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Abstract. In this paper we consider the problem of work order (WO)
arrivals and time spent on work orders in service delivery to derive the
asymptotic behavior of a strategic outsourcing contract. We model both
the work order arrivals and time spent on the work orders, also known
as effort, as a collective stochastic process. We use the resulting model
to derive the probability that a contract will exceed the allocated budget
for resolving work orders, and also to calculate the staffing requirement
for resolving work orders.
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1 Introduction

Strategic outsourcing (SO) happens when one company outsources part of its
business to another company. A service provider and a service consumer nego-
tiate a contract that outlines different kinds of work that needs to be done in
terms of managing the consumer’s business. A strategic outsourcing company,
such as IBM, manages Information Technology (IT) infrastructure and applica-
tions for many different companies. A breach of contract happens when services
are not delivered as negotiated in the contract. Very often, even when services
are delivered that are in par with what is negotiated in the service level agree-
ments (SLAs), a service consumer can quickly become unhappy when things go
wrong. There are many reasons why a contract can become troubled or risky, in-
curring loss to a service provider. A service provider strives very hard to provide
services that will increase profitability, customer loyalty and customer value. An
SO contract often include SLAs that when violated, the service consumer can
impose penalty on the service provider.

A large service provider, such as IBM, have service delivery centers to manage
several customers. The management of IT of a customer is broken down into
different kinds of work orders (WOs). A work order can be as simple as a request
to change someone’s password to as complex as migrating 100 physical servers
(along with the applications) to a cloud environment. Very often complex WOs
are broken down into smaller WOs that are easy to track and manage. Different
WOs take different amount of time to resolve. A key question is then to ask is:
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How much time (or effort) is needed, and hence how many full time employees
(FTEs) are needed to resolve work orders, say in a month or a year?

In this article we develop a collective stochastic model (CSM) to determine
the total time or effort, and hence the number of FTEs, needed to resolve work
orders over certain time period such as a month or a year. The main contribution
of this paper is to apply the well established theory of collective stochastic pro-
cess model, and in particular ruin theory developed in actuarial science, to model
services delivery system [7]. Modeling services delivery system is a non-trivial
exercise, and developing mathematical models will allow future researchers to
optimize and gain deeper insights into the complex behavior of services delivery
system. To the best of our knowledge, ours is the first comprehensive attempt
to leverage concepts from actuarial science and ruin theory to model portions of
services delivery system, and in particular, to model effort, contract loss proba-
bility, and staffing requirements.

2 Collective Poisson Model

Work orders arrive one at a time and each work order is independent of each
other. Let {N(t), t ≥ 0} denote the number of work orders that was processed
before time t. We assume that N(0) = 0, and N(t) ≥ 0, ∀t ≥ 0. In other words,
there are no work orders before t = 0, and there cannot be negative number
of work orders. Therefore, N(t) is non-decreasing in t. For s < t, we also have
N(t)−N(s) equals the number of work orders in the time interval (s, t]. We can
now define the nth work order arrival as Tn = inf{t ≥ 0 : N(t) = n} and the
inter-arrival time of work order as An = Tn − Tn−1. The model described above
captures the basic set of assumptions needed to describe a work order arrivals.
It is important to keep in mind that N(n), Tn, and An are all random variables
and for n ≥ 0, they form a stochastic process.

A (homogeneous) Poisson process is a very simple stochastic process that has
two important properties: independence property and stationary property. The
independence property states that for ∀i, j, k, 0 ≤ ti ≤ tj ≤ tk, N(tj) − N(ti)
is independent of N(tk) −N(tj). In other words, the number of events in each
disjoint interval are independent of each other. The stationary property states
that ∀s, t, 0 ≤ s < t, h > 0, N(t)−N(s) and N(t+ h)−N(s+ t) have the same
distribution.

