Single Source of Truth (SSOT)
for Service Oriented Architecture (SOA)

Candy Pang and Duane Szafron

Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
{cspang,dszafron}@ualberta.ca

Abstract. Enterprises have embraced Service Oriented Architecture (SOA) for
years. With SOA, each business entity should be the Single Source of Truth
(SSOT) of its data, and offer data services to other entities. Instead of sharing
data through services, many business entities still share data through data repli-
cation. Replicating data causes inconsistencies and interoperability challenges.
Even when there is a single authoritative source, that resolves inconsistencies,
the data copies may end up being out-of-sync and cause errors. This paper de-
scribes how to use a SSOT service to eliminate data replication, enforce data
autonomy, advocate data self-containment, and enhance data maintenance. Both
mutable and immutable SSOT relationships (mappings) are considered. This
paper describes the challenges, solutions, interactions and abstractions between
the SSOT data service providers and the loosely coupled data consumers. It also
assesses the performance and future usage of a SSOT service.

Keywords: Single Source of Truth, Service Composition, Service Oriented
Architecture (SOA), Software Design Concept, Software Engineering.

1 Introduction

Before embracing the Service Oriented Architecture (SOA), enterprises or business
entities used to share data through data replication. Replicating data across multiple
systems gives rise to inconsistencies and interoperability challenges. In some cases,
one of the systems is treated as the “authoritative” source or the Single Source of
Truth (SSOT). The authoritative source’s data is replicated to the clients’ databases,
resulting in data layer synchronization challenges. Independent client’s data transfor-
mation or modification can result in data discrepancies that require manual interven-
tion. A better solution is to hide the data layer from the clients in the SOA.

In the SOA, a SSOT should associate with clients through the service layer, instead
of the data layer. This would alleviate data replication and the related problems. The
authoritative source identified as the SSOT should provide data services for the
clients. In this approach, clients maintain mappings to the SSOT data, but do not rep-
licate the SSOT data. Unfortunately, many enterprises have yet to overhaul data layer
replication into a SSOT service. Lack of experience in SSOT service implementation
may have hindered enterprises from the migration.

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 575-589, 2014.
© Springer-Verlag Berlin Heidelberg 2014

576 C. Pang and D. Szafron

This paper describes a SSOT service model for two common data sharing scena-
rios: mutable and immutable data sources. We use two motivating examples to illu-
strate the variants: (a) the management of Postal Codes (PC) and (b) the management
of Electronic Patient Records (EPR). The proposed SSOT service model is useful for
any business entity that maintains full ownership of its data, and does not want the
clients to duplicate its data, but allows data access by restricted queries. The value of
the model will be illustrated by the PC and EPR examples.

Most business applications use addresses. In Canada, Canada Post is the single au-
thoritative agency that manages PCs for mail-delivery addresses. Each address should
have exactly one PC, while each PC covers an area with multiple addresses. Most
business applications collect address information from their customers, and store cus-
tomers’ addresses with PCs in their local databases. Periodically, business applica-
tions also replicate Canada Post’s PCs to their local databases for data-validation
purpose. For example, an application using billing addresses, which require PCs, may
have a Billing_Address table and a Postal_Code table as shown in Fig. 1(a). The
Postal_Code table contains all valid PCs periodically replicated from Canada Post.
Before adding a new address to the Billing_Address table, the application checks the
validity of the provided PC, i.e., whether the PC exists in the Postal_Code table. If so,
the application will add the new address to the Billing_Address table. This process
can only validate the existence of the PC, but it cannot validate whether the PC is
correct for that address. There is a mapping between the PC and the billing address.

Postal_Code Billing_Address Postal Code Billing_Address
PC || AID | Streeti | . | City PC PC . AID | .. PrC
AIB 203 1 1234 Edm | AIB 2C3 AlB 203 AIB2C3 1 AIB 203 1+=AZB 2C3
AIB 2C4 2 | 3456 Edm | AIB 2C4 a7 2 AIB 20412
AIB 2C5 3 | 7890 Edm | AIB 2C5 AIB 205 4= A1B 2C5 3 AIB 20542
AIB 2C8
(a) Billing address tables (b) PCs update, delete and split
/\ ‘ Create Customer Record Mutable 50T ‘ Local DB ‘
IJS! I'I'I?I' :
Customer data E !
- ; queryByCriteria{Customer data)
iqueryByCriteria{Customer data{ i i
[S50T data
SSOT data [K= mmm g m e e
------------------ | T |
createRecord(Customer data] . ‘:a business process i
] e | :
(c) Create record with mutable SSOT (d) Retrieve record with mutable SSOT

Fig. 1. The Postal Codes Use Case

A mapping that changes over time is called a mutable mapping, and a mapping that
does not change is immutable. Canada Post changes PCs from time to time. PCs can
be inserted, updated, deleted, split or merged. The application needs to synchronize
the Postal_Code table with Canada Post, and, if necessary, to correct the PCs in the

Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 577

Billing_Address table. Since the PC that is mapped to a billing address can change
over time, the mapping between PC and billing address is an example of a mutable
mapping. Mutable mappings are often subject to synchronization errors. For example,
Canada Post only provides PC changes to subscribers monthly. Therefore, the sub-
scribers’ Postal_Code tables are out-of-sync with Canada Post most of the time. As
shown in Fig. 1(b), when a PC is updated (from A1B 2C3 to A2B 2C3), the corres-
ponding mappings in the Billing_Address table can be updated. However, when a PC
is deleted (from A1B 2C4 to none) or split (from A1B 2C5 to A1B 2C5 and AIB
2C8), there is no simple solution to correct the mappings in the Billing_Address table,
by using the updated PC list.

