

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 79–92, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Automatic Generation of Optimized Workflow
for Distributed Computations on Large-Scale Matrices

Farida Sabry, Abdelkarim Erradi, Mohamed Nassar, and Qutaibah M. Malluhi

KINDI Center for Computing Research
Qatar University

Doha, Qatar
{faridasabry,erradi,mohamad.nassar,qmalluhi}@qu.edu.qa

Abstract. Efficient evaluation of distributed computation on large-scale data is
prominent in modern scientific computation; especially analysis of big data, im-
age processing and data mining applications. This problem is particularly chal-
lenging in distributed environments such as campus clusters, grids or clouds on
which the basic computation routines are offered as web/cloud services. In this
paper, we propose a locality-aware workflow-based solution for evaluation of
large-scale matrix expressions in a distributed environment. Our solution is
based on automatic generation of BPEL workflows in order to coordinate long
running, asynchronous and parallel invocation of services. We optimize the in-
put expression in order to maximize parallel execution of independent opera-
tions while reducing the matrix transfer cost to a minimum. Our approach frees
the end-user of the system from the burden of writing and debugging lengthy
BPEL workflows. We evaluated our solution on realistic mathematical expres-
sions executed on large-scale matrices distributed on multiple clouds.

Keywords: location-aware optimization, distributed computations, BPEL
workflows, large-scale matrices.

1 Introduction

Cloud computing offers an attractive alternative to easily and quickly acquire IT
services such as storage and computation services. Its adoption continues to grow as
companies opt for flexibility, cost savings, performance and scalability. Cloud services
such as Elastic MapReduce offer an attractive platform for outsourcing the storage and
computations on large scale data because of their optimized algorithmic
implementations and access to on-demand large-scale resources. We focus particularly
on matrix algebra computations since they are used in many scientific domains;
including but not limited to analysis of big data, image processing, computer graphics,
information retrieval and data mining applications. The inputs are typically large-scale
matrices and performing math operations (e.g. multiply, inverse, transpose,
add/subtract, dot product…) on them could be long-running. In this paper, we consider
the scenario where several cloud services are offering matrix storage and basic matrix
operations with different service characteristics. Based on availability, quality of
service (QoS), reliability, security and data locality, the optimal decomposition, task

80 F. Sabry et al.

scheduling and task assignment of a mathematical expression vary. We propose
automated workflow generation and execution in order to optimize the response time
of expression evaluation, given the available services and their characteristics, as well
the data locality. Our solution improves the productivity of the users by releasing them
from the tedious task of manually and timely generating and editing the workflows
depending on the input expressions.

The composition could be written using a business workflow language such as
BPEL (Business Process Execution Language) [2] or YAWL (Yet Another Workflow
Language) [3]. Scientific workflow tools like Taverna [4], Kepler [5], and Pegasus [6]
can do similar task; some of them adopt BPEL whereas others use their own language.
We choose BPEL because it is a standard XML based language for specifying a Web
Services composition. It is also used by some scientific workflow systems. A BPEL
process is composed of activities that can be combined through structured operators
that specify the control and data flow that govern the ordering of these activities. BPEL
constructs include messaging activities (e.g. invoke, receive, reply), sequential
execution, conditional branching, structured loops, concurrency constructs (e.g.,
parallel execution, event-action constructs, correlation sets), exception handling (try-
catch blocks). A BPEL engine is responsible for managing the process instances
lifecycle, such as process instance creation, termination, and executing according to the
process definition. The engine is also responsible for binding the partners to specific
Web Services. Many BPEL engines are available as Open Source, such as Apache
ODE [7], and commercial engines such as IBM WebSphere Choreographer [8].

Even though workflows can be used to automatically manage the execution of the
expression computation, the system is not convenient if the end-users (e.g. researchers,
developers) have to manually create a workflow and properly assign the tasks upon the
addition of a new expression. Moreover the optimal execution is dependent on the data
locality of input matrices and the QoS characteristics of the available matrix
computations services. Our system automates the optimization and the generation of a
BPEL workflow for the input expression. The resulting workflow is deployed to a
BPEL workflow engine for execution.

