKIP
{¢|n}ifCthen S else S, {¢' | 7'} {¢|n}skip{¢|n}
{Cro|n}s{e|n'} Loop {oln}si{o'|n'} {¢'[n'}S:{¢"|n"} sE0
{¢| 7'} whileCdoS {~Cr¢|n'} {o|m}Si:8{¢"[n"}
STATE {oln}si{¢'[n'} {oln}S{¢'|n'} .
{ol\E] [n}x:=E{¢|n} {¢ |7} join S and S, {¢' | 7'}

7’ contains no ( < P) n” contains no ( <+ P)
RECV
{¢[x\u] | 7' (u <+ P)n" } receive x from P { ¢ | ' (u <+ P)n" }

oFE=u n"containsno( — P)or( «+P)
SEND
{¢|n'n"}send EtoP {¢ | n'(u— P)n"}

Fig. 4. Abstract semantics of a fragment of the composition language

A, tail : B}, and the empty list [] with {cons : false}. In turn, records and lists can rep-
resent JSON and XML documents. In examples, we use sans serif font to distinguish
field, built-in and other global names from local names in cursive.

We use a form of axiomatic semantics to specify the meaning of control constructs,
data operations, and message exchanges for the language fragment, with the inference
rules (axiom schemes) shown in Figure 4. The pre- and post-conditions are expressed
in the form { ¢ | w }, where logic formula ¢ characterizes the composition state as in
the classic Hoare Logic [14,6], and 7 is a chronological sequence of outgoing messages
(u — P), incoming unread messages (u <— P), and incoming read messages (u <+ P),
where u is a datum. The consequence rule, which states that pre-conditions can always
be strengthened as well as post-conditions weakened, is implicit. Condition { ¢’ | 7’}
is stronger than { ¢ |  } iff ¢’ logically implies ¢ (in the data domain theory), and 7 is
a (possibly non-contiguous) sub-sequence of 7’.

Rules COND, SKIP, LOOP, SEQ, and STATE are direct analogues of the classical Hoare
Logic rules for sequential programs. The abstract semantics of parallel and-join flow is
given in rule JOIN. The parallel branches are started together, and race conditions on
state variables and partner services are forbidden: variables modified by one branch
cannot be read of modified by the other, and the branches cannot send or receive mes-
sages to or from a same partner service.

In rule RECV, the conditions on 7’ and 7" ensure that messages are read in the
order in which they are received, and the condition on 7" in rule SEND ensures the
chronological ordering of outgoing messages. The underscores here denote arbitrary
data. The message exchange is asynchronous, and thus the relative ordering of messages
to/from a partner matters more than the absolute ordering of all messages.

4.2 Actor Language

The abstract syntax of a functional actor language is given in Fig. 5, along the lines
of Aga et al. [3] and Varela [18], with some syntactic modifications. Its domain of
values (V) is the same as in the sample composition language, with addition of actor
references (A) used for addressing messages. The expressions (E) extend expressions
in the composition language with functional and actor-specific constructs.



296 D. Ivanovi¢ and M. Carro

E:=L|x|Ax—E|E(E)|rec(E) (standard A-calculus constructs)
| f(E,..,E) | EoE (f,o € Builtins)
|Rg | E{x: E} (record of expressions, update)
| match E with T — E[;T — E|* end (pattern matching)
| new(E) | stop (actor creation & termination)
| ready(E) | send(E,E) (message reception & dispatch)

L ::=true | false | null | (numeral) | {string) (primitive value)

Vi=L|A|Ry (value)

Rp:={}|{x:@[,x: D]"} (record structure)

T:=x| |L|Rr (pattern)

x ::= (identifier) A ::= (actor reference )

Fig. 5. The basic actor language

Function abstractions and applications from A-calculus are included together with
the special recursion operator rec. The match construct searches for the first clause
T — E where pattern T matches a given value, and then executes E to the right of “—".
At least one match must be found. Variables in patterns capture matched values, and
each underscore stands for a fresh anonymous variable. The order of fields in record
patterns is not significant, and matched records may contain other, unlisted fields. Sev-
eral common derived syntactic forms are shown in Table 1.