As a second example, let us consider a regional Electronic Patient Record (EPR)
system that manages patients’ health numbers (PHNSs), names and contacts. Each
patient in the region receives services from multiple healthcare providers, with differ-
ent specialties. Each healthcare provider obtains patient information directly from the
patient during the patient’s visit, containing information included in the EPR. Then,
each provider independently stores the patient’s information in its local database. In
this model, a provider-specific patient record may be inconsistent with the regional
EPR. In principle, each provider-specific patient record could be mapped to a corres-
ponding EPR in the regional authoritative system. In this case, the mapping between
an EPR and a provider-specific record is immutable. The mapping is immutable de-
spite the fact that patient’s data may change. For example, when a patient changes
his/her name, the patient’s EPR will be updated, but the patient’s EPR is still mapped
to the same provider-specific record. Therefore, the mapping is immutable.

The SOA paradigm can alleviate data synchronization issues. Clients using data
that already exists in an authoritative source will not replicate the authoritative data in
their local databases. Instead, the authoritative source acts as a SSOT service that
provides clients the authoritative data. In the examples above, Canada Post serves as
the SSOT service for PCs and a regional health authority provides the SSOT service
for EPRs. Clients access PCs and EPRs by invoking SSOT services, without replicat-
ing SSOT data in their local databases. Therefore, clients do not need to manage and
synchronize data with the SSOT. The SSOT can also shield its autonomy from the
clients. We advocate the SSOT service model over data-replication.

This paper is structured as follows. Section 2 and 3 illustrate the challenges and so-
lutions associated with the mutable and the immutable SSOT by the PC and the EPR
use cases respectively. Section 4 evaluates the performance of the SSOT service.
Section 5 describes the related works. Section 6 recommends future works, and Sec-
tion 7 concludes the paper by enumerating SSOT’s benefits.

2 Mutable SSOT Service

A SSOT service that manages mutable mappings is called a mutable SSOT service. In
this case, the mapping between a SSOT record (each individual PC in our example)
and a client application record (each billing address in our example) can change over
time. Clients need to invoke the mutable SSOT service with query criteria. Therefore,
a mutable SSOT service supports at least the query-by-criteria operation.

578 C. Pang and D. Szafron

For example, in the PC use case, Canada Post maintains a mutable PC SSOT ser-
vice that provides a single web service operation, PC-query. The PC-query operation
takes PC query criteria as input. Clients may specify Street Number, Number Suffix,
Unit/Suite Apartment, Street Name, Street Type, Street Direction, City, and/or Prov-
ince as criteria. The PC-query operation returns a set of PCs that match the criteria.

This PC SSOT service can replace data replication. For example, in Fig. 1(a), the
PC column in the Billing_Address table and the Postal_Code table are replicated data
that can be dropped in favor of invoking the PC-query operation provided by the mut-
able PC SSOT service. The PC query criteria will come from the remaining columns
(e.g. Street#, City) in the Billing_Address table. When the application needs the PC of
a billing address, it will use the address data in the Billing_Address table as query
criteria to retrieve the PC from the PC SSOT.

The rest of this section will use the PC use case to illustrate how clients can use a
mutable SSOT service to replace data replication.

2.1 Client-Record Creation

Fig. 1(c) depicts how an application can use mutable SSOT service for data validation
during record creation. In the PC use case, when the application receives a new billing
address from a customer, the application queries the PC SSOT using the customer
address. If the PC SSOT returns a single valid PC, then the address is valid. The ap-
plication proceeds to create a new Billing_Address record for the customer.

If the PC SSOT returns more than one PC, then the customer address is not defini-
tive. For example, if the customer address contains only the city field, then the PC
SSOT will return all the PCs for the city. In principle, the application should not ac-
cept a non-definitive address as a billing address. Therefore, the application would
seek additional address details from the customer. Similarly, if the PC SSOT returns
no PC for the customer address, the application should alert the customer that the
address is invalid and request the user to take remedial action.

In contrast, the data-replication model may allow non-definitive or invalid billing
addresses in the application’s database. Using a mutable SSOT service not only eli-
minates data replication, but also enhances data quality.

Different clients may have different processes for the SSOT response. The applica-
tion in the PC use case expects a single valid PC from the response. Other applica-
tions may iterate the response records to select the most desired result. To support
different clients’ processes, the mutable SSOT query-by-criteria operation may return
additional information. For example, the PC-query operation may return other address
fields (Street Number, Unit/Suite Apartment, Street Name, etc.) in addition to the PC.
Clients can use the additional address fields to filter the response records.

