
Orchestrating SOA Using Requirement

Specifications and Domain Ontologies

Manoj Bhat, Chunyang Ye, and Hans-Arno Jacobsen

Application and Middleware Systems Research Group
Technische Universität München, Germany

{manoj.mahabaleshwar,yec}@tum.de

Abstract. The composition of web services requires process designers to
capture the goals of the service composition in a partial process model.
Manually deriving the partial process model from the requirement specifi-
cations is not trivial.A clearunderstandingof the requirements, interaction
among services, their inputs and outputs are precursors for developing the
partial process models. To reduce the complexity, we propose an approach
to guide process designers in deriving the partial process models by reusing
the knowledge captured in requirement specifications and domain ontolo-
gies. The results of the evaluation shows that our approach is promising in
terms of correctness and completeness.

Keywords: Web service composition, domain ontology, requirements
engineering, knowledge reuse.

1 Introduction

Services Computing is an interdisciplinary field that covers the science and tech-
nology of using computing and information technology (IT) to model, create,
operate, and manage services that bridges the gap between business and IT [1].
Increase in the creation and consumption of web services has made the analy-
sis and generation of composition plan challenging [2]. Approaches that tackle
the issue of service composition require users to capture the service composition
requirements in the form of service templates, service query profiles, or partial
process models [8–10]. The requirements include: list of sub-services, inputs, out-
puts, preconditions and effects (IOPEs) of the sub-services, and the execution
order of these sub-services. Henceforth, we refer to the templates that capture
these requirements as partial process models. The existing approaches assume
that the partial process models are readily available to initiate the service com-
position engine. However, this assumption does not always hold in practice [3].

In this paper, we address the issue of automatically deriving the partial pro-
cess model for service composition. The goal is to reduce the burden of process
designers to a great extent, especially for non-domain experts. Our experiment
discussed in Section 3 indicates that the main challenges for process designers in-
clude: understanding the composition requirements of complex services, correctly
correlating the inputs and outputs of sub-services, and designing the business

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 403–410, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



404 M. Bhat, C. Ye, and H.-A. Jacobsen

logic of the process model. To address these issues, we propose to use domain
ontologies, user stories in the requirement specification documents (RSDs), and
user queries to recommend a set of services along with their inputs, outputs, and
execution order to describe the partial process model.

Ontologies are extensively used in different phases of software engineering [4].
In recent years, organizations are putting in the extra effort for manually creating
domain ontologies due to their significant advantages as a means of knowledge
sharing and reuse. There also exist automatic and semi-automatic approaches
for ontology creation. For instance, LexOnto [5] uses the web services in the
ProgrammableWeb directory [6] to create classification ontologies. As ontologies
are generally available or they can be generated using existing tools, we consider
using ontologies to facilitate the automatic generation of partial process models.

On the other hand, the popularity of agile methodologies has made the use
of user stories to capture requirements a common practice. The user stories are
expressed in a standard format such as “As a role, I want goal so that benefit.” To
simplify the algorithm, we focus only on the user stories. However, our approach
can be generalized to the individual statements in the RSDs.

Since a service composition may involve services from different domains, one
of the main challenges of our approach is to link domain ontologies to handle
requirements from multiple domains. To address this challenge, we extended the
existing approach by Ajmeri et al. [7] that helps requirement analysts visualize
how requirements span across multiple domains. The ontologies are linked using
the semantic similarity of concepts. The linking of ontologies is used to derive a
conceptual model of the requirements to help requirement analysts improve the
completeness of requirements. Furthermore, we use natural language processing
(NLP) to link the concepts in the ontologies with the terms in the user stories
and to classify the concepts as either services or input-output (i/o) of services.
Once the atomic services and their inputs and outputs are identified for a queried
service, the data dependency constraints determine the execution order.

The main contributions of this paper are two-fold. First we propose an ap-
proach to automatically generate the partial process model for service compo-
sition. Our approach complements the ideas behind the existing ontology-based
and NLP-based service composition approaches. Second we realize our approach
as a recommender system that can integrate ontologies and user stories to sub-
stantially reduce the time and effort involved in service composition.