Construct new creates a new actor with the given behavior, and returns its reference.
An actor behavior is a function that is applied to an incoming message. Construct ready
makes the same actor wait for a new message with the given behavior. Construct send
sends the message given by its second argument to the agent reference to which the first
argument evaluates. Finally, stop terminates the actor.

Fig. 6 shows two simple examples of
actor behaviors. The sink behavior sim-
ply accepts a message (m) without doing ¢, = rec(Ab — Ax — Am —
anything about it, and repeats itself. The  match m with
cell behavior models a mutable cell with {get: a} — do send(a, x) then ready(b(x));
content x. On a ‘get’ message, the cur- {set: y} — ready(b(y))
rent cell value x is sent to the designated  end)
recipient a, and the same behavior is re-
peated. On a ‘set’ message, the cell for-
gets the current value x and repeats the same behavior with the new value y. Note how
in both cases the construct rec allows the behavior to refer to itself via b.

sink = rec(Ab — Am — ready(b))

Fig. 6. Two simple actor behaviors

Table 1. The derived actor language constructs and abbreviations

Abbreviation Basic construct
letx=FE|inE; match E;| with x — E> end
do E| then E; match E; with — E; end

if £1 then E; else E3 match E| with true — E;; — E3 end
E.x match E with {x:y} —y; — nullend
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The operational semantics of actor systems is expressed in terms of transitions be-
tween actor configurations. Each actor configuration ({ ¢ || 1 )) consists of a set of actors
o and a bag (multiset) u of messages in transit. Elements of o are written as [E],, denot-
ing an actor with the unique address (actor reference) a € A and behavior E. Elements
of u are written as (a <= v), denoting a value v sent to an actor whose reference is a. In
rules, both o and y are written as unordered sequences without repetition of elements.

We first frame the actor expressions in terms of redexes and reduction contexts,
shown in Figure 7. It can be shown that any actor expression E can be uniquely framed
in the form E > e<1, where Eq is a reduction context which contains exactly one hole
(0) which is filled by redex e. A redex is the next sub-expression to be evaluated (and
replaced with the evaluation result, if any) in the left-to-right call-by-value evaluation
strategy. The exceptions are stand-alone values (V') and function abstractions (Ax — E),
which are syntactically valid, but do not denote any meaningful actor behavior.

The transitions defining the operational semantics of the actor language are given in
Figure 8. The purely functional redexes follow the relation “—,” and are reduced lo-
cally within an actor under rule FUN. For instance, APP is 3-reduction from A-calculus,
REC defines the behavior of the recursion operator, UPD defines record updates, and BI
the application of built-ins. Rule MATCH; fires if there exists a substitution 8 of vari-
ables from pattern 7 which makes 7'0 identical to the value v that is matched; in that
case, the match expression reduces to the expression E0, i.e., E to the right of “—”
with these variable substitutions applied. Rule MATCH; throws away the first pattern if
a matching substitution cannot be found, and continues with the rest.

The actor redexes are regulated by rules other than FUN. In STOP, any actor that
encounters stop is immediately terminated. Rule NEW creates a new actor which be-
comes ready to execute behavior w given by new, and returns its address @’ to the
creating actor. Rule READY says that whenever an actor executes construct ready, it
blocks if necessary until there is a message v sent to it, and then starts from the scratch
by applying the behavior w given by ready to the message. Finally, rule SEND creates a
new message for the receiver, and returns null on the sender side.

An important characteristic of the actor system semantics is fairness, in the sense
that all enabled transitions eventually fire. In particular, this means that every message
sent to an actor is eventually received, unless the actor is terminated, halted by an error,
or caught in an infinite loop while processing an earlier message.

W=V |Ax—E
ex=WW) |x|f(W,....W) | WoW | rec(W) | Ry | W{x: W}
| match W with T — E[; T — E]* end | new(W) | stop | ready(W) | send(W, W)
Eq=0|W(En) | En(E) | f(W,...,W,En,E,....E) | WoEn | EnoE
|rec(EQ) | {x:W,....x:W.x:Eq,x:E,... . x:E} | W{x:Eq} | En{x: E}
| match Eg with T—E[; T — E]" end | new(E) | ready(E) | send(W, E) | send(E, E)

Fig. 7. Reduction contexts and redexes
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wew e=rec(Ax — E) r={x: ,9} vev
PP UPD
(Ax = E)(w) — E[x\w] e — Elx\e] r{x:v} —; {x:v, 0}
f" €Builtins n>0 [/]:V'"=V veVvV 3J0-v=T0