2.2 Client-Record Retrieval

Since the SSOT data is excluded from the clients’ local databases, each client needs to
combine its local data with the SSOT data to compose the complete data records. The
client data retrieval process is depicted in Fig. 1(d).

Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 579

In the PC use case, the application first retrieves a Billing_Address record from its
local database, then uses the local address data as query criteria to invoke the PC-
query operation, and retrieve the up-to-date PC from the PC SSOT. If the PC of the
billing address has changed since the last retrieval, then the PC SSOT will return a
different PC from the last retrieval, but it will be the correct PC.

3 Immutable SSOT Service

A SSOT service that manages an immutable mapping is called an immutable SSOT
service. The mapping cannot change over time. Each record in the client application
has a permanent static relationship with a SSOT record. To establish this mapping, a
client record is associated with a SSOT record using a unique permanent single source
of truth identifier (SSOT-ID). A SSOT-ID is conceptually equivalent to the resource
identifier in the Resource Description Framework (RDF) [1] and the unique identifier
in the Representational State Transfer (REST) [2] architecture. Each record represents
a resource in the SSOT. We will use the term resource instead of record since each
SSOT resource may contain multiple child-records. For example, an EPR may contain
multiple names, addresses and phone numbers as child-records. Each resource has a
unique permanent identifier called the SSOT-ID. Clients use the query-by-SSOT-ID
operation to retrieve resource details, which include the child-records.

The rest of this section will illustrate the immutable SSOT service through the EPR
use case. Assume that a clinic application and a pharmacy application both need pa-
tients’ health numbers (PHNs), names and contacts, along with their own provider-
specific data. Traditionally, in the data-replication model, the clinic application would
have a Clinic_Patient table and a Patient_Visit table, and the pharmacy application
would have a Pharmacy_Patient table and a Drug_Dispensing table, as shown in Fig.
2(a). The clinic application assigns a county to each patient using the patient’s home
address, while the pharmacy application does not. In the data-replication model, the
PHNS5, names and contacts located in the clinic’s and pharmacy’s databases may have
errors or be inconsistent with the authoritative EPR system. When patients move,
patients must notify the EPR authority, the clinic and the pharmacy individually.

Actually, PHNs, names and contacts are readily available in the regional EPR sys-
tem. An immutable EPR SSOT service can eliminate data replication from the clinic
and the pharmacy databases. After eliminating the replicated EPR data, Fig. 2(b) shows
the new clinic application and pharmacy application tables. In the new Clinic_Patient
and Pharmacy_Patient tables, the EPR columns are replaced by the SSOT-ID column.
Unlike the PC use case, immutable SSOT clients do not routinely use the query-by-
criteria operation to obtain SSOT data. Instead, clients can invoke the query-by-SSOT-
ID operation to retrieve SSOT data from the immutable SSOT service.

Each immutable SSOT service should provide at least four operations: (a) query-
by-criteria, (b) query-by-SSOT-ID, (c) update subscription, and (d) deletion subscrip-
tion. The potential risks of using the immutable SSOT service query-by-criteria op-
eration are illustrated in Section 3.1. The rest of the sub-sections describe different
usages of the immutable SSOT operations.

580

C. Pang and D. Szafron

Clinic_Patient

(1D PR s s Couny ||
;| Patient_Visit

[vip [P> | visitTime | . |
| 1
P —

Pharmacy Patient

[PID_EPAN | Names | Cona) .|

Drug_Dispensing
[0 | PiD [DIN 9
N

A

(a) Providers’ table in replication model

31

EPR SSOT Query Criteria:
e Lastname = ‘PANG%’
* Phone#="7807654322"

EPR SSOT Query Response Object:
SsotID = ‘DY XMSFK9SJ2’
Lastname = ‘PANG”

Firstname = ‘CANDY”

Phone# = *7807654321°

Health# = ‘###45-3623°

Address = ‘4523 ##k

Birthday = ‘MM-09-YYYY”

(c) Partial response example

r Rgcon

Clinic_Patient
[P | SSOTID | County | ... |
R [[]
— Patient_Visit
[viD [PID [visit Time [. |

11

-

Pharmacy_Patient
PID |SSOTID | ... |
I

Drug_Dispensing
[vio [0 [on] |
L[[T |

EPR_Patient

SSOT|PHN
1D

Names|Contacts|

(b) Providers’ table in immutable SSOT model

ot s

jm@

H
1
1
1
1
1
1
[

getCustomerDatal)
Customer data
S g
queryByCriterialCustomer data)
t
Resource correlation set
R sl
selectResource(Resource correlation set)
550710
St
queryBySsotiD{Ssenn) T
S50T data H
e s T
createRecord{CustomerData, SsotlD) 1 E'
L | H
' ' ' '

(d) Create record with immutable SSOT

Ae=

Local D@
. | 5507 l Client | l Local DB |
i] i

M : : ' 5
getCutomerDataf) : ' subseribeUpdate(} |
Customer data : [!
{ 1
queryByCriterialCustomer data) i updateResource{SsotiD) !
Resource correlationset | i updatelSsotiD) I

sebectResource|Resource correlation set] H hasReference{SsotiD)