The rest of the paper is organized as follows. Section 2 overviews related work.
Section 3 gives an overview of the proposed method and section 4 presents the details
of the transformation from a mathematical expression to a BPEL workflow and the
optimization process. Section 5 highlights implementation details. Finally, we
conclude and discuss future work in section 6.

2 Related Work

Service composition is closely related to workflow [9]; automatic workflow genera-
tion can be considered a subtask from automated web service composition. The latter
term is considered more general as it includes an extra step of the automatic service
discovery and selection from the set of available services. According to a survey of
automated web services composition [10], this can be done using workflow techniques
or AI planning. The workflow techniques can be further classified as either static or
dynamic [9]. The static techniques mean that the requester should build an abstract
process model before the composition planning starts. Only the selection and binding

 Automatic Generation of Optimized Workflow for Distributed Computations 81

to atomic web services is done automatically. On the other hand, the dynamic compo-
sition both creates process model and selects atomic services automatically. This re-
quires the requester to specify several constraints, including the dependency of atomic
services, the user’s preference and so on. An example for a static workflow generation
approach was implemented in ASTRO project [11].

According to [11], one of the phases for the automatic composition of web services
is the translation between the external and internal languages used by the service
composition system. The external language is used by the service users to express
what they can offer or what they want in a relatively easy manner. For example,
BPMN (Business Process Modeling Notation) to BPEL translation is presented in [12]
where the designer uses BPMN graphical notations to easily describe the process
control flow and data flow and then it gets automatically translated to BPEL. This
work can also be considered static in the sense that BPMN is describing the con-
trol/data flow as input. Similar work was proposed in [13] but using XPDL (XML
Process Definition Language) which is a graph-structured language mainly used in
internal process modeling. However, in this work the generated outputs are abstract
BPEL processes that are not fully executable and deployable and they need some
manual editing to be ready for deployment. Also in [12], it is stated that it cannot
detect all pattern types and the code produced by this transformation lacks readability.

Our approach for automatic workflow generation presented in this paper is consi-
dered dynamic in the sense that the workflow steps and the process model that describes
the control flow and data flow are not input by the requester but they are created auto-
matically according to the parsing of the input expression. Additionally the atomic ser-
vices used for computations are selected based on their functionality and QoS such as
accuracy, reliability, performance and security. We assume that developers/researchers
are using contract-based web service composition; and they are provided with the
WSDLs representing the interfaces of the available services and their characteristics.
Our proposed framework depends on the service-oriented architecture where large-scale
mathematical computations are offered as services and this differs from other distributed
execution engines like MapReduce [23] or DryadLINQ [24].

3 Overview of the Proposed Framework

We can think of the problem of mathematical expression to workflow transformation
with analogy to the compilation process [15]. In software compilation, the compiler
compiles a program into intermediate form, optimizes intermediate form and generates
target code for the running architecture. In hardware compilation, the compiler
compiles an HDL model into a sequencing graph, optimizes the sequencing graph and
generates gate-level interconnection for a cell library [16].

In our framework of distributed mathematical expression evaluation using services
on the web or on the clouds, the end-user (researcher/developer) enters a mathematical
expression (e.g.ܣ כ ൅ ܤ ܥ כ following a specific grammar such as XPath grammar (ܦ
or JEP (Java Expression Parser) [14]. The expression is then compiled to an
intermediate form of a parsed expression tree. This intermediate form is optimized and
then the workflow is generated to coordinate the execution of services on the
distributed environment. We focus on mathematical expressions but the framework can
be extended to more generic computation models.

82 F. Sabry et al.

The main components of our proposed framework are depicted in Fig. 1. First, the
developer/researcher inputs the expression and the resources' references corresponding
to the aliases of the operands (i.e., the location where each operand is stored). A
configuration file specifies additional parameters such as the registry address where the
WSDLs of the services are stored. These WSDLs serve as the interface to the external
cloud services to be invoked or composed in the generated BPEL process. A parser
parses the input mathematical expression into an expression tree. An optimizer then
transforms the tree to a more consolidate form based on data locality of operands and
identifies independent operations that can be done in parallel. The optimizer also
annotates the nodes of the tree based on their types (operands vs. operators). Then the
translator traverses the tree and maps the tree parts to corresponding BPEL activities.
Attributes of these activities like the partner link to the service to invoke, the values of
the input variables to this service and their types are initialized according to the
annotations set by the optimizer. The output of the translator is a BPEL process
accompanied by a deployment descriptor so that it can be deployed to a BPEL engine
for execution. In the next section we present formal definitions and explain in more
details the different steps of the automation process.