BI MATCH |
S 1seeesvn) = [ 11y svn) (match v with T — E[; 7] end) —, EO

veV A6-v=T0
MATCH,
(match v with T — E; 7 end) —; (match v with T end)

e—> €
(o, (B ey | 1) — Qo [Eome/<lalp) | (ot (B stop<tly | 1) — (o[ 1)
weW d €A fresh

STOP

NEW
(o, [En>new(w)<a | 1) — (o, [En>a' <, [ready(w)], || 1))
wew READY
(o, [Ene>ready(w)<a || 1, (a <= v)) — (o, wv)]a || 1))
deA veV SEND

(o, [Enesend(d’, v)<la || ) — (o, [Ennull<], || g, (@' <= v))

Fig. 8. Operational semantics of the actor language

4.3 Translating Compositions into Actor Networks

After explaining the syntax and semantics of the sample composition language and the
actor language, we now proceed with the crucial step in our approach: the transforma-
tion of a service composition into an actor network.

An actor network is a statically generated set of actor message handling expressions
that correspond to different sub-constructs in a composition. At run-time, actor net-
works are instantiated into a set of reactive, stateless actors, which accept, process and
route information to other actors in the network, so that the operational behavior of the
instantiated network is correct with respect to the abstract semantics of the composition
language. The stateless behavior of the actors in an instantiated network enables their
replacement, pooling, distribution, and load-balancing.

For a composition S, by /[ S] we denote its translation into an actor network, as a
set whose elements have the form ¢; : E; or ¢; — ;. Here, ¢; and ¢; are (distinct) code
location labels, which are either 0 (denoting composition start), 1 (denoting composition
finish), or are hierarchically structured as £.d, where d is a single decimal digit (denoting
a child of /). Element ¢; : E means that the behavior of the construct at ¢; is realized with
actor behavior E over input message m. Element ¢; — ¢; means that ¢; is an alias for ¢;.
Alias £; — {; is sound iff o7 S] contains either ¢; : E; or {; — ¢ such that {; — ¢; is
sound. Unsound or circular aliases are not permitted.

/[ S] is derived from the structure of S, by decomposing it into simpler constructs.
Figure 9 shows the translations &7 S’ ﬂf/ for each construct S’ located at ¢, and immedi-
ately followed by a construct at ¢'. For the whole composition, & [S] = /[ S]]. Items
P, 0,0, 0.1,0.2, etc. are treated as string literals in actor expressions.

The translation of skip simply maps the behavior of location £ to that of ¢/, without
introducing new actors. For other constructs, the structure of the incoming message m
is relevant: m.inst holds the unique ID of the composition instance; m.loc maps loca-
tion labels to actor addresses (discussed below); m.env is a record whose fields are the
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o [skip]! ={f— ¢}
o x:= E]]ﬁl ={{: (send(fget(m.loc, '), m{env.x : E }{from : £}))}
o/ [[if C then S| else S, ]}ﬁl ={¢: (send(fget(m.loc, if C then £.1 else ¢.2), m{from : (}))}
Ve[S 1 U [5:]6
<o/ [while C then S]]ﬁl ={¢: (send(fget(m.loc, if C then £.1 else ('), m{from : £}))} U </[S]}
18081 =0 LU s v 5]
o/ [[send E to P]]fl ={{: (do send(fget(m.link, P), m{out: E}) then
send(fget(m.loc, '), m{from : £}))}
o/ [ receive x from P]]fl ={{: (send(fget(m.link, P), m{in : "x”}{from : (}{to: £'}))}
< [join §; and Sz]]? ={¢: (let my = m{from : {}{loc : fset(m.loc, .2, new(/[[S],Sz]]? (m)))}
in do send(fget(m.loc, £.1.1), m,) then send(fget(m.loc, £.1.2), m,))}
SEA R RISE Y A
BAN ,Sz]]fl =Am — Am; — ready(Am; — do send(fget(m.loc, ('),
(82 writes 7) (if my.from > £.1.1 then m{env : m;.env{z : my.env.z}}

(Sy writes y) else m{env : my.env{y : mj.env.y}}){from: £.2}) then stop

Fig. 9. Translation of composition constructs as actor networks

composition state variables with their current values; and m.link is a map from available
partner service names to references of the actors which serve as their mailbox inter-
faces. The initial content of m is set up upon the reception of the initiating message
with which the composition is started. For simplicity, we assume that m.env.in holds
the input message, and that the initiating party is by convention called caller.