Ss0tD 1 True
[mmmmmm s mm e L 1 queryBySsotiD(Ssotip) | [T o0
50tID[$50t10) '
queryBySsotiD{SsotiD) T : 5507 data
5507 data [1 ettt
: — : EetlocalData(SsotiD)
getbocallata{SsatiD) Local data
Local data [N
¥ Fossssmm——— 1 ===]
I '] ! T3 business process

2+ business process P | 1 ' == '
= | : | | |
i ' ! o i
' i ' '

(e) Retrieve record with immutable SSOT

(f) Immutable SSOT update subscription

Fig. 2. The Electronic Health Record Use Case

Query-by-Criteria

An immutable SSOT service could provide the same query-by-criteria operation as a
mutable SSOT service. Clients could query the SSOT service by criteria and receive a

Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 581

correlated set of results matching the criteria. However, in some situations, the im-
mutable SSOT query-by-criteria operation may sustain a privacy violation risk. In the
EPR use case, if the query-by-criteria operation returns all resources matching any
given set of criteria, then any client can browse the EPR data, which violate patients’
privacy. For example, a client may specify Firstname="JOHN’ as the query criteria
for the EPR SSOT query-by-criteria operation. In response, the EPR SSOT returns all
patients with first name equals ‘JOHN’. The large response set may violate many
patients’ privacy, since many of the set may not be patients of the querying facility.

To avoid browsing, the query-by-criteria operation could specify a maximum
number of returned records (i.e. query-limit). If the response set is larger than the
query-limit, the service would return an error. At which point the client needs to re-
fine the query criteria and queries again.

A safer query-by-criteria operation may also demand more than one query criterion
to avoid brute force hacking. For example, the EPR SSOT query-by-criteria operation
could reject single criterion queries to avoid PHN cracking by querying with random-
ly generated PHN’s until a valid resource is returned.

For further privacy protection, the query-by-criteria response set can be filtered to
contain partial data. The partial data must include the complete SSOT-ID and suffi-
cient information to identify a SSOT resource. Fig. 2(c) shows a set of query criteria
for the EPR SSOT query-by-criteria operation, and one partial response record. The
partial record includes the SSOT-ID and only part of the PHN, address and birthday.
Using the partial record, a client should be able to determine whether the EPR maps
to the targeted patient. Once a partial record is selected, the client can use the SSOT-
ID to retrieve the resource details using the query-by-SSOT-ID operation.

3.2 Query-by-SSOT-ID

If the query-by-criteria operation returns only partial data for privacy protection, the
immutable SSOT service must provide a query-by-SSOT-ID operation, which takes a
SSOT-ID as input. In response to a query-by-SSOT-ID request, the immutable SSOT
provides details of the resource corresponding to the provided SSOT-ID, but only the
details that the client is authorized to see. This allows the SSOT service to distinguish
between client access permissions, providing different information to different facili-
ties, such as pharmacies, clinics and acute-care facilities.

To protect data privacy, the immutable SSOT should include a proper auditing me-
chanism to detect, identify and stop improper browsing behavior or unlawful use of
data. In the EPR use case, if a client continually invokes the EPR SSOT query-by-
SSOT-ID operation with randomly generated or guessed SSOT-IDs, the EPR SSOT
auditing mechanism should detect and deter the client.

Each SSOT-ID is effectively a foreign key to a remote SSOT resource. Since the
SSOT and clients are loosely coupled, the foreign key constraints in the client data
cannot be enforced at the SSOT. An alternate foreign key constraint handling me-
chanism will be discussed in the later sub-sections.

582 C. Pang and D. Szafron

33 Client-record Creation

Fig. 2(d) depicts the role of an immutable SSOT service during client record creation.
Using the clinic application in the EPR use case as an illustration, when a patient first
visits the clinic, the clinic application needs the patient’s SSOT-ID. The patient pro-
vides personal data to the clinic. The clinic application invokes the EPR SSOT query-
by-criteria operation with the patient’s data. From the returned set of partial EPRs, the
clinic and patient together identify the correct EPR. With the SSOT-ID from the se-
lected partial EPR, the clinic application invokes the query-by-SSOT-ID operation to
retrieve the portion of the patient’s EPR that is permitted to the clinic. The clinic ap-
plication then assigns a county to the patient according to the patient’s home address
in the EPR. With the patient’s SSOT-ID and assigned county, the clinic application
adds a new record to the Clinic_Patient table for the patient. Similarly, when a patient
first visits the pharmacy, the pharmacy application uses the EPR SSOT query-by-
criteria operation to retrieve a partial EPR of the patient. The pharmacy application
gets the patient’s SSOT-ID from the partial EPR. Since the pharmacy data does not
depend on data in the EPR, the pharmacy application can add a new record to the
Pharmacy_Patient table for the patient with the patient’s SSOT-ID.

3.4 Client-record Retrieval

As with the mutable SSOT service, the immutable SSOT clients need to combine the
SSOT data with the local data to compose complete data records. The data retrieval
process is depicted in Fig. 2(e).