4 From Expression to BPEL

Before we go through the automation steps in details, it is important to formally define
the following key terms: computation services, operations, operands and expression
trees.

Definition 1: [Computation Services] are defined as a set of services S = {s1,s2,…sn}, n
≥ 1 where each si S is defined by [id, ௦ܱ೔ ௦೔ܵ݋ܳ ,] where id is the unique service
identifier (e.g. the URL of the service) and ௦ܱ೔ is a set of operations ሼ݋௝௦೔ሽ provided by
si. Each ݋௝௦೔ א ௦ܱ೔ is further defined by its input, output and port type (ܺ௢ೕೞ೔ , ௢ܻೕೞ೔ ,ܲ ௢ܶೕೞ೔) where 1 ≤ j ≤ ห ௦ܱ೔ห. ܳܵ݋௦೔ is the set of quality of service parameters for each

service si: < ௜ܲ , ,௜ܦ ௜ݎ , ܽ௜ ൐ where ௜ܲ is the set of execution price for all ݋௝௦೔ ௦ܱ೔ א ௜ܦ , is
the set of expected execution durations for all ݋௝௦೔ ௜ is the reliability and ܽ௜ is theݎ ,
availability of the overall service.

In our framework the service definitions are obtained from a local registry by
parsing the corresponding WSDL files.

Definition 2: [Operators] are the set of predefined tokens representing unary and
binary operations on matrices such as addition, subtraction, multiplication, dot product,
inverse of a matrix and transpose of a matrix: ܱ ൌ ሼ ൅, െ, ,כ ., െ, ^ିଵ, ′ ሽ.

Definition 3: [Operands] are the set of input literals ܮ used in the input mathematical
expression, ܮ ൌ ሼ ݈ଵ, ݈ଶ, . . . ݈௠ሽ where each ݈௞ is an alias for a resource matrix ܯ௞ with
metadata (location, nRows, nCols, datatype). The ሺ݈௞ , ௞ሻ mapping tuples are storedܯ
to a hash map so-called LM.

 Automatic Generation of Optimized Workflow for Distributed Computations 83

Fig. 1. Mathematical expression to BPEL workflow generation

Definition 4: [Expression Tree] is the binary tree obtained from parsing the input
string expression and is defined by ሺݐ݋݋ݎ, ܰ, ܰ ሻ whereܥ ൌ ሼ݊ଵ, ݊ଶ … ݊௪ሽ is the set of
tree nodes, ݊௧ א ሼܱ, א ݐ݋݋ݎ ,ሽܮ ܥ ݀݊ܽ ܰ ൌ ሼ ሺ݊௨, ݊௩ሻ, ሺ݊௨, ݊௖ሻ … . ሽ represents the
connections between the nodes, where ሺ݊௨, ݊௩ሻ means ݊௨ is a parent of ݊௩. The
following conditions apply:

 ݐ݋݋ݎ is the only node with no parents.
 The leaf nodes must belong to ܮ.
 Internal nodes belong to O, a hash map OS maps each operator node ݊௧ א ܱ to the service ݏ௞ א ܵ offering this operation and being selected to

do the operation according to data locality, concurrency considerations and
QoS parameters.

 Each node has at most two direct children.
 Methods ݈݂݁ݐሺ݊௧ሻ and ݐ݄݃݅ݎሺ݊௧ሻ get the left and right child of node ݊௧.

Given these definitions, we discuss next expression-to-BPEL translation steps in
more details.

4.1 Expression Parser

Parsers have undergone significant progress and can now be automatically generated
from a simple specification of the language (i.e., BNF grammar). This can be done
using one of the existing parser generators like YACC, Bison or ANLTR. There are
two main approaches to building parsers that are used in practice: top-down (also
known as recursive descent or LL and its variant LL(*) [17] used by ANTLR) and
bottom-up (aka shift-reduce, LR and its variant LALR used by YACC and Bison).