The translation of an assignment uses the built-in fget to fetch the value of m.loc
associated with ¢’ (as a string literal). That value is the reference of the next actor in
the flow, to which a message is sent with the modified value of the assigned variable x.
With £ we denote the result of replacing each state variable name y encountered in E
with m.env.y. Here, as in other translations, we additionally modify the from field in m
to hold the location from which the message is sent.

The translation of the conditional creates two sub-locations, £.1 and ¢.2 to which it
translates the then- and the else-part, respectively. Then, at run-time the incoming mes-
sage is routed down one branch or another, depending on the value of the condition C
(which is rewritten from C in the same way as E from E in assignment). The translation
of the while loop is analogous to that of the conditional. When a sequence is translated,
two sub-locations £.1 and ¢.2 are created and chained in a sequence.

The translations of the messaging primitives rely on partner links in m.link. For send,
the outgoing message is asynchronously sent to the partner link, wrapped in m.out, and
then the incoming message is forwarded to the next location in the flow. For receive,
the partner mailbox is asked to forward m to £’ when the incoming message becomes
available, by placing it in m.env under the name of the receiving variable.

The most complex behavior is for the join construct, which needs to create a transient
join node (at £.2) which collects and aggregates the results of both parallel branches be-
fore forwarding it to #'. The branches are translated at £.1.1 and £.1.2. The branches
receive message m, whose my.loc is modified (using the built-in fset) to point to the
transient join node under ¢.2. Its behavior of is defined by _#[S l,SZM/: m is the
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043
!
0.1 (? r:=0
024
0.2.1 l while —empty(in) do ...
0.2.1.1% 0.2.2 (? send r to caller
O.Z.I.Wn... and ... 10
r:=0;
0.2.1.1.1.1.1 % i 20.2.1.1.1.1.2 while —empty(in) do begin
send head(in) to P send head(in) to Q join begin
0.2.1.1.1.1.1.1 0.2.1.1.1.1.2.1 send head(in) to P;
receive x from P receive y from O receive x from P
0.2.1.1.1.1.12 0.2.1.1.1.1.2.2 end and begin
send head(in) to Q;
0.2.1.1.1.2 receive y from Q
0211243 end;
ri=r+max(x,y);
0.2.1.1.2.1 r:=r+max(x,y) in := tail(in)
. Lo end;
1= tail ’
02.1.1.2.2 9 in := tail(in) cend r to caller

Fig. 10. Deployment of the example composition between £ = 0 and ¢ = 1

original incoming message, and m; and m, are messages received from the branches.
The outgoing message is based on m, and inherits env from the first branch to termi-
nate, with the added modifications from the other one: the value of each state variable z
written by S, (or state variable y written by Sy) is copied into the resulting environment.

Figure 10 shows the topology of the actor network resulting from the translation
of the our example composition, annotated with location labels and the corresponding
composition constructs, with the message flow indicated with arrows. The transient
node is marked with an asterisk, and the dotted nodes correspond to the sequences and
are aliased to the next node in the flow.

4.4 Actor Network Instantiation and Semantic Correctness

An instantiation of an actor network <7[[S] is a pair (A, a), where A is a (partial)
mapping from locations to actor references, and o a minimal set of actors such that (a)
foreach £: E € o/[S], there is [ready(rec(Ab — m — do E then ready(b)))]A ) € o
and (b) for each £} — ¢, € Z/[S], A(£1) = A(¢2). When a new composition instance
is created, its m.loc is set to A.

The following theorem is central to validating the correctness of the approach:

Theorem 1. The operational behavior of any instantiation (A, o) of </ [ S] is correct
with respect to the abstract semantics of S.

The correctness criteria applies to any valid triplet {¢ | 7} S {¢’ | 77’} that can
be inferred from the rules in Figure 4 (with the implicit consequence rule), and any
instantiation (A, a) of </[S]. It requires that whenever S terminates and ¢ holds on
the input message received at location 0: (i) exactly one output message (of the same
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Fig. 11. Example updates of an instance snapshot

instance) is sent to location 1; (i) ¢’ holds on the output message; and (iii) the messages
sent to and received from the external service mailboxes are compatible with 7’.