In the EPR use case, when a patient revisits the clinic or the pharmacy, the clinic
and pharmacy applications use the EPR SSOT query-by-criteria operation to retrieve
the patient’s SSOT-ID. With the SSOT-ID, the applications fetch the permission-
filtered EPR with query-by-SSOT-ID. Using the SSOT-ID again, the applications
retrieve patient’s local data from the local databases, i.e. the Clinic_Patient, Pa-
tient_Visit, Pharmacy_Patient and Drug_Dispensing tables in Fig. 2(b). Finally, the
applications combine the EPR and local data to instantiate a complete patient record.

3.5 Constructing SSOT-IDs

Since the SSOT and the clients are loosely coupled, the clients rely on the SSOT-IDs
to be unique and permanent. Therefore, it is important to select a proper data type,
length, format and representation for the SSOT-ID. For example, the Canadian Social
Insurance Number (SIN) has 9 digits. The first digit of the SIN represents the owner’s
residential status. Similarly, a SSOT-ID can have embedded representations. The
design of the SSOT-ID deserves extraordinary attention to ensure uniqueness and
permanency. For example, the SIN is unique, but not permanent. When an owner’s
residential status changes, a new SIN may be assigned. Therefore, SIN is not a good
SSOT-ID candidate. In addition, public data items are not good SSOT-ID candidates.
An SSOT-ID does not need to be a single value. It can also be a composite value, as
long as it is unique and permanent. Part of the SSOT-ID can be a fixed-length sequential

Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 583

number, to ensure its uniqueness. Since the SSOT-ID will be shared between systems, it
is recommended that the SSOT-ID take a different format from the SSOT database
standard, so that the SSOT database standard will not be exposed.

Clients store the SSOT-IDs in their local databases. The SSOT-IDs are guaranteed
to be unique and permanent. Therefore, clients may consider using the SSOT-IDs as
the primary keys in their local databases. If the SSOT-ID data type and size do not
match the local database standard, we recommend that the local database create its
own local primary key, and use the SSOT-ID as a foreign key. In the EPR use case,
the Clinic_Patient table could have used the EPR SSOT-ID as the primary key. Since
the primary key of the Clinic_Patient table will be a foreign key of the Patient_Visit
table, the clinic application created its local primary key (PID in the Clinic_Patient
table), to preserve data type consistency between tables.

The clients should also consider whether the sequence of the primary keys matter
to the local business logic. In the EPR use case, it is likely that a portion of the EPR
SSOT-ID is a sequential number. The clinic serves only a relatively small number of
patients in the regional EPR system. Therefore, only a small number of the EPR
SSOT-IDs will be imported into the clinic’s database. If the clinic application uses the
EPR SSOT-IDs as its primary key, then the primary key will have a lot of gaps in its
sequence. In addition, the order of the primary keys will not represent the order in
which patients’ records are added to the clinic’s database.

3.6 Update Subscription

Data updates for an immutable SSOT may affect clients. In the EPR use case, the
clinic application assigns a patient’s county based on a patient’s home address. When
a patient moves, the clinic application may assign a different county for the patient. In
this case, data updates in the EPR SSOT affect the clinic application. On the other
hand, none of the pharmacy application local data depends on the EPR SSOT data.
Therefore, data updates in the EPR SSOT do not affect the pharmacy application.

The SSOT cannot determine how data updates will affect the loosely coupled
clients. Clients are responsible for managing their own data. Therefore, the immutable
SSOT must provide an update subscription operation. If a client is concerned about
data updates in the SSOT, then the client is responsible for subscribing to the SSOT
update service through the update subscription operation.

After a SSOT resource is updated, the SSOT will send an update message with the
SSOT-ID of the updated resource to the subscribers. When the subscriber receives the
update message, the subscriber can check whether the SSOT-ID is referenced locally.
If not, the subscriber can ignore the update message. If the SSOT-ID is referenced
locally, then the subscriber can fetch the resource details using the query-by-SSOT-ID
operation. Based on the latest resource details, the subscriber may update its local data
accordingly. The update subscription process is depicted in Fig. 2(f).

In the EPR use case, the clinic application would subscribe to the EPR SSOT up-
date service. When an EPR is updated, the clinic application will receive an update
message with the SSOT-ID of the updated EPR. The clinic application determines
whether the SSOT-ID is referenced locally. If so, it retrieves the patient details from

584 C. Pang and D. Szafron

the EPR SSOT using the query-by-SSOT-ID operation. Then the clinic application
can determine whether the patient’s latest home address matches the clinic-assigned
county in the local database. If not, it updates the local database accordingly. On the
other hand, the pharmacy application is not affected by EPR updates. Therefore, the
pharmacy application would not subscribe to the EPR SSOT update service. Notice
that the pharmacy still relies on the SSOT for the latest EPR patient information.
However, it does not subscribe for updates since it does not need to update its own
local database, when EPR data changes.