In our work, we use the open-source JEP which implements the Shunting-yard
algorithm that is considered a bottom-up parser and is used to convert the human-
readable infix notation to RPN (Reverse Polish Notation) that is optimized for

84 F. Sabry et al.

expression evaluation. The output of this step is a left-deep parse tree, an example is
shown in Fig. 2(a).

4.2 Tree Optimization

The goal of tree optimization is to maximize parallel execution of independent opera-
tions within the expression and minimize overall evaluation time. The time is mainly
composed of two factors: the computation time for the operations run by the different
services, and the data transfer time for matrix resources that need to be moved from
one location to another in the distributed environment. As a first step, we assume that
all the servers implement all the operations and have similar computation capabilities
and quality of service characteristics. In this context, the tree execution cost is meas-
ured by the data transfer cost.

For an expression tree of ࢞ operator nodes and a set S of ࢔ available servers all
implementing services for these operators, there are ࢞࢔ possible execution plans to
select services from S to execute the ࢞ operations. The order in which to invoke these
x operations makes the search space even larger. Using exhaustive search to select
the optimal plan in this space becomes practically impossible when the expression
size increases. We refer to the query optimization problem in distributed databases
that have similar conditions to get an optimal query execution plan [19, 20] where
projection is done before join and joins of collocated tables are done first to decrease
the data to be transferred, cost-optimization techniques are used to choose the optimal
execution plan.

We narrow down the search space using the matrix locality information, where we
favor operations involving collocated matrices. The basic principle is that matrices
that are co-located in storage must be close to each other in the tree whenever it is
possible. To do so, we use properties of commutativity, associativity and distributivity
of the different operators to identify chains of commutative operators (e.g., matrix
addition) and chains of associative operators (e.g., matrix multiplication). We sort the
commutative chains based on the data locations. In this way, collocated matrices
would be close and put into parenthesis to be operands of the same operator. We also
use matrix size as a tie break for associative chains (i.e., we prefer to put together into
parenthesis the operands of which the multiplication leads to smaller-size matrices).
This problem is the same as the matrix chain multiplication problem [18] and has a
well-known dynamic programming solution which we modified its score to favor
doing computations for collocated matrices first.

To simplify the explanation of the optimization procedure we consider as example
the expression ࡭ ൅ ࡮ ൅ ࡯ כ ࡰ כ ࡱ ൅ ࡲ ൅ -and the size-location description shown in Ta ࡳ
ble 1. The optimization of this expression is shown in Fig. 2. Fig. 2(a) represents the
tree as output by the parser. In Fig. 2(b) we use the associative property of multiplica-
tion to do D*E first as matrix D and matrix E both belong to server S1 and must be
given priority to decrease data transfer. Similarly the commutative property of addi-
tion is used to swap matrix B and matrix F. Indeed matrix A and matrix F both belong
to server S1 and can be locally added without additional data transfer.

Note that within the same sub-tree, well known compiler optimization techniques
for arithmetic expressions are used to optimize further the execution and identify
independent sequences of operations that can be done in parallel. There are a lot of

 Automatic Generation of Optimized Workflow for Distributed Computations 85

optimization techniques for arithmetic expressions, like tree-height reduction, factori-
zation, expansion and common sub-expression elimination [16, 17]. For example if we
assume all the matrices belong to the same location in Fig. 2(a), tree height reduction
would recognize that the root node must be changed so the tree height would be 4
instead of 6.

After this step is done we apply the following two-phases-traversal algorithm:

1. The first phase: we identify independent sub-trees that can be run in parallel while
traversing down the tree based on the two following conditions:
─ All the nodes of a sub-tree must be hosted by the same server
─ A sub-tree must contain as much nodes as possible. In other words, we expand a

tree until no more nodes can be added.
─ Each sub-tree is annotated according to the hosting server where its operations

would be invoked so that the generated workflow invokes the services for com-
putations of the sub-trees in parallel e.g. Fig. 2(c).