2 Related Work

Artificial Intelligence (AI) Planning and Ontology Based Solutions:
To address the problem of service composition, different planning techniques
have been proposed. These approaches require capturing the requirements as a
partial process model which is given as input to the composition engine. The en-
gine generates a plan by comparing the requirements against the services in the
repository. For instance, in [8] the goals are captured in a goal language and the
planner generates a plan that satisfies these goals. Similarly, in [9] the similarity



SOA Using Req. Specifications and Domain Ontologies 405

between the user requests and the services is computed based on the syntac-
tic, semantic and operational details. Furthermore, Grigori et al. [10] propose a
method to transform the behavior matching of services and user requests to a
graph matching problem. Capturing the requirements in a partial process model
is a non-trivial task. We address this issue in our approach by automatically
deriving the partial process model from the RSDs and the domain ontologies.

Tag-Based Service Composition: The tag-based approaches for service
composition are becoming popular [11]. They are easy to implement and to use.
However, they have their own shortcomings, for instance, tags are usually too
short to carry enough semantic information and most services have only a few
tags. These tags can belong to different types such as content-based, context-
based, attribute, and subjective. This results in a large tag-space and low effi-
ciency and effectiveness in semantic matching. Therefore, these approaches are
oriented towards mashup. They do not address how to generate traditional work-
flows which involve sequentially and parallel executing tasks.

Publish/Subscribe-Based Distributed Algorithm: Hu et al. [12] pro-
pose a distributed algorithm to enable service composition via a content-based
pub/sub infrastructure. Even though the distributed approach seems promis-
ing, it considers matching of services at a syntactic level, whereas our solution
concerns both syntactic and semantic levels.

Service Composition Using NLP: The service composition system pro-
posed in [13] addresses the shortcomings of the existing NLP-based solutions [14].
The solution proposed in [13] comprises of an integrated natural language parser,
a semantic matcher, and an AI planner. The parser extracts the grammatical
relations from the requirements and generates the service prototypes comprising
of process names and input values. The service prototypes are further used by
the semantic matcher to identify services from the repository and the AI plan-
ner generates a composed service. In this approach, a clear set of patterns used
to identify the process names and their input values from the requirements is
not captured. Furthermore, a detailed evaluation of the system with respect to
correctness and completeness of the generated composed services is missing.

Although, there exist a large body of knowledge addressing service discovery
and composition, understanding the technical and domain specific requirements
for process designers to use these approaches still remains a challenge.

3 Case Study of Service Composition

As part of the course curriculum [15], participants are required to complete
a project comprising three milestones (M). In M1, each group is required to
develop three web services. In M2, participants develop a search engine to look
up services from the server. Finally, in M3, each group is required to develop a
Travel Agency (TA) service by composing the existing services.

Out of 76 deployed services in M1, 47 services were correctly implemented.
However, in M3, 8 groups deployed the TA service and only 1 group correctly
implemented the service. The drop in the performance is overwhelming but un-
derstandable. One of the main challenges for the participants was to address



406 M. Bhat, C. Ye, and H.-A. Jacobsen

the problem at a conceptual level. The requirements of M1, to develop atomic
services were straightforward and easy to comprehend. The participants success-
fully developed a conceptual model which helped them implement the services.
On the other hand in M3, the TA service consisted of several sub-services which
were from different domains and implemented by different groups. The partici-
pants were unsuccessful in creating a conceptual model due to the lack of a clear
understanding of the complex relationships among the services.

Fig. 1. Partial process model for TA service

This example shows that manu-
ally creating a correct partial process
model is challenging. Our investiga-
tion indicates that the main difficul-
ties include how to design the business
logic of the process correctly and how
to correlate their inputs and outputs
correctly. If the participants were pre-
sented with a process model as shown
in Figure 1, understanding the com-
position requirements would be easier
and the time and the effort involved
would be substantially reduced.