3.7 Deletion Subscription

Just like any other data, the SSOT data can be deleted. Since the SSOT is loosely
coupled with its clients, clients cannot put a foreign key constraint on the SSOT to
restrain the SSOT from deleting data. Instead, the SSOT provides a deletion service.
When a resource is deleted from the SSOT, the SSOT will send a deletion message to
the subscriber. Clients need to determine whether they should subscribe to the SSOT
deletion service using the deletion subscription operation.

In the EPR use case, deleting a patient from the EPR SSOT may create broken
links in the Clinic_Patient and Pharmacy_Patient tables. Therefore, the clinic and
pharmacy applications should both subscribe to the EPR SSOT deletion service.

If the SSOT physically deletes the resource, then the deletion message should con-
tain the last version of the resource before the deletion and the reason for deletion.
Clients can use this information to determine how to handle the deleted data.

In the EPR use case, a patient may move from the region and be deleted from the
EPR SSOT. The clinic and pharmacy applications will receive a deletion message
from the EPR SSOT with the last version of the patient’s EPR. The applications may
store or ignore the EPR in the deletion message. Depending on the reason for dele-
tion, the applications can delete, archive or mark the patient’s local record inactive.

Alternatively, the SSOT may logically delete a resource. In this situation, the dele-
tion message will only contain the resource SSOT-ID and the reason for deletion. The
client can still fetch the logically deleted resource using the query-by-SSOT-ID opera-
tions. The query-by-SSOT-ID operation would return the corresponding resource but
flagged as deleted. The query-by-criteria operation could exclude logically deleted
resources from the response correlated set, or provide them and flag them as deleted.

In the EPR use case, if patients are only logically deleted from the EPR SSOT, the
clinic and pharmacy applications may mark the patient inactive in their local databas-
es. If EPR records are only logically deleted, then clients should always check the
deleted flags on the EPR, since logically deleted records may later be undeleted.

3.8 Additional Operations

An SSOT creation subscription operation is not recommended. If clients can sub-
scribe to SSOT data creation, then clients can replicate the whole SSOT database,
which violates the purpose of using SSOT. Clients should only link to the SSOT re-
sources related to their operational mandates, but not replicate the SSOT data.

In addition to the four mandatory operations, an immutable SSOT service might
provide additional resource create, retrieve, update and delete (CRUD) operations.

Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 585

In the EPR use case, if a patient has not registered with the regional EPR SSOT, then
the clinic and pharmacy applications would not find the patient through the query-by-
criteria operation. If the EPR SSOT also provides a patient creation operation, then
the authorized clinic or pharmacy personnel can create SSOT EPRs as needed.

If the clinic or pharmacy personnel are not authorized to create SSOT EPRs, then
the un-registered patients need to register with the EPR authority later. In the mean-
time, the applications can create a local temporary file to store the patient’s data. An
optional column (TEMP FILE#) can be added to the Clinic_Patient and Pharma-
cy_Patient tables to keep track of the temporary file number. In the absence of the
SSOT ID and existence of the TEMP FILE#, the applications will not query the EPR
SSOT for patient’s information, but retrieve data from the local temporary file. After
the patient registers with the EPR SSOT, the applications can insert the EPR SSOT-
ID into the Clinic_Patient and Pharmacy_Patient tables, and delete the temporary file.
At this point, the application returns to normal processing.

4 Performance and Quality-of-Service (QoS)

Despite the data-synchronization challenges, the data-replication model has a perfor-
mance advantage over the SSOT service model. In the SSOT service model, client
applications make extra service invocations to the SSOT during record creation and
retrieval, which may affect user experience. Therefore, we implemented experiments
to evaluate how the extra SSOT service invocations might affect user wait times.

The experiments evaluated delay caused by the SSOT service invocations. They
were conducted on the institution’s network supporting ~40,000 students. The SSOT
service was hosted on a workstation in a departmental subnet. In the experiments,
client applications accessed the SSOT service through Wi-Fi on the institute’s public
network during regular office hours. This condition simulated an enterprise network
supporting multiple sub-divisions.

The experiment results show that if the SSOT service and the client applications
are located within the same enterprise network, then the service invocation costs less
than 20 milliseconds per call. This indicates that users should not notice any perfor-
mance deterioration. If the SSOT service is available across a wide area network, the
performance primarily depends on the transmission delay between the public SSOT
service and the clients. Clients should benchmark the transmission delay to determine
the actual performance effect.

In dynamic web service composition [3], clients select web service providers ac-
cording to their published quality-of-service (QoS) [4]. Even though, SSOT’s clients
will likely access the SSOT service statically, the SSOT service should publish the
following QoS metrics per operation:

— Operational hours: the regular SSOT servicing hours.

— Maintenance schedule: the changes and release schedule.

— Reliability: the SSOT’s ability to perform the operation without errors.

— Request-processing time: the maximum and average time required for the SSOT
service to complete the operations.

586 C. Pang and D. Szafron

The SSOT may publish additional QoS metrics, such as capacity, performance, ro-
bustness, accuracy and more [3]. Clients can design their usage of the SSOT service
according to the SSOT’s QoS metrics.

If the SSOT service is part of a larger enterprise or jurisdiction, then the SSOT ser-
vice usually has the same operational hours and maintenance schedules as their
clients. Public SSOT services, like Canada Post, are usually available 24x7.

