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Abstract. Business process model repair aims at updating an existing model so
as to accept deviant (e.g., new) behaviours, while remaining as close as possible to
the initial model. In this paper, we present a multi-objective approach to process
model repair, which maximizes the behaviours accepted by the repaired model
while minimizing the cost associated with the repair operations. Given the repair
operations for full process repair, we formulate the associated multi-objective
problem in terms of a set of pseudo-Boolean constraints. In order to evaluate
our approach, we have applied it to a case study from the Public Administration
domain. Results indicate that it provides business analysts with a selection of
good and tunable alternative solutions.

1 Introduction

Business process model repair can be used to automatically make an existing process
model consistent with a set of new behaviours, so that the resulting repaired model is
able to describe them, while being as close as possible to the initial model [4]. Differ-
ently from process discovery, in which a completely new process is discovered from the
new observed behaviours, process model repair starts from an initial process model and
it incrementally evolves the available model through a sequence of repair operations [4].
Repair operations range from simple insertion and deletion of activities in the model,
to sophisticated sets of operations. In all cases, however, repair operations have a cost:
they add complexity to the repaired models. Business analysts in charge of repairing
existing models with respect to new behaviours are hence forced to choose whether
to accept the increased complexity of a model consistent with all deviant behaviours,
or to sacrifice consistency for a simpler model. In fact, some deviant behaviours may
correspond to exceptional or error scenarios, that can be safely abstracted away in the
process model.

In this work, we propose a multi-objective optimization approach to support business
analysts repairing existing process models. It uses repair operations from state-of-the-
art process repair algorithms to define a multi-objective optimization problem, whose
two objectives are: (1) minimizing the cost of repair (in terms of complexity added to
the repaired model); and, (2) maximizing the amount of new behaviours represented
consistently in the model. We formulate such multi-objective optimization problem in
terms of a set of pseudo-Boolean constraints and we solve it by means of a Satisfia-
bility Modulo Theory (SMT) solver. The result provides business analysts with a set
of Pareto-optimal alternative solutions. Analysts can choose among them based on the
complexity-consistency trade-off that better fits their needs. The approach has been
evaluated on a real life case study.

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 32–46, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



A Multi-objective Approach to Business Process Repair 33

The contribution of the paper is twofold: (i) a multi-objective approach for business
process model repair (Section 3); (ii) the results of our evaluation of the approach on a
real-life case study (Section 4).

2 Background

Inputs to the automated process repair techniques are new process behaviours, which
in modern information systems are captured through new execution traces recorded in
log files, so the problem of automated repair can be stated as the problem of repairing
a process model with respect to a log file [4]. In other words, given an initial process
model M (either manually designed or automatically discovered) and a set of execution
traces T (describing the new behaviours of the system), automated process repair aims
at transforming M into a new model M ′ that is as close as possible to M and that
accepts all traces in T , where an execution trace t ∈ T is a sequence of events (i.e.,
system activities) t = 〈e1, ..., en〉.

Among the different ways in which automated repair can be realized, two main cat-
egories of approaches can be identified in the literature: (i) the approaches performing
repair operations on the initial model M by directly looking at its differences with the
new traces [4]; (ii) the approaches that mine from T one (MT ) or more (MT =

⋃
(Mti))

new process models describing the new behaviours, use delta-analysis [1] techniques
for identifying differences between the new mined models and the initial one, M , and
apply repair operations to M [7,6].

In both cases, the differences of the initial process model with respect to the deviant
behaviours (described as execution traces or as mined process models) have to be iden-
tified (see e.g., [4] and [7]). Once such differences have been identified, a set of repair
operations can be applied to the initial model M . The basic operations consist of inser-
tion and deletion of activities in the model. For example, given the extract of Petri Net in
Figure 1 and the execution traces t1 = 〈A,B,D,C〉 and t2 = 〈A,C〉, two basic repair
operations, an insertion o1 and a deletion o2 (see Figure 2) can be applied to the Petri
Net in order to make t1 and t2 accepted by the Petri Net. Since these operations might
remove old behaviours of the net, some approaches (e.g., [4]) tend to be conservative
and to introduce the addition or removal of behaviours only as an optional alternative
to the old behaviours. Figure 3 shows how this can be realized in a Petri Net: the black
transitions represent silent transitions, i.e., transitions that are not observed when the net
is replayed. Note that while preserving old behaviours, repair operations can introduce
extra-behaviours such as the one described by the execution 〈A,D,C〉.