2. The second phase: going up the tree we generate the main meta-tree representing
the final computation steps with annotations added specifying the servers selected
to do each operation. Again the goal is to reduce the data transfer volume. So we
choose the server where most matrices are located. The metric can be merely the
number of matrices but preferably we select the server hosting the maximum sum
of the sizes of the operands.

We analyze the transfer cost in terms of the number of matrix elements which is
practically reflected in the file size. In this simple example the transfer cost is reduced
from 2100100 elements (if re-ordering and optimization algorithm were omitted) to
1001000 elements. This gain is computed given the sizes depicted in Table 1 and
assuming dense matrices. Another factor affecting the selection of services and dis-
cussed extensively in literature is the QoS parameters. For example, QoS parameters
and techniques used in [21] can be applied to choose services with least response time
and price. Currently our prototype is based solely on data locality and data size but we
intend to extend it to QoS optimization as well. The last step is transforming the op-
timized tree, along with the annotations of the selected transfer and computation ser-
vices and obtaining the finally executable BPEL workflow as described next.

Table 1. Example of a distribution of sizes and locations

Matrix
ID

A B C D E F G

Size 1000
*1000

1000
*1000

1000
*1

1
*100

100
*1000

1000
*1000

1000
*1000

Location S1 S2 S2 S1 S1 S1 S2

4.3 BPEL Code Generation

The translation task from the optimized expression tree to BPEL workflow is based on
the mapping rules shown in Fig. 3. In the rules, ou, ov and ol represent operator nodes

86 F. Sabry et al.

and li, lj represent operand nodes. The rules has for mission to map the expression tree
parts to their equivalent BPEL constructs such as assign, invoke, receive, sequence,
and flow. BPEL Assign activity is used to exchange values between incoming and
outgoing message variables. Invoke activity is used to do the service invocation.
Receive activity is to receive an input message or a callback message. Sequence
activity is to group some activities to be done in sequence. Flow activity is used when
different sequences are to be done in parallel. Attributes of these activities like the
partner link to the service to invoke, values of input variables to the service and their
types are initialized according to the annotations values of the nodes (operands and
operators: ݊௧ א ሼܱ, .(ሽܮ

Fig. 2. Simple scenario example for tree optimization for
A+B+C*D*E+F+G  (A+F) +C*(D*E)+(B+G)

 Automatic Generation of Optimized Workflow for Distributed Computations 87

The output of this transformation is a BPEL process saved to a “.bpel” file, a workflow
interface description saved to a “.wsdl” file. This is because workflow itself is
deployed as a web-service. A deployment descriptor saved to “deploy.xml” is also
generated so that the workflow can be deployed to a BPEL engine for execution.

The translation algorithm of an expression tree T to executable BPEL code that
includes the BPEL constructs to be used and the control flow is shown in Fig. 4. The
algorithm is a post-order traversal for the expression tree T with the mapping rules
shown in Fig. 3 applied. The rule case (c) in Fig. 3(c) is considered the base case used
for the recursive traversal where the tree has an operator ݋௨ א ܱ as a parent and its two
children are operands ൛݈௜, ௝݈ൟ א ௨ is a unary݋ or only left child ݈௜ in case where ܮ
operator. In this case, the mapping is a sequence activity that includes (assign, invoke,
receive). The BPEL assign activity is for assigning input values for the variable used in
the invocation. The invoke activity and then the callback receive activity are to get the
information about the intermediate result location. The attributes of these activities are
determined from the computation services definition S and the ܱܵ mapping.ܱܵ ሺ݋௨ሻis
the selected service for operation ݋௨. The ܯܮ ሺ݈௞ , ௞ሻ mapping is used to get theܯ
metadata of the input matrices. Case (a) occurs when the two children are operators
which mean that the services in these two paths can be executed in parallel. This
corresponds to the BPEL Flow construct including two sequences for the mapping of
the two children where each child has its own scope. Case (b) occurs when one of the
children is an operator݋௜ and the other is a literal ௝݈ which means that the mapping of ݋௜
and ݋௨ will be a Sequence activity. A flow stack is maintained so that during traversal
if case (a) is encountered a Flow activity is pushed into the stack and the two paths
are executed in parallel. The activity is popped out once its left and right children
return.