5 Related Work

Most SSOT is implemented on the data layer. Ives et al. [5] suggest synchronizing
distributed data on the data layer. Ives et al. propose a “Collaborative Data Sharing
System (CDSS) [that] models the exchange of data among sites as update propagation
among peers, which is subject to transformation (schema mapping), filtering (based
on policies about source authority), and local revision or replacement of data.” Since
data across multiple sites are continuously “updated, cleaned and annotated”, cross-
site synchronization has to deal with issues such as data correctness, schema and ter-
minology consistence, and timing. These data layer synchronization hurdles highlight
the advantage of our SSOT service model that eliminates data layer synchronization.

Others try to implement SSOT using an Enterprise Service Bus (ESB) [6], in which
a SSOT is defined. Clients duplicate the SSOT data locally, and subscribe to ESB for
SSOT updates. Whenever the SSOT is updated, clients synchronize with the SSOT by
repeating the changes in their local copies. Our SSOT model totally avoids data dup-
lication at the clients’ site.

Instead of a data-centric model for SSOT, some research has turned to artifact-
centric modeling [7]. An artifact is a set of name-value-pairs related to a business
process or task, where data represents business objects. In the artifact-centric model,
each artifact instance is shared between all process participants. The participants get
information from the artifact and change the state of the artifact to accomplish the
process goal. Since the artifacts are shared between process participants, access and
transaction control is necessary. Hull [8] suggests using artifact-centric hubs to facili-
tate communication and synchronization between the participants. Our SSOT service
model does not require complicated facilitation or a centralized hub.

Other researchers have proposed the Personal Information Management (PIM) [9]
model. In our model, the SSOT does not have any knowledge about its clients’ data.
However, the PIM model finds, links, groups and manages clients’ data references to
the source. PIM is a centralized data management model, while SSOT is a distributed
data management model.

Finally, Ludwig et al. [10] propose a decentralized approach to manage distributed
service configurations. The proposed solution uses RESTful services to exchange
configuration data between hosts, and a subscription mechanism to manage changes.
This approach endorses a data perspective similar to an SSOT service, where each
data source maintains self-contained autonomous data. Data is not synchronized
across multiple sites. Sources and clients are statically bound.

Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 587

6 Future Work

A mutable SSOT service has one standard operation: query-by-criteria. An immutable
SSOT service has four standard operations: query-by-criteria, query-by-SSOT-ID,
update subscription, and deletion subscription. Based on these standard operations, we
defined Web Service Definition Language (WSDL) extensions for the mu-table and
immutable SSOT services with corresponding templates. Because of the limited
space, we do not include the SSOT WSDL and templates in this paper.

Based on the WSDL extensions and templates, development tools can easily be
created to generate SSOT service source code with corresponding client access code.
These tools can simplify development for programmers, which encourages the use of
SSOT services to replace data-replication. Eclipse is an excellent platform to imple-
ment such tools. There are three additional future work topics.

Maintenance and Upgrades: Every active service goes through changes. Besides
regular change management, services may experience unexpected emergency inci-
dents. When these incidents occur, the clients should be alerted about their occur-
rences, side-effects, recovery progress and estimated recovery times. As suggested by
Ludrig et al. [10] a subscription service can be used to communicate change, mainten-
ance and emergency notices. Protocols and language extensions can be defined for
various types of change, maintenance and emergency activities. Since SSOT intro-
duces a single point of failure, a cloud infrastructure specifically designed for SSOT
can improve its availability.

Local Temporary Cache: If the cost of the SSOT service invocation is a concern,
clients can cache the SSOT resources temporarily. Once a SSOT resource is obtained,
there is a good chance that the client needs the same SSOT resource for related
processes. Therefore, temporarily caching the SSOT resource will likely reduce ser-
vice invocations. The cached SSOT resource can be flushed after a timeout period.
The SSOT update or deletion message should also flush the related resource from the
cache. The caching functionality would ideally be implemented as middleware that
supports the SSOT service architecture.

Schema Synchronization: For existing applications to adopt a SSOT service
model, the existing client applications need to map their local data to the SSOT data.
Both the SSOT and the clients can make use of existing ontology studies, which de-
fine data syntax and semantics for specific industries. For example, HL7 [11] is de-
fined for the health industry; RosettaNet [12] is defined for e-business; EDIFACT
[13] is defined for electronic data interchange. Moving toward standard languages
will benefit the survival and the long term growth of the industry. The SSOT service
model does not define the communication architecture or protocol between the clients
(e.g. between the clinic application and the pharmacy application in the EPR use
case), but adopting the SSOT service model can simplify communication between the
clients. For example, the pharmacy can verify a patient’s prescription with the clinic
by the patient SSOT-ID and avoid multiple drug dispensing.