In this work we use a repair technique belonging to the first group of approaches
(repairs based on trace differences) and, in detail, the ProM1 Repair Model plugin. This
plugin implements the approach proposed by Fahland et al. [4] and takes as input a Petri
Net describing the initial model M and a log. A cost is assigned to insertion and dele-
tion operations. Correspondingly, an optimization problem is defined and the lowest-
cost alignment between the process model and the set of input traces is computed. The
outcome is a Petri Net M ′ which is able to accept all traces in T .

1 http://www.promtools.org/prom6/

http://www.promtools.org/prom6/
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Fig. 1. An extract of M described as a Petri Net

Fig. 2. Base repair operations
Fig. 3. Base operations preserving old be-
haviours

On top of this base alignment algorithm and of the insertion and deletion operations
described above, a set of variations are proposed in the approach by Fahland [4]:

Subprocess repair operations. In order to improve the precision of the repaired model
M ′, i.e., to avoid having too many extra-behaviours (besides those in T ), a subpro-
cess repair operation is introduced. The idea is that whenever a sequence of inserted
activities occurs at the same place in the model, instead of adding these activities incre-
mentally, they are structured as a subprocess, which is mined starting from the set of
subtraces that maximize the sequence of skipped activities in M . For example, consid-
ering the two traces t3 = 〈A,B,D,E,C〉 and t4 = 〈A,B,E,D,C〉, the subprocess
s1 in Figure 4 is added to the net in Figure 1 to take care of the sequences of activities
〈D,E〉 and 〈E,D〉 that are inserted at the same place, i.e., after B. Moreover, accord-
ing to whether the inserted actions represented by means of the subprocess are executed
at most once, exactly once or more than once in T , a skipping transition is added to the
net, the subprocess is added in sequence or it is nested in a loop block. In our example
the subprocess is executed at most once and therefore a skipping transition that directly
connects B and C is added to the net in Figure 4.

Loop repair operations. In order to improve the simplicity of the repaired model, a
special repair operation is dedicated to the identification of loops in the traces. The
identification of a loop, whose body represents a behaviour already described in the
model, allows the addition of a simple loop back transition instead of a new subprocess
duplicating the behaviour already contained in the initial model. For example, given
the net in Figure 1 and a trace t5 = 〈A,B,C,B,C〉 the silent transition (loop back
transition) in Figure 5 is added to the net, instead of a new subprocess accepting the
second sequence 〈B,C〉.

Remove unused part operations. In order to improve the precision and the simplicity
of the repaired model M ′, the parts of M ′ that are no more used are removed, by
aligning T with M ′ and detecting the parts of the model that do not contribute to the
acceptance of a minimum number of traces.

In this paper we applied our technique on top of the results provided by the state-of-
the-art ProM Repair Model plugin with the default configuration, which has been set
by the authors to values providing the best results, according to their experiments [4].
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Fig. 4. An example of subprocess repair op-
eration

Fig. 5. An example of loop repair operation

3 Process Repair as a Multi-objective Optimization Problem

To repair a model, a set of changes A (repair operations) are discovered and applied by
the repair algorithm. Indeed, every subset Ā ⊆ A is able to partially fix the model M ,
so that a subset T̄ ⊆ T of traces is accepted by the partially repaired model. Assuming
that every operation a ∈ A has a cost c(a), we can formulate the problem of trading the
number of traces accepted by the repaired model for the cost of repairing the model as
a multi-objective optimization problem (MOP).