A homogeneous Poisson is too restrictive when we include the time it takes
to resolve a work order. We next assume that the time it takes to resolve a
work order, that is, the effort, itself is a random variable. We use Collective
Poisson Process to model the aforementioned situation. A stochastic process
{X(t), t ≥ 0} is called a collective Poisson process if it can be represented as
follows:

S(t) = C1 + C2 + . . . CN(t) =

N(t)∑

i=1

Ci, t ≥ 0 (1)
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where {N(t), t ≥ 0} is a Poisson process and C1, C2, . . . CN(t) are iid random
variables and are independent of {N(t), t ≥ 0}. Here Ci represents the effort or
time spent on a work order. The total effort during the period (0, t] is then given
by S(t).

3 Renewal Process Model

In this section we extend the Poisson process by assuming the inter-arrival times
for work order arrival using Renewal Process [8]. Let {An, n > 0} be a sequence
of random variable representing the inter-arrival times of work orders, and let
Tn+1 = Tn+An be the arrival times of work orders. We define a renewal process
for {N(t), t ≥ 0} so that

N(t) = max{i ≥ 0 : Ti ≤ t} (2)

= min{i ≥ 0 : Ti+1 > t} (3)

To ensure that the work orders do not all collapse at Ai = 0, we also assume
that P (Ai = 0) < 1. Once again we assume both the independence and station-
ary properties for work order arrivals. It can easily be shown that N(t) as defined
by Equation 2 cannot be infinite for some finite time t [8]. In renewal process the
inter-arrival times An is distributed with a common distribution function FA,
and FA(0) = 0 and Tn = 0. The points {Tn} are called the renewal times. Notice
that the function FA is a Poisson distribution function for Poisson process. Let
us assume that the distribution function FA has mean μ, one can then show the
following result:

lim
t→∞

N(t)

t
=

{
μ−1, if μ < ∞
0, if μ = ∞ (4)

Recall that with collective Poisson process it was simple to derive a model
for aggregated work order (see Equation 1). On the other hand it is almost
impossible to determine the distribution FA for renewal process {N(t), t ≥ 0}. So
we use the central limit theorem to get an approximate work order distribution.
Let 0 < V ar[Ai] < ∞ and μ = E[Ai], then ∀x ∈ �

lim
t→∞P

(
N(t)− tμ−1

√
ct

)
= Φ(x) (5)

where c = μ−3V ar[Ai], and Φ(x) is the standard normal distribution function.
The above results allows us to look for E[N(t)] for which we can use renewal
function. We then define the renewal function as the average number of renewals
in the interval (0, t] as M(t) = E[N(t)] + 1.

Let F (k) denote the k-fold convolution of FA, which is the underlying dis-
tributions of the renewal process {N(t)}. Since {N(t) ≥ k} = {Ak ≤ t} for



Effort Analysis Using Collective Stochastic Model 505

k = 1, 2, . . . we can derive the following result relating the mean value and the
distribution.

M(t) = 1 +

∞∑

k=1

P (N(t) ≥ k)

= 1 +
∞∑

k=1

P (Ak ≤ t)

=

∞∑

k=0

F
(k)
A (t) (6)

The mean or the expected number of renewals M(t) is a non-decreasing and
continuous on � and it uniquely determines the distribution FA. The renewal
function for Poisson process is λt+1. We can now extend the collective Poisson
process model (Equation 1) to collective renewal process model by assuming
N(t) is a renewal process. In actuarial science, the collective renewal process is
often called as the Sparre Anderson Model [9].

4 Effort Size Distribution

In this section we will address the random nature of work order effort size.
Recall that when a system administrator (SA) works on a work order, he or
she will spend some amount time to resolve the issue related to the work order.
The amount of time spent on a work order, called the effort, is itself a random
variable. The effort size depends on various factors including the complexity of
the work order, SA experience, etc. To simplify the presentation we will assume
effort to include all of these marginal costs, and use the term effort size to be
the representative random variable.

We will focus on two kinds of distributions for effort size. First one is the Light-
Tailed Distribution (LTD) and the second one is the Heavy-Tailed Distribution
(HTD). The tail of a distribution F (x) is defined as F̄ (x) = 1 − F (x), which
is nothing more than the upper part of the distribution. It is the tail of the
distributions that dictates that governs both the magnitude and the frequency
of extreme events. The light-tail distribution has more “mild” form of extreme
events, whereas the heavy-tail distribution has more “heavier” form of extreme
events.