588 C. Pang and D. Szafron

7 Conclusion

The SSOT service model described in this paper addresses the data-synchronization
problems that arise due to data-layer replication across distributed systems. On the
other hand, the SSOT service model introduces a single point of failure in the system.
Depending on the Service Level Agreement (SLA), the SSOT may need support from
multi-site configurations or cloud-infrastructure with fail-over capability. Although
the data-replication model does not have a single point of failure, it suffers from data-
synchronization and data-inconsistency issues. Data synchronization usually involves
defining a custom peer-to-peer data exchange agreement. The custom agreement
tightly couples the data provider and consumer, which makes switching providers
very costly. Nonetheless, data synchronization usually happens during the overnight
maintenance windows. Data becomes stale between synchronizations. Furthermore,
data replication keeps a full copy of the provider’s data at the clients’ sites. If clients
use only a small portion of the provider’s data, then the clients are wasting resources.
An added benefit of the SSOT service model is that it can control what data each
client is authorized to access, while data replication makes all data available to clients.

The SSOT service model allows the provider and clients to be loosely coupled.
Clients do not need to pledge infrastructure resources for the foreign data. The SSOT
service model also provides up-to-date data. Overall, we believe that the SSOT ser-
vice model can be used to eliminate data replication, enforce data autonomy, advocate
data self-containment, ease data maintenance and enhance data protection. In the long
term, these properties will also increase business adaptability.

Within large enterprises or government agencies, managing large amounts of data
as a single entity is problematic. Decomposing a large data set into smaller autonom-
ous and independently managed data sets can increase flexibility. As in the EPR case,
once the EPR SSOT service is established, a new patient related service can be
created without defining and creating its own patient data set. The new service does
not need to negotiate with other parties regarding data acquisition or synchronization.
The new service can loosely couple with the EPR SSOT and be established quickly.
In addition, the SSOT service model allows each individual service to be self-
contained and maintain its local database. For example, the clinic application and the
pharmacy application in the EPR use case maintain their individual local databases
without sharing data with the EPR system. This characteristic is very important in the
health industry, where patients’ privacy is closely monitored.

The SSOT service model is also applicable to the financial industry. Banking, in-
vestment and insurance businesses are often integrated under one corporation. How-
ever, legislation may require each of these businesses to be separate entities. The
SSOT service model allows the corporation to create a customer SSOT to register
each customer once. Banking, investment and insurance services can run as separate
entities, while being loosely coupled with the customer SSOT service. With the SSOT
service model, new financial services can be introduced more quickly. Similarly, the
SSOT service model can benefit any jurisdiction that provides multiple services.

Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 589

References

10.

11.
12.
13.

. Lasila, O., Swick, R.R.: World Wide and Web Consortium: Resource Description Frame-

work (RDF) Model and Syntax Specification, W3C Recommendation (1998)

Fielding, R.T.: Chapter 5 Representational State Transfer (REST), Architectural Styles and
the Design of Network-based Software Architectures, Doctoral dissertation, University of
California, Irvine (2000)

Dustdar, S., Schreiner, W.: Survey on Web services Composition. International Journal on
Web and Grid Services 1, 1-30 (2005)

Ran, S.: A Model for Web Services Discovery With QoS. ACM SIGecom Exchanges 4(1),
1-10 (2003)

Ives, Z., Khandelwal, N., Kapur, A., Cakir, M.: ORCHESTRA: Rapid, Collaborative Shar-
ing of Dynamic Data. In: The 2nd Biennial Conference on Innovative Data Systems
Research (CIDR 2005), Asilomar, CA, USA (2005)

Schmidt, M.-T., Hutchison, B., Lambros, P., Phippen, R.: The Enterprise Service Bus:
Making servie-oriented architecture real. IBM Systems Journal 44(4), 781-797 (2005)
Nigam, A., Caswell, N.: Business artifacts: An approach to operational specification. IBM
Systems Journal 47(3), 428-445 (2003)

Hull, R.: Artifact-Centric Business Process Models: Brief Survey of Research Results and
Challenges. In: OTM 2008, Monterrey, Mexico (2008)

Jones, W.: Personal Information Management. Annual Review of Information Science and
Technology 41(1), 453-504 (2007)

Ludwig, H., Laredo, J., Bhattacharya, K., Pasquale, L., Wassermann, B.: REST-Based
Management of Loosely Coupled Services. In: The 18th International Conference on
World Wide Web (WWW 2009), Madrid, Spain (2009)

HL7 Health Level Seven International, http://www.hl7.org

RosettaNet (1999), http://www.rosettanet.org

EDIFACT, United Nations Directories for Electronic Data Interchange for Administration,
Commerce and Transport,
http://www.unece.org/trade/untdid/welcome.htm

	Single Source of Truth (SSOT)
for Service Oriented Architecture (SOA)
	1 Introduction
	2 Mutable SSOT Service
	2.1 Client-Record Creation
	2.2 Client-Record Retrieval

	3 Immutable SSOT Service
	3.1 Query-by-Criteria
	3.2 Query-by-SSOT-ID
	3.3 Client-record Creation
	3.4 Client-record Retrieval
	3.5 Constructing SSOT-IDs
	3.6 Update Subscription
	3.7 Deletion Subscription
	3.8 Additional Operations

	4 Performance and Quality-of-Service (QoS)
	5 Related Work
	6 Future Work
	7 Conclusion
	References