3.1 Multi-objective Optimization

In single-objective optimization, given a set X of alternatives and a function f : X →
Z, which returns a cost (benefit) value associated with each alternative in X , the single-
objective optimization problem consists of finding an element x∗ ∈ X which minimizes
(maximizes) f . Multiple objectives can be expressed through a finite set of functions
{fi : X → Z|i = 1...n} defined on the set X . Solving the optimization problem
intuitively requires to find elements in X that give the best possible values for all the
objective functions fi at the same time. It is often the case that functions fi assume
their minimum/maximum in different points of X so that there is not a single point in
X which simultaneously optimizes all fi. For this reason the concept of Pareto optimum
is introduced:

Definition 1 (MOP). Multi-objective Optimization Problem (MOP) is defined by an
n-tuple of functions (f1, f2, ..., fn) with fi : X → Z and a corresponding n-tuple of
ordering operators on Z (o1, o2, ..., on) where oi ∈ {≤,≥}, o′i ∈ {<,>}.

Definition 2 (Pareto optimum). A point x∗ ∈ X is a Pareto optimum for the MOP
defined by 〈(fi), (oi)〉 if the following two conditions hold:

– ∀i ∈ {1, ..., n}, fi(x∗) oi fi(x) for all x ∈ X ,
– ∃j ∈ {1, ..., n} such that fj(x∗) o′j fj(x), for all x ∈ X .

Definition 3 (Pareto front). The image F ∗ = {(f1(x∗), f2(x∗), ...fn(x∗)|x∗ ∈ X∗}
of the set X∗ of points x∗ which are Pareto optima for the MOP defined by 〈(fi), (oi)〉
is called Pareto front for the MOP.

Thus, a Pareto optimum provides a point that is equal or better than any other point
for all the functions fi and it is better than any other point for at least one function fj .
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The Pareto front is a useful tool to describe the options that a decision maker has at dis-
posal and to identify preferred alternative among the available ones. In particular, when
problems with two objective functions are concerned, a graphical representation of al-
ternative solutions can be obtained by drawing the Pareto front points on the Cartesian
plane. The solutions (points) that are not on the Pareto front are by definition worse at
least in one objective than the solutions on the front and so they can be ignored in the
decision process.

3.2 Process Repair as a MOP

Process model repair can be seen as a MOP if the power set of the repair operations
P(A) is taken as the space of alternative solutions X , i.e. X = {Ā|Ā ⊆ A} and for
every element in X , namely Ā ⊆ A, the following are considered objective functions:

– Number of accepted traces: N(Ā) = |T̄ |, the size of the set T̄ of traces accepted
by the model repaired by the operations in Ā

– Total Cost: C(Ā) =
∑

a∈Ā c(a), the sum of the costs for all repair operations in
subset Ā

where function N(Ā) is to be maximized, while function C(Ā) is to be minimized.
Having expressed process model repairs as a MOP, we can find a solution by follow-

ing the approach in [12], which transforms the MOP into a satisfiability problem. The
method consists of assuming a maximum value C̄ for the total cost function C and a
minimum value N̄ for the number of accepted traces function N , and writing a set of
linear integer equations that describe the process repair problem under the constraints
imposed by C̄ and N̄ . Then, an SMT solver is used to find a solution or to establish that
the problem is infeasible under constraints C̄, N̄ . By varying C̄ and N̄ appropriately
(e.g., incrementing C̄ or decrementing N̄ when no solution is found), the entire Pareto
front can be precisely explored.

Operation Cost Accepted Traces
a1 3 t1, t2
a2 2 t1, t3
a3 4 t2, t3, t4

Fig. 6. An example of repair operations

The first step for us is to trans-
late the problem into a set of pseudo-
boolean constraints (PBCs). A PBC is
a formula involving booleans and lin-
ear integer arithmetics, having the form:∑n

i=1 aixi �B, where: � ∈ {<,≤,= �=
, >,≥}, ai, B ∈ Z, and all xi range over
the set {0, 1}. Figure 6 shows a simple
example of process model repair, including the repair operations, their costs and the
traces accepted by the model repaired by each operation.