The proof of this theorem is based on structural induction of correctness on the
building blocks of S. For each building block, the operational semantics of the actors
in o (augmented with partner mailbox actors) is validated against the pre- and post-
conditions defined in the abstract semantics of the composition language, applied to the
content and the circulation of messages that belong to a same composition instance.

Note that the behavior rec(Ab — m — do E then ready (b)) with which new actors
are created is fully stateless and repetitive, and thus a single actor can be seamlessly
replaced with a load-balanced and possibly dynamically resizable pool of its replicas
attached to the same location, without affecting the semantics of the instantiation.

4.5 Composition State Persistence

By observing all messages sent between actors in the instantiated actor network (with
the addition of partner service mailbox actors), a monitor can keep the current snapshot
of the execution state for each executing instance, distinguished by m.inst. The snapshot
can be represented as a tuple (0, ¢), where o is the stable, and ¢ the unstable set of
observed messages. The two sets are needed because messages can arrive out of order.

For example, part (a) of Figure 11 treats the case of location £; which needs one
incoming, and produces one outgoing message. When messages come in order, the in-
coming message m from /; is placed in ¢ and is subsequently replaced with the outgoing
message m’. It may, however, happen, as in Figure 11(b), that the outgoing message m’
is observed first. In that case, it is placed in ¢ (indicated by the dashed line). When the
incoming message m is observed, it is discarded, and m’ is moved from ¢ to 6. Two
analogous cases for a location corresponding to a parallel split node, which sends two
outgoing messages, is shown in Figure 11(c)-(d). In these examples, we tacitly merge
the aliased locations together, and include the partner service mailboxes.

After each observation, the stable set of observed messages ¢ can be written to a
persistent data store, and used for reviving the execution of the instance in case of
a system stop or crash, simply by replaying the messages from o. This may cause
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Fig. 12. Dynamic behavior of the sample composition deployed as an actor network

repetition of some steps (including the external service invocations), whose completion
has not been observed when the last stable set was committed to the persistent store,
but the messages in ¢ always represent a complete and consistent instance snapshot.

4.6 Use for Testing and Simulation

The presented actor network translation and instantiation scheme, which aims at exe-
cuting compositions in a production environment, can also serve as a basis for service
testing and simulation. Service composition can be tested by observing the messages
between the locations in the actor network to verify pre- and post-conditions at various
points in the composition code. For that purpose, the syntax of composition statements
(8) in Figure 3 can be extended with assertions that express conditions on state variables
and external messages. A testing monitor can then check the conditions at run-time and
compute code and path coverage of the tests.

In a simulation mode, external service mailboxes can be replaced with mock-ups, and
the translation scheme in Figure 9 can be slightly extended to include a new message
field m.time that represents the simulated time. Such a simulation could be used to study
the behavior of the system under different load scenarios, and would have the advantage
of correctly modeling its state, logic, and control flow.

5 Implementation Notes and Experimental Validation

We base our implementation of the proposed approach on Akka [11], a toolkit and
runtime for building concurrent, distributed, and fault tolerant event-driven applications
on the JVM platform. Among other capabilities, Akka enables transparent remote actor
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creation, supervision and communication between different network nodes, as well as
easily configurable actor pooling and load balancing. Akka also easily integrates with
Apache Camel [15], a versatile integration framework which allows actor systems to
interface with external services and systems using a large number of standard protocols.

To evaluate the potential benefits of the proposed approach with respect to the perfor-
mance of service compositions, we have implemented the sample currency conversion
composition from Figures 1 and 10 as an actor network, which was then instantiated
with different scaling factors, where the composition scaling factor n means that each
logical actor from the actor network is instantiated as a pool of n load-balanced actors.
The external service invoked within the loop has also been implemented in a scalable
manner, with a scaling factor of its own, and with a round-trip invocation time (of a
solitary request in a quiescent system) between 12 ms and 18 ms. In each experimental
run, the composition was fed with 100 input requests (at intervals of 10 ms) with input
lists of size 10, and the messages within the actor network were monitored to reveal
the number of instances awaiting or undergoing processing at different locations in the
network. !