5 Implementation and Experimentation

We made the prototype for Mathematical Expression to BPEL (ME2BPEL) available
at https://code.google.com/p/me2bpel/. The objective of the system is to generate a
correct, optimized and executable BPEL workflow from the input mathematical ex-
pression and resources' references to aliases used in the expression. The inputs are
WSDL files representing the interface to different web services on different servers
and an expression to be evaluated with metadata about operands used in the expres-
sion provided. The whole system operation can be summarized as follows. First, the
expression is being parsed using JEP API that uses shunting yard algorithm. Then we
detect commutative chains and matrix multiplication chains by traversing the tree.
Matrix multiplication chains and their order of execution are determined using the
modified dynamic programming approach using data locality as well as matrices
sizes. Sorting the commutative chain is done with respect to data locality and the ex-
pression tree structure is updated accordingly with annotating operator nodes for col-
located operands. The rest of operator nodes are then annotated with the location to

88 F. Sabry et al.

execute according to the minimum data transfer criterion. BPEL code generation is
done according to the algorithm in Fig. 4. We modified the unified framework pack-
age [22] for generation and serialization of BPEL constructs. We used web services
using MapReduce for matrix multiplication and addition operations that we used in
[1] for testing. These input WSDLs are read and de-serialized using wsdl4j library.

Fig. 3. Mapping expression tree patterns to the corresponding BPEL constructs where
Mapping(ox) is a recursive function with case (c) as the base case

 Automatic Generation of Optimized Workflow for Distributed Computations 89

Fig. 4. Translation algorithm of expression tree to BPEL workflow

The first experiment is to test for ten different expressions available on the project
page as a sample dataset with different number of literals ranging from 4 to 10. The
data locality optimization is not taken into consideration in this experiment and it is
assumed that the data matrices are stored on the same server offering these web ser-
vices. Results are shown in Fig. 5 with an average speed-up (Tsequential/Tworkflow)
of 1.8. From the results it is clear that the optimized workflow achieve better results
for expressions with larger number of literals and which have operations that can be
done in parallel.

90 F. Sabry et al.

Fig. 5. Optimized workflow execution time vs. the sequential execution time for 10 different
expressions

In the second experiment, we assume matrices are stored on different servers and
according to the data locality optimization step; a service is chosen to execute a certain
operation in an expression tree so that it minimizes the data transfer between servers.
So we compare the time taken for data transfer being logged by the web services under
test between the optimized workflow with web services selection according to data
locality and random web services selection. Fig. 6 shows that for most of the
expressions under test, the data transfer time is less when web services are selected
according to data locality (expression 8 has all its data stored on the same server, that’s
why no data transfer time recorded). Some cases show no improvement; this depends
on the heterogeneity of the distributed data.

6 Conclusion

Web and cloud-based services evaluating large-scale mathematical operations are
typically long running and require the composition of multiple asynchronous
computation services. We proposed an automated workflow generation solution in
order to coordinate and optimize the execution of these services. We show how to
automatically generate workflows for evaluating composed expressions while taking
into account the storage location of input matrices and minimizing the data transfer
between servers. Our solution optimizes the run-time execution of the services
composition by maximizing parallel calls whenever possible. We aim by this
contribution to increase the productivity of the system users (researchers or developers)
and equipping them with a dynamic workflow generation tool, making the system
accessible for non-expert workflow developers.

 Automatic Generation of Optimized Workflow for Distributed Computations 91

For future work, we aim to incorporate QoS-based service selection. This feature
will allow selecting the most appropriate service among functionally-equivalent
computation services having the same score according to data locality and size of input
data but offering different QoS guarantees.

Fig. 6. Data transfer time taken by services selected according to data locality vs. random selec-
tion for different expressions

Acknowledgments. This publication was made possible by a grant from the Qatar
National Research Fund; award number NPRP 09-622-1-090. Its contents are solely
the responsibility of the authors and do not necessarily represent the official views of
the Qatar National Research Fund.