The second step is to define, for a set Ā ⊆ A of repair operations, the vector
(α1, α2, ..., αNA) as the boolean-valued variables with the property ai ∈ B iff αi = 1.
In other words, (α1, α2, ..., αNA) gives the characteristic function of Ā. Similarly, for
a set T̄ ⊆ T of traces, T̄ can be characterized by the vector (τ1, τ2, ..., τNT ) of the
boolean-valued variables with the property ti ∈ T̄ iff τi = 1. To make the notation
easier to read, we overload the semantics of variables αi and τi, making the assumption
that when used in an integer context the boolean value true is interpreted as the integer
value 1, false as 0.
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The constraints on the objective functions “total cost” C and “number of accepted
traces” N can be expressed as PBCs involving the variables αj and τi, respectively:

∑

i=1,...,NA

ciαi ≤ C̄ (1)
∑

i=1,...,NT

τi ≥ N̄ (2)

Let us define the matrix {mij} with i = 1, ..., NT and j = 1, ..., NA such that
mij = 1 if and only if trace ti requires the repair operation aj to be accepted by
the repaired model. The following system of logical formulas model the relationship
between repair operations and accepted traces:

τi ↔
∧

j=1,...,NA∧mij=1

αj , with i = 1, ..., NT (3)

τ1 ↔ α1 ∧ α2

τ2 ↔ α1 ∧ α3

τ3 ↔ α2 ∧ α3

τ4 ↔ α3

Fig. 7. Logical formulas for Figure 6

Figure 7 shows the logical formulas for the
example in Figure 6: the formula in the first
row states that trace t1 is accepted (τ1 is true)
if and only if repair operations a1 and a2 are
applied (α1 ∧α2 are true). Similar conditions
for t2, t3 and t4 are shown in the remaining
rows of the table.

It can be proven that the set of formulas in
Equation (3) is equivalent to the set of PBCs expressed by Equations (4a) and (4b), for
all i = 1, ..., NT . Figure 8 shows the set of PBCs obtained for the example in Figure 7.

τi ≥ 1 +
∑

j=1,...,NA

mij(αj − 1) (4a)

NAτi ≤ NA +
∑

j=1,...,NA

mij(αj − 1) (4b)

τ1 ≥ 1 + (α1 − 1) + (α2 − 1)
τ2 ≥ 1 + (α1 − 1) + (α3 − 1)
τ3 ≥ 1 + (α2 − 1) + (α3 − 1)
τ4 ≥ 1 + (α3 − 1)
3τ1 ≤ 3 + (α1 − 1) + (α2 − 1)
3τ2 ≤ 3 + (α1 − 1) + (α3 − 1)
3τ3 ≤ 3 + (α2 − 1) + (α3 − 1)
3τ4 ≤ 3 + (α3 − 1)

Fig. 8. PBCs expressing the relation between ap-
plied actions and accepted traces for Figure 6

With this transformation, all con-
straints that must be satisfied to solve our
MOP problem are expressed in pseudo-
boolean form. Specifically, the set of
PBCs (1), (2), (4a), and (4b) defines
the model repair problem MRP =
〈{cj}, {mij}, N̄ , C̄〉 of finding a subset
of repair operations that are required to
accept at least N̄ traces with a repair cost
not greater than C̄, given the action costs
{cj} and the relation between actions and
traces specified by matrix {mi,j}.

The problem MRP can be tackled by
a Satisfiability Modulo Theory solver (YICES2 was used in this work). If the problem

2 YICES: http://yices.csl.sri.com/

http://yices.csl.sri.com/
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turns out to be satisfiable, the accepted traces are identified by the true elements of {τi}
and the required repair operations by the true elements of {αj}.

Computing the Pareto front. The Pareto front for the model repair problem MRP can
be computed using Algorithm 1. First (step 1), we compute the point (CT , NT ) of the
front with maximum cost. Second (step 2), starting from C = CT and N = NT ,
the maximum allowed cost C is reduced by one and the maximum number N of
traces that can be accepted with that cost is searched, iteratively solving the problem
P (c,m, C,N) while decreasing N until a satisfiable problem is found. When found,
the point (C,N) is added to the set F and every point (C′, N ′) that is dominated by
(C,N) is removed from F ; the cost is reduced by one and the loop is repeated. Upon
exit, the algorithm returns the set of points in the Pareto front.