4 Approach

The challenges that we address in our approach include: mapping of domain
ontologies using semantic similarity mapping approach, identifying if a concept
is a service or an i/o of a service, capturing the data dependency of services, and
integrating the recommendation with user preferences.

Overview: In this section, we briefly introduce how the partial process model
is generated. As shown in Figure 2, the process designer inputs the keywords cor-
responding to the service he plans to develop. He also selects the relevant domain
ontologies and provides the list of user stories to the system. The system maps
the concepts in the domain ontologies to the terms in the user stories and identi-
fies the candidate sub-services. The concepts in the domain ontologies associated
with the candidate services are identified as i/o concepts of sub-services. Users’
past preferences filter the candidate services and tag the i/o concept as either
input to a service or output of a service. Tagging of concepts as inputs and out-
puts of sub-services establishes the data-dependency constraints to determine the
execution order of the sub-services. The process designers’ selection iteratively
updates the user preference repository to improve the recommendations. Process
designers can also suggest the missing concepts to evolve the ontologies, which
are validated by a domain expert before updating the ontologies. The partial
process model created based on the recommendations is further given as input
to the composition engine that retrieves services from the service repositories.

Cross-Domain Ontology Mapping: Ajmeri et al. [7] propose an approach
to identify the concepts that link different ontologies using semantic similar-
ity mapping. The semantic similarity between concepts is calculated based on



SOA Using Req. Specifications and Domain Ontologies 407

Fig. 2. Service composition using user stories and domain ontologies

syntax, sense, and context similarity. The syntactic similarity matches concepts
based on the string equivalence. The sense similarity matches concepts based
on the similar usage sense determined using a set of synonyms called synset [16].
The context similarity matches concepts based on the similarity of their neigh-
borhood. The neighborhood of a concept is determined based on the inheritance
relationships from the parent concept to the child concept. The semantic similar-
ity between the concepts is computed as a weighted mean of syntactic, sense, and
context similarity. The semantically similar concepts identified using the above
approach are the concepts which map two different domain ontologies (cf. [7] for
a detailed description of the cross-domain ontology mapping algorithm).

Identification of Candidate Services: Once the domain ontologies are
linked using the semantic similarity mapping approach, we identify if the con-
cepts in the ontology that are associated with the user query are services. We
use the following criteria in [7] to identify if the concept represents a service: the
concept or its equivalent concept in the ontologies must be present in the user
stories, and the concept or its substring should be part of a verb phrase (VP).
However, if it is part of a noun phrase (NP), it should be prefixed by a VP.

For example, in the user story “As a customer, I want flight booking function-
ality, to book flight from source to destination city” the substring booking of the
concept flight booking is part of a VP and hence the concept flight booking is
suggested as a candidate service. To parse a sentence and to create a constituent
tree of objects, we use the open-source Link Grammar library [17].

service(c1) = USi.contains(c1) and (c1.parseType = “VP” or (c1.parseType
= “NP” and c1.parent.parseType = “VP”)) ? true : false;
where USi is the ith user story; c1.parseType is the tag associated with the
concept c1 w.r.t. parse tree of USi; c1.parent is the parent token in the parse
tree.

Constituent parse tree: (S (PP As (NP a customer)), (S (NP I) (VP want
(NP (NP flight) (VP booking (NP functionality, (PP to (NP book flight)
from source city to destination city.)))))))

Also, if the concept is part of a NP, it should be prefixed by a VP. In the
user story “As a customer, I want to make payment for flight, taxi, and hotel
booking using credit card”, payment is in NP but is prefixed by verb make.



408 M. Bhat, C. Ye, and H.-A. Jacobsen

Identification of Input and Output Parameters: To suggest the i/o of
the identified services, we consider the concepts associated with each of these
services in the ontologies. The associated concepts are referred to as complemen-
tary concepts (CC). We consider 1st and 2nd degree CC. The 1st degree CC is
a concept associated with the service concept directly through an object prop-
erty relationship and the 2nd degree CC is a concept associated with the service
concept via an intermediary concept. The open-source OWL API [18] provides
interfaces to parse the ontologies and to identify the object and data properties.