A distribution F (x) is called a light-tailed distribution if there exits constants
λ > 0, a > 0 so that F̄ (x) ≤ ae−λx. Light-tailed distribution have “nice” prop-
erties that do not put service delivery in greater risk of contract loss when claim
size exceeds the budgeted. Exponential distribution with λ > 0, Gamma distri-
bution with α > 0, β > 0, and Weibull distribution with β > 0, τ ≥ 1 are some
examples of light-tailed distribution [8].

A distribution F (x) is called a heavy-tailed distribution if there exits con-
stants λ > 0, a > 0 so that F̄ (x) > ae−λx. We can also express heavy-tailed (and
hence light-tailed) distributions using properties of moment generating functions.



506 V.C. Sreedhar

A distribution function F (x) is a heavy-tailed distribution if its moment gen-
erating function Mx(t) = E[etx] is infinite ∀t > 0. Pareto distribution with
α > 0, λ > 0 and Weibull distribution with β > 0, 0 < τ1 are examples of heavy-
tailed distribution. Even though claim size of work orders cannot be infinite, it
is possible for claim sizes to exceed the budget size, which can eventually lead
to troubled contracts.

5 Contract Loss Probabilities

In the previous two sections we developed models for WO arrivals and WO effort.
In this section we will combine the two models to calculate the probability that a
contract will exceed the allocated budget for resolving work orders.1 The Contract
Loss Probability (CLP) gives a good indication of the health of a contract. This
quantity can be used for staffing decision, resource allocation, staff training, and
work order dispatch optimization.

In a typical SO contract during engagement phase, the customer environment
is “discovered” and “analyzed” for sizing the cost of the contract. Various factors,
such as the number of servers, types of servers, number of historical tickets that
were generated and resolved, management process, etc., are used to determine
the cost of the contract. A typical cost model include unit price such as cost
per server per month. The way these unit prices are computed is more of an art
than science. Productivity factors, market competition, economy of scale and
other external factors are also incorporated into the pricing or cost model. Once
a contract is signed, service provider allocate quarterly or monthly budget for
different services of the contract and when operational cost exceeds the allocated
budget, the contract is considered to be “troubled” and management systems
are put in place to track the services.

Let us assume that each client account has a periodic (say, quarterly) budget
q(t) = rt, which is the budget rate, and so q(t) is deterministic. We can then
define the following contract loss process: Z(t) = a+ rt− S(t), t ≥ 0, where a is
some initial base budget allocated for resolving work orders. We can see that if
Z(t) < 0 for some t ≥ 0, then we have a contract loss for that time period, that
is, effort spent exceeds the allocated budget for resolving work orders. Assuming
collective Poisson process, a minimum requirement in determining the contract
budget rate r is then given by r > λE[S], where λ is the Poisson WO arrival
rate. The above condition is called the net profit condition. A safer condition
would be to include a safety factor ρ, so that c > (1 + ρ)λE[S].

We can define the contract loss time as τ0 = inf{t ≥ 0 : S(t) > 0}, and
the contract loss probability as φ(z) = P (τ0 < ∞|S(0) = z) = Pz(τ0 < ∞). If
we assume that X(t) is a collective Poisson process, we can then calculate the
contract loss probability φ(z) as a closed form solution by focusing on the tail

1 It is important to keep in mind that a contract will allocate budget for different
activities, and resolving work order is one of the major activities of a contract. In
this article we will just focus on budget for resolving work orders.
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end of the claim size distribution. Let ψ(t) = 1 − φ(t) denote the tail of the
contract loss probability, then

ψ(t) =
θ

1 + θ

∞∑

n

1

(1 + θ)n
F ∗(n)(t), t ≥ 0 (7)

where F ∗(n) is the n-fold convolution of the distribution function F (x), and θ =
( r
λμ −1), μ = E(Ci), r is the budget rate, and λ is the Poisson arrival rate of the

work orders. Now when the effort sizes are (light-tailed) exponentially distributed
P (Ci > c) = e−c/μ, we can derive the following contract loss probability:

ψ(t) =
1

1 + θ
exp

(
− θ

(1 + θ)μ
t

)
, t ≥ 0 (8)

Notice that we made two assumptions when deriving the above contract loss
probability: (1) work order arrivals follows a Poisson process, and (2) effort or
time spent on work orders follows (light-tailed) exponential distribution.