Algorithm 1. Computing the Pareto front for the Model Repair MOP

Input:
c = c1, ..., cNA vector containing the cost of repair operations,
m = (mij)i=1,...,NT ,j=1,...,NA , matrix specifying what traces are
repaired by what operations

Output:
F , a set of points (C,N) (cost, number of accepted traces),
i.e. the Pareto front for the Model Repair MOP

// step 1: Compute the cost CT to have a model that accepts the whole set of traces
CT =

∑
i=1,...,NA

(ci)
add (CT , NT ) to F
// step 2: Follow the Pareto front
C = CT − 1
N = NT

while C > 0 do
while N > 0 do

if MRP problem 〈c,m, C,N〉 is satisfiable then
add (C,N) to F
remove any (C′, N ′) dominated by (C,N) from F
break

end if
N = N − 1

end while
if N = 0 then

break
end if
C = C − 1

end while
return F
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4 Experimental Results

In order to evaluate the proposed multi-objective approach, we formulate the following
research questions:

RQ1 Does the Pareto front offer a wide and tunable set of solutions?
RQ2 Does the Pareto front offer solutions that can be regarded as repaired models of

good quality?

RQ1 deals with the number and the variety of different solutions provided by Multi-
objective Repair. In particular, the shape of the Pareto front and the number of the
solutions in the Pareto front determine whether a wide range of alternatives that bal-
ance the two dimensions of interest is offered to business analysts. The Pareto front,
in fact, might consist of points spread uniformly in the interesting region or it may be
concentrated in limited, possibly uninteresting regions of the plane (e.g., near the totally
repaired processes accepting almost all traces in T ). In our specific setting the number
of solutions available in the Pareto is dependent on the number of operations needed to
repair the whole set of traces in T . In order to answer this research question, we look at
the number of optimal solutions, as compared to the whole set of repair operations, and
at the shape of the Pareto front.

RQ2 investigates the quality of the repaired models in the Pareto front. Specifically,
two important quality dimensions for repaired models [3] are taken into account: (i)
Precision, i.e., how many new behaviours are introduced in the repaired model with
respect to the real process being modelled; and, (ii) Generality, i.e., how many yet
unobserved behaviours of the real process are accepted by the repaired model.

In the following, we report the case study, the metrics, the experimental procedure,
and the results obtained to positively answer RQ1 and RQ2.

4.1 Process under Analysis

The process used in the case study is a procedure carried out in the Italian Public Ad-
ministration (PA). It deals with the awarding of public tenders by contracting adminis-
trations. Before the winners can be awarded with the final notification, the contracting
administration has to verify whether the winners have all the necessary requirements.
In detail, the procedure is activated when the tender reports and a temporary ranking
are available. According to whether anomalous offers can be accepted or not, a further
step of evaluation is required or the letters for winners, non-winners as well as the result
letter can be directly prepared and entered into the system. At this point, the require-
ments of the temporary winners have to be verified. If such verification is successful, an
award notice is prepared and officially communicated; otherwise, further clarifications
are requested to the temporary winners and the verification is iterated. The award notice
can be published through the Web, through the Council notice board or, if the reward is
greater than a given threshold, it has to go to print.

A Petri net M describing such public tender awarding procedure has been defined
by a team of business experts as part of a local project. M takes into account the “ideal”
procedure described in official documents and is composed of 35 transitions, none of
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which silent, and 32 places. No concurrent behaviours and no routing transitions occur
in M , while there are three alternative choices and a loop, involving 5 routing places3.
Since discrepancies were found between M and the actually observed execution traces
T , a repaired model M ′ was produced from M using the ProM Repair Model plugin.

4.2 Metrics

In order to answer the above research questions, we use precision and generality met-
rics to compare M ′ to a gold standard model GSM . Differently from the initial model
M which did take into account the generic “ideal” procedure described in official doc-
uments, the gold standard GSM has been manually defined by a team of business
analysts working on the real process of a specific institution. It contains all and only
behaviours that are legal in the specific setting. Model GSM contains 49 transitions
and 38 places; it contains some parallel behaviours (2 routing transitions), several alter-
native paths and few loops (21 routing places). Transitions are decorated with transition
probabilities estimated from real process executions.