User Preference Integration: Based on the users’ past preferences of ser-
vices and their i/o, the identified services are filtered and the complementary
concepts are tagged as either inputs or outputs. When the user selects services
from the recommended list, the confidence of these services is incremented. How-
ever, if a service is considered irrelevant for a specific query, the confidence score
of that service is decremented. For a specific query, the recommended services
are sorted based on the confidence score. Similarly, as the user tags the concepts
as either inputs or outputs of a service, the corresponding confidence-input or
confidence-output is incremented. If the user deletes the complementary concept,
the corresponding confidence-input and confidence-output is decremented. For
the subsequent queries, the complementary concept is tagged as input or output
by comparing the score of confidence-input and confidence-output.

Data-flow Analysis: The tagging of complementary concepts as inputs and
outputs of a service establishes the data dependency constraint which helps to
compose the services to meet the requirements of the queried service. For instance
in a Travel Agency service, the output of Flight, Hotel, and Taxi Booking service
are the inputs to the Payment service, indicating that Flight, Hotel, and Taxi
Booking service should be executed before the Payment service.

5 Evaluation

To evaluate the system developed based on the approach discussed in Section 4,
we have considered two practical use-case scenarios which are commonly used
as the benchmark examples for service composition1. We also conducted an em-
pirical study to evaluate the quality of the recommended partial process model.

Empirical Study: We introduced our system in the course assignment which
had the same requirements as the assignment in Section 3. The participants were
assigned groups and each group was required to submit three milestones. M3,
involved developing the TA service by composing other services. The participants
were given a brief introduction on how to use our recommender system.

27 groups deployed their services for M3 and 33% of the groups correctly im-
plemented the service. Services implemented by 44% of the groups failed to pass
the test cases due to syntactical errors such as incorrect variable initialization
and incorrect namespaces. However, these services were complete with respect to
the requirements; in the sense that, the TA services included invocation of all the

1 Due to space limitations, the case studies are available online via
https://sites.google.com/site/wsccs2013

https://sites.google.com/site/wsccs2013


SOA Using Req. Specifications and Domain Ontologies 409

necessary services, assignment of input-output variables and also maintained a
correct execution order. The performance of the groups in this assignment (33%
correctly implemented and 44% partially completed) is significantly higher than
the groups in the assignment discussed in Section 3 (12%).

On completion of the project, 27 groups provided their feedback regarding
the recommender system. A five-point Likert scale [19] is used to capture the
responses. In the five-point scale, 1 indicates strongly disagree, 2 indicates dis-
agree, 3 indicates neutral, 4 represents agree and 5 indicates strongly agree. We
refer to this scale in the following observations (O):

Understanding Service Composition Requirements: O1 : 37% of the
groups strongly agree and 25% of the groups agree that the recommended process
model helps in understanding the requirements of service composition.

Quality: O2 : 40.7% of the groups strongly agree and 14.8% of the groups
agree that the recommended services fulfill the service composition requirements.

O3 : 51.8% of the groups agree and 14.8% of the groups strongly agree that
the data dependency constraints help to define the execution order of services.

O4 : The average rating for the satisfaction of recommended inputs and out-
puts for each of the suggested service is 3.89. 46.8% of the groups strongly agree
that the recommended inputs and outputs for all the suggested services are cor-
rect and complete with respect to the requirements. Moreover, 92% of the groups
rate between 3 to 5 on the scale and only 8% of the groups, rate 1 and 2 on the
scale (strongly disagree and disagree) in O4.

O5 : 59% of the groups indicate that the recommended process model is the
same as the manually created service composition.

Time: O6 : The groups that used the recommender system for developing the
TA service spent on average 9.68 hours less than those groups that did not use
our recommender system.