References

1. Nassar, M., Erradi, A., Sabri, F., Malluhi, Q.: Secure Outsourcing of Matrix Operations as
a Service. In: 6th IEEE International Conference on Cloud Computing, pp. 918–925. IEEE
Press (2013)

2. Web Services Business Process Execution Language v2.0, http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

3. Van der Aalst, W.M.P., ter Hofstede, A.: YAWL: Yet Another Workflow Language.
Information Systems 30(4), 245–275 (2005)

4. Taverna Workflow Management System, http://www.taverna.org.uk/
5. Altintas, I., Berkley, C., Jaeger, E., Jones, M.: Ludascher. B., Mock, S.: Kepler: an extens-

ible system for design and execution of scientific workflows. In: Scientific and Statistical
Database Management International Conference, pp. 423–424 (2004)

92 F. Sabry et al.

6. Sonntag, M., Karastoyanova, D., Deelman, E.: BPEL4Pegasus: Combining Business and
Scientific Workflows. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC
2010. LNCS, vol. 6470, pp. 728–729. Springer, Heidelberg (2010)

7. Apache ODE: http://ode.apache.org/
8. WebSphere Application Server Enterprise Process Choreographer,

http://www.ibm.com/developerworks/websphere/
9. Dustdar, S., Schreiner, W.: A survey on web services composition. Journal of Web and

Grid Services 1(1), 1–30 (2005)
10. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. In: Cardoso,

J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg
(2005)

11. Trainotti, M., Pistore, M., Calabrese, G., Zacco, G., Lucchese, G., Barbon, F., Bertoli,
P.G., Traverso, P.: ASTRO: Supporting Composition and Execution of Web Services. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 495–501.
Springer, Heidelberg (2005)

12. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Pattern-based trans-
lation of BPMN process models to BPEL web services. International Journal of Web Ser-
vices Research 5(1), 42–62 (2007)

13. Yuan, P., Jin, H., Yuan, S., Cao, W., Jiang, L.: WFTXB: A Tool for Translating Between
XPDL and BPEL. In: 10th IEEE International Conference on High Performance Compu-
ting and Communications, pp. 647–652. IEEE Press (2008)

14. JEP (Java Expression Parser), http://www.singularsys.com/jep
15. Kastner, R., Hosangadi, A., Fallah, F.: Arithmetic Optimization Techniques for Hardware

and Software Design. Cambridge University Press, Cambridge (2010)
16. Bacon, D., Graham, S., Sharp, O.: Compiler Transformations for High-Performance Com-

puting. ACM Computing Surveys 26(4), 345–420 (1994)
17. Parr, T., Fisher, K.: LL(*): The Foundation of the ANTLR Parser Generator. In: Program-

ming Language Design and Implementation Conference (PLDI), pp. 425–436 (2011)
18. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd edn., pp.

370–377. MIT Press (2009)
19. Hameurlain, A.: Evolution of Query Optimization Methods: From Centralized Database

Systems to Data Grid Systems. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA
2009. LNCS, vol. 5690, pp. 460–470. Springer, Heidelberg (2009)

20. Evrendilke, C., Dogac, A., Nural, S., Ozcan, F.: Multidatabase query optimization. Journal
of Distributed and Parallel Databases 5(1), 77–114 (1997)

21. Zeng, L., Benatllah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware
Middleware for Web Services Composition. IEEE Transactions On Software Engineer-
ing 30(5), 311–327 (2004)

22. Unify framework package, Software Languages Lab, Vrije Universiteit Brussel,
http://soft.vub.ac.be/svn-gen/unify/src/org/unify_framework/

23. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
Communications of the ACM - 50th anniversary issue 51(1), 107–113 (2008)

24. Yuan, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P.K., Currey, J.:
DryadLINQ: A system for general-purpose distributed data-parallel computing using a
high-level language. In: OSDI 2008 Proceedings of the 8th USENIX Symposium on Oper-
ating Systems Design and Implementation, pp. 1–14 (2008)

	Automatic Generation of Optimized Workflow
for Distributed Computations on Large-Scale Matrices
	1 Introduction
	2 Related Work
	3 Overview of the Proposed Framework
	4 From Expression to BPEL
	4.1 Expression Parser
	4.2 Tree Optimization
	4.3 BPEL Code Generation

	5 Implementation and Experimentation
	6 Conclusion
	References