Precision. Precision (P ) of a repaired model M ′ measures the absence of extra-
behaviour in M ′ with respect to the behaviour it should contain. It is computed as
the percentage of execution traces generated by the repaired model and accepted by the
gold standard model GSM :

P (M ′) =
|acc(GSM,TM ′)|

|TM ′ | (5)

where acc(M,T ) is the subset of T accepted by M and TM is a set of traces stochas-
tically generated by model M . It should be noticed that in the general case, where no
GSM is available, measuring the precision of a model might be quite difficult and
might involve substantial manual effort. We expect that good models are characterized
by high precision.

Generality. Generality (G) measures the capability of the repaired model M ′ to de-
scribe unobserved behaviours of the real process. We compute it as the percentage of
traces generated by GSM that are accepted by M ′:

G(M ′) =
|acc(M ′, TGSM )|

|TGSM | (6)

where acc(M,T ) is the subset of T accepted by M and TM is a set of traces generated
by model M . We expect that good models are characterized by a high generality.

4.3 Experimental Procedure

The procedure followed in our experiments consists of the following steps:

3 Detailed descriptions of the case study are available at the link http://selab.fbk.eu/mor/
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1. Trace generation. Two sets of traces T and GT are generated from the gold stan-
dard model GSM (in our experiments, |T | = 100; |GT | = 10). Each trace is
generated by a random execution of the Petri net: at each step, the transition to fire
is chosen according to the probabilities associated with the enabled transitions. The
execution ends when no enabled transitions exist;

2. Model Repair. The set of traces T is used to repair the initial model M , producing
the set A of operations required to fix it. For each operation a ∈ A, its cost c(a),
estimated as the number of transitions added by the repair operation a, and the set
of traces T (a) accepted by the repaired model due to the specific repair operation
a are stored;

3. MRP Solver. The Solver applies Algorithm 1 to obtain the Pareto front. Each point
Pi in the Pareto front is associated with a repaired model Mi;

4. Compliance Computation for Generality. The set of traces GT is used to evaluate
the generality of each repaired model Mi;

5. Trace Generation from Repaired Models. Each model Mi is used to randomly
generate a set TMi (|TMi | = 100), using a uniform distribution of probabilities
associated with the transitions;

6. Compliance Computation for Precision. Traces TMi are checked against GSM
to measure the precision of model Mi.

Stochastic trace generation from GSM and from the repaired models Mi was re-
peated 10 times, to allow for the computation of average and standard deviation of the
experimental metrics for precision and generality.

4.4 Results

Figure 9 shows the Pareto Front obtained by applying Multi-objective Repair to the
presented case study. Each Pareto front point is associated with a model Mi, obtained
by applying a different set of repair operations. The x-axis represents the cost of the
repair operations applied to obtain model Mi, while the y-axis represents the number
of traces in T that are accepted by the repaired model Mi.

The shape of the Pareto front offers an approximately linear set of solutions that
are quite well distributed along the two axes. There are 6 points in the central area of
the plot, distributed two by two along the Pareto front. For each pair, the point with
the lowest cost is clearly associated with a better solution since the more costly solution
accepts just one additional trace. For example,M7 (indicated with an arrow in Figure 9)
and M8 represent a pair of close points. A business analyst, in charge to choose between
the two repaired models, would probably prefer M7, since this solution presents a lower
cost, sacrificing only one trace.

Considering that 16 different repair operations have been identified by the ProM
repair plugin – hence, 216 different sets of operations can be potentially built – the
12 solutions provided by Multi-objective Repair represent, for a business analyst in
charge of repairing the initial model, a good selection of different trade-off solutions,
all ensured to be Pareto-optimal. Manual inspection of the whole space of solutions
would be unaffordable. Based on these considerations, we can answer RQ1 positively.
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Fig. 9. Pareto Front obtained by applying Multi-objective Repair to the awarding of public tenders

Table 1 reports, for each repaired model Mi in the Pareto front, the number of traces
in T accepted by Mi, the cost of the repair operations applied, and the values for preci-
sion and generality. Figure 10 plots the same data as a function of the repair cost. The
low values for precision at increasing repair costs are due to the ProM repair algorithm,
which tends to preserve old behaviours by introducing alternative silent transitions. These
increase the number of extra-behaviours. As a consequence, the trend of the precision
metrics is decreasing when the number of repair operations applied to the model grows.