6 Pricing and Staffing Requirements

A key problem in service delivery is determining the staffing requirement for
handling work orders. We make a simplifying assumption that a staff or a sys-
tem administrator can work one work order at a time, with no multi-tasking
or context switching. Let Π(S) ∈ � denote the budget, and hence staffing re-
quirement, to handle work order effort S. We can then identify the following
properties for calculating the staffing budget for an account:

1. Π(S) ≥ E[S]. In this case we have nonnegative effort loading.

2. If S1 and S2 are independent, then Π(S1 + S2) = Π(S1) +Π(S2)

3. Π(aS) = aΠ(S), and Π(S + a) = Π(S) + a.

4. Let M be the finite maximum effort, then Π(S) ≤ M .

There are several methods for calculating the staffing budget. The Expected
Value principle can be stated as follows [6]: Π(S) = (1 + a)E[S], where a is
a safety loading factor. The expected value budget is very simple, but it does
not take into account the variability in the effort. We can extend this model to
include variability as follows: Π(S) = E[S] + aV ar[S]

One issue with the above Variance principle is that different delivery center
may have custom staffing budget, depending on local labor policy, pay scale,
monetary values, etc. To handle such changes to loading factor, we can use the

following modified Variance principle: Π = E[S] + aV ar[S]
E[S]
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7 Discussion and Related Work

Our focus in this paper is not to develop a new compound stochastic process
model, but to apply concepts from ruin theory in actuarial science for modeling
IT service delivery system, and in particular to model “effort” needed to manage
a customer IT environment, and to understand under what condition a contract
can become troubled. To the best of our knowledge, ours is the first work that
models IT service delivery leveraging ruin theory from actuarial science. A lot
more work is needed to fully model IT services delivery system. Please refer to
the technical report that explains in details on modeling effort, contract loss
probability, and staffing requirements, beyond what is explained in the current
article [10].

IT service delivery is a complex process with many intricate processes, man-
agement systems, people’s behavior, and tool sets. Diao et al. proposed a mod-
eling framework for analyzing interactions among key factors that contribute to
the decision making of staffing skill level requirements [3,4]. The authors develop
a simulation approach based on constructed and real data taking into considera-
tion factors such as scheduling constraints, service level constraints, and available
skill sets. The area of optimal staffing with skill based routing is a mature area.
Analytical methods are typically complex and do not capture full generality of
real IT service delivery systems. The main focus of our paper is not to model the
full generality of IT service delivery system. We focus on developing a compound
stochastic process model to model effort needed to handle service requests. We
focus on understanding the underlying stochastic model for when a contract can
become “troubled”.

Staffing problem based on queuing theory is old problem and several solutions
have been proposed to model in the past. The staffing problem can be simply
stated as the number of staff members or agents required to handle work orders,
such as calls in a call center, as a function of time. Skill based routing problem is
an extension of staffing problem where skills set are incorporated to determine
which staff skill is needed as a function of time [5]. Staffing problem are typically
modeled a queuing problem rather than as a compound stochastic process. Coban
models staffing problem in a service center as a multi-server queuing problem
with preemptive-resume priority service discipline and uses Markov chain to
model [2].

Buco et al describe a method where in they instrument a management system
to capture time and effort when SAs work on work orders [1]. They collect this
information from multiple SAs working on different kinds of WOs. The collected
data is a sample of the universe of IT service environment. One can use the
sampled data to estimate the staffing requirement of a contract.

8 Conclusion

IT services delivery system is a complex system. There has been very little work
done to model such a system, mostly due to lack of mathematical maturity in
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this field. Fortunately, actuarial science and ruin theory provides a foundational
mathematics that can be applied to modeling IT services delivery system. We
have made several simplifying assumptions such as WOs are independent of each
others, all WOs are the same, etc. We are currently refining the mathematics
to relax some of these simplifying assumptions. The resulting analytical model
will become even more complex, and so can use a combination of estimators and
Monte Carlo simulation for understanding the asymptotic behavior of a contract.
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