Difficulty: O7 : The feedback also indicates that the challenges in service
composition are: “understanding the BPEL syntax (48%)”, “handling i/o pa-
rameters in BPEL (30%)”, and “invoking the external services (18%)”, apart
from “constructing the control-flow of the process (26%)” and “understanding
the requirements (11%)”. These results show that although our approach has
addressed the issues related to conceptual modeling of services, some technolog-
ical issues need further effort (e.g., high percentage of failure of services due to
syntactical errors and difficulties in adapting to service specification languages).

6 Conclusions

Our approach, realized as a recommender system derives the partial process
model using domain ontologies and user stories. The observations based on the
evaluation indicate that our approach not only helps in understanding the re-
quirements of service composition but also reduces the time and effort involved
in the development of service composition. Our evaluation is based only on the
case study and the empirical study. In our future work, we plan to extend the
recommender system by integrating a composition engine so as to retrieve de-
sired service compositions in a specific service specification language. Also, in



410 M. Bhat, C. Ye, and H.-A. Jacobsen

our approach, we have only considered data dependency constraint to identify
the execution order of the composed services. Inferring similar constraints and
non-functional requirements (e.g., QoS) on the services would further improve
the recommendations for service composition.

References

1. Yan, Y., Bode, J., McIver, W.: Between service science and service-oriented soft-
ware systems. In: Congress on Services Part II. SERVICES-2 (2008)

2. Xiao, H., Zou, Y., Ng, J., Nigul, L.: An approach for context-aware service discovery
and recommendation. In: ICWS (2010)

3. Srivastava, B., Koehler, J.: Web service composition - current solutions and open
problems. In: ICAPS Workshop on Planning for Web Services (2003)

4. Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering. In:
Proc. of Workshop on SWESE on the ISWC (2006)

5. Arabshian, K., Danielsen, P., Afroz, S.: Lexont: A semi-automatic ontology creation
tool for programmable web. In: AAAI Spring Symposium Series (2012)

6. The Programmable Web, http://www.programmableweb.com
7. Ajmeri, N., Vidhani, K., Bhat, M., Ghaisas, S.: An ontology-based method and tool

for cross-domain requirements visualization. In: Fourth Intl. Workshop on MARK
(2011)

8. Traverso, P., Pistore, M.: Automated composition of semantic web services into
executable processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

9. Cardoso, J., Sheth, A.: Semantic e-workflow composition. Intell. Inf. Syst. (2003)
10. Grigori, D., Corrales, J.C., Bouzeghoub, M., Gater, A.: Ranking BPEL processes

for service discovery. IEEE Trans. on Services Comput. (2010)
11. Liu, X., Zhao, Q., Huang, G., Mei, H., Teng, T.: Composing data-driven service

mashups with tag-based semantic annotations. In: ICWS (2011)
12. Hu, S., Muthusamy, V., Li, G., Jacobsen, H.-A.: Distributed automatic service

composition in large-scale systems. In: Second Intl. Conf. on Distributed Event-
Based Syst. (2008)

13. Pop, F.C., Cremene, M., Vaida, M., Riveill, M.: Natural language service compo-
sition with request disambiguation. In: Service-Oriented Comput. (2010)

14. Lim, J., Lee, K.H.: Constructing composite web services from natural language
requests. In: Web Semantics: Science, Services and Agents on the WWW (2010)

15. Introduction to Service Comput., https://sites.google.com/site/sc2012winter
16. Miller, G.A.: WordNet: A lexical database for English. Commun. of the ACM

(1995)
17. Sleator, D.D., Temperley, D.: Parsing English with a link grammar. arXiv preprint

cmp-lg/9508004 (1995)
18. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies.

Semantic Web (2011)
19. Allen, I.E., Seaman, C.A.: Likert scales and data analyses. Quality Progress (2007)

http://www.programmableweb.com
https://sites.google.com/site/sc2012winter

	Orchestrating SOA Using Requirement
Specifications and Domain Ontologies

	1 Introduction
	2 Related Work
	3 Case Study of Service Composition
	4 Approach
	5 Evaluation
	6 Conclusions
	References