The opposite trend can be noticed for the generality metrics (blue line in Figure 10).
Starting from very low values for the poorly repaired models, the capability to reproduce
new, unobserved behaviours increases together with the application of repair operations.
It is worth noticing that in our case study the generality value for the repaired model
accepting all traces in T , i.e., M12, is exactly 1. In fact, the trace set T used to repair
the initial model M provides exhaustive coverage of all possible process behaviours.
Of course, this might not be true in the general case.

Table 1. Precision and generality for the models in the Pareto front

# of accepted traces Repair operation cost Precision Generality
Avg. Std. dev. Avg. Std. dev.

M1 5 2 1 0 0.04 0.07
M2 15 4 1 0 0.13 0.17
M3 24 6 1 0 0.22 0.08
M4 28 7 0.51 0.04 0.26 0.1
M5 45 9 0.53 0.07 0.41 0.08
M6 46 11 0.29 0.03 0.41 0.1
M7 57 15 0.51 0.04 0.51 0.11
M8 58 17 0.3 0.03 0.51 0.11
M9 72 20 0.4 0.03 0.66 0.1
M10 75 22 0.25 0.02 0.66 0.1
M11 94 26 0.26 0.03 0.98 0.04
M12 100 28 0.13 0.01 1 0
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Fig. 10. Precision and average generality plots

The plot in Figure 10 shows that some of the intermediate solutions in the Pareto
front (e.g., M5, M7 and M9) offer quite interesting trade offs between precision and
generality. For example, the repaired model M7 is characterized by a precision and a
generality of 0.51. At the same time, the additional complexity of this model in compar-
ison with the initial model M can be approximately measured by the repair cost (15),
which is half of the total repair cost (28) for the fully repaired model M12. If we can
accept only half of the overall model complexity increase, we get approximately half
precision and generality.

We can conclude that the Pareto front built by Multi-objective Repair provides busi-
ness analysts with a set of tunable and good quality repaired models. The possibility to
consider intermediate solutions (i.e., solutions in the central area of the Pareto plot) and
to choose “how much” to repair the model (hence, how much to increase the model com-
plexity), provides business analysts with a lot of flexibility in the trade-off between model
quality and complexity. Based on these considerations, we can answer RQ2 positively.

4.5 Discussion

We have manually inspected the repaired models in the Pareto front. We found that some
cheap operations (e.g., the introduction of silent transitions, realizing loop back/skipping
activities, or of small subprocesses) enable the acceptance of almost half of the traces
in T (see, e.g., M7), at a cost that is around half of the total repair cost (28). Solutions
located in the upper-right part of the Pareto, instead, are characterized by costly repair
operations dealing with the acceptance of parallel behaviours.

The parallelization of activities and the management of mutually exclusive branches
represent typical examples of challenging behaviours for repair techniques (in our case,
for the approach implemented by the ProM plugin). The low precision values of some
repaired models can be ascribed to these two types of criticalities. Concerning the first
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Fig. 11. Sequentialization of parallel activi-
ties

Fig. 12. Sequentialization of mutually ex-
clusive activities

one (parallelization), indeed, the lack of a dedicated detector for parallel behaviours
causes the insertion of subprocesses in charge of exploring the different interleavings of
the parallel activities. Figure 11 shows a simplified view of this critical setting, which
makes it also clear why extra-behaviours are introduced in the repaired model (e.g.,
〈C,B,D,C〉). Similarly, Figure 12 shows a simplified representation of a particular
case of the second criticality (mutually exclusive branches). When a new activity has
to be added to a block of mutually exclusive branches, it is added in sequence at the
join place as an optional activity, disregarding whether it is a new branch or part of an
existing one. Figure 12 gives an idea of the extra-behaviour introduced in the repaired
model (e.g., 〈A,B, F,E〉).