The top-left graph in Figure 12 shows the results for the base configuration, where
the scaling factor for both the composition (C) and the external service (P) is 1, which
means that each actor in C, as well as P, could process one request at a time. The thick
solid rising line gives the number of finished instances over time (i.e., the number of
messages reaching location £/ = 1 in Figure 10). It takes approx. 40 s for the entire train
of 100 input requests to be served. The dashed line shows the backlog of invocations to
P, and the thin solid line shows the backlog of all internal operations in the composition,
such as the control constructs and assignments. As the requests arrive, the backlog of
internal operations quickly builds up, and then recedes as more and more instances
block waiting on P.

Since P represents an obvious bottleneck, a common-sense approach would be to
scale it up. The top-right graph in Figure 12 shows the behavior of a configuration
where the scaling factor for C is kept at 1, and that of P increased to 2. However, it turns
out that in spite of modest performance improvements (cutting the overall execution
time by 17.5% from 40s to approx. 33 s), C cannot significantly exploit the benefits of
scaling up P without scaling up itself. In fact, the graph shows that the backlog of P now
almost disappears, while the backlog of the internal operations in C now dominates the
dynamics of the system. In this case, the reason for such highly non-linear aggregate
behavior is the effective halving (on the average) of P’s request-response time, which
now becomes shorter than the interval between incoming requests.

The bottom-left graph in Figure 12 shows the case when both C and P have scaling
factor 2. In this case, the composition performance of the system is practically doubled,
with the overall execution time cut from 40 s to approx. 20 s. The bottom-right graph in
Figure 12 suggests that scaling C more than P does not yield significant performance
improvements: an appropriate scaling strategy seems to be using the same scaling factor
for both C and P. Note that in our approach the scaling factor for C can be configured
at will at run-time, without affecting the transformation.

! The experiment was performed on a Mac Airbook computer with 1.7 GHz Intel Core i5 and
4 GB of RAM, running Mac OS X 10.9.2, Oracle Java 1.7 55, and Akka 2.3.2.
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Fig. 13. Limits of performance improvements when increasing the scaling factor

Figure 13 shows how the effects on performance degrade as the common scaling
factor increases. While scaling factors n = 2, n = 4 and n = 10 reduce the overall exe-
cution time almost proportionally by factors 1.993, 3.937, and 9.097, respectively, for
15 < n <20 the reduction factor remains close to 10.7.

6 Conclusions and Future Work

In this paper we presented an approach for ensuring scalability of service compositions
(focusing on orchestrations with centralized control flow) — with rich control structure
(involving branches, loops and parallel flows), state and data operations — by translat-
ing them in a network of actor behaviors which behaves correctly with respect to the
semantics of the composition specification. Such a network can be instantiated and au-
tomatically scaled up/out by the underlying actor platform (in this case Akka on JVM)
whose remoting and clustering capabilities facilitate deployment in the Cloud.

The experimental results indicate that using this approach the composition can be
easily scaled (in this case vertically) to match the elasticity of the external services and
to yield significant performance improvements. We have also shown how the state of
an executing composition instance can be monitored and pushed to a persistent store in
a non-blocking manner to allow for restoring and continuing a stopped instance. The
same monitoring mechanism can be used for testing the composition on a fine-grained
level against pre- and post-conditions on the composition as a whole and individual
constructs from which it is built, and for computing code and path coverage of a test
suite. Additionally, the scheme can be easily adapted for simulation of service behavior
against different load scenarios.

There are several directions for expanding on the work presented in this paper. The
authors are currently working on expanding the prototype implementation into a system
which allows drop-in of composition definitions and their compilation into actor spec-
ifications, which is parametric with respect to the syntax of the composition language.
Our plan is to support not only orchestration languages based on the procedural, but
also on logical and functional programming paradigms. This can be followed with an
elaboration of a testing framework that integrates automatic generation of test cases and
performance analysis. Another direction would be creating, on the common basis, of an
offline simulation platform that can be complemented with online data to provide fore-
casts of system performance under different load scenarios. Additionally, the underlying
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actor formalism into which compositions are translated can be used for reasoning about
safety and liveness properties of choreographies involving several orchestrations.
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