This analysis gives qualitative indications about the consequence of selecting a so-
lution in the central area of the Pareto front (e.g., M5 or M7). A business analyst can
repair the model at lower costs, while sacrificing execution traces involving more com-
plex (and costly to repair) behaviours, such as parallel behaviours (M7) or both mutually
exclusive and parallel behaviours (M5). The analysis provides also indications for the
improvement of existing model repair algorithms, e.g., the need to introduce special
rules dealing with parallelism and mutual exclusion.

4.6 Threats to Validity

Two main threats to validity can be identified in the presented case study, both related to
the external validity, i.e., to the generalizability of the obtained results. The first threat
concerns the investigation of a single case study. Results related to a single case study
cannot be easily generalized. Nevertheless, the case study under analysis deals with
a real procedure actually executed by Italian PA. The second threat is related to the
specific repair tool and configuration used for identifying the set of repair operations.
Different plugins and configurations would make the results more general. Neverthe-
less, the ProM plugin for process repair used in this work is among the most known in
the literature.

5 Related Work

Reconciling execution information and process models, as done in process model dis-
covery and repair, involves multiple, often contrasting, dimensions. Some works [5]



A Multi-objective Approach to Business Process Repair 45

apply post-processing analysis to simplify the discovered process models, while
preserving the ability of the models to replay all the execution traces used for their
generation. Others [9,3] use evolutionary algorithms to deal with these dimensions.
De Medeiros et al. [9] apply a genetic algorithm to mine process models balancing
the capability to reproduce behaviours traced in execution logs and extra-behaviours.
Their algorithm optimizes a single-objective function, which combines under and over-
generalization. A similar approach is taken by Buijs et al. [3], who use a genetic algo-
rithm to discover a process model that not only balances under and over generalization,
but also takes into account the model simplicity and generality, as well as the distance
from an initial reference model. These works differ from ours because: (i) a new model
is discovered rather than having an initial one repaired; and (ii) a single-objective func-
tion is used to combine all the dimensions to be optimized.

Multi-objective approaches have been applied to various fields of software engineer-
ing. For example, Harman et al. [13] present the first application of multi-objective
optimization to the problem of test case selection. In their work, they study Pareto ef-
ficient genetic algorithms, such as NSGA-II, to maximize code coverage and minimize
test cost during regression testing. Tonella et al. [11] introduce a multi-objective op-
timization algorithm to recover specification models that balance the amount of over-
and under-approximation of application behaviours observed in traces. They show that
multi-objective optimization performs outstandingly better than previous state-of-the-
art approaches. Arito et al. [2] propose the formulation of the multi-objective problem of
Test Suite Minimization (TSM) in terms of a set of pseudo-Boolean constraints. While
our method adopts a similar formalization, the two considered problems differ in terms
of involved constraints: in MRP a trace is accepted if and only if all associated repair
operations are performed on the model, while in TSM each line of code can be executed
by more than one test case, hence including at least one of them is enough to increase
coverage.

Multi-objective optimization approaches have also been applied to the business pro-
cess field, but never to optimize business process model repair. Marchetto et al. [8]
apply a multi-objective technique to reduce intricate process models recovered from
execution logs. In their work, two dimensions are investigated: complexity (measured
in terms of analysts’ understandability) and under-generalization. In Tomasi et al. [10],
a third dimension is added to the two above: the business domain content of recovered
processes. In both cases, the considered dimensions and the goal of the multi-objective
optimization differ from the ones of this work.

6 Conclusions and Future Work

This paper presents a multi-objective approach to process model repair. It builds on top
of state-of-the-art repair approaches and exploits the repair operations they provide to
balance cost (in terms of complexity added to the recovered model) and advantages
(in terms of traces accepted by the repaired model) of applying such operations to the
initial model. Preliminary results, obtained by applying our approach to a real-life case
study, indicate that: (i) the proposed Multi-objective Repair technique provides business
analysts with a good selection of different solutions, all ensured to be Pareto-optimal;
(ii) the returned solutions are tunable and good quality repaired models.
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Future works will be devoted to performing further experiments involving larger case
studies, as well as investigating the use of different configurations and tools for process
model repair.
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