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Abstract. Efficient evaluation of distributed computation on large-scale data is 
prominent in modern scientific computation; especially analysis of big data, im-
age processing and data mining applications. This problem is particularly chal-
lenging in distributed environments such as campus clusters, grids or clouds on 
which the basic computation routines are offered as web/cloud services. In this 
paper, we propose a locality-aware workflow-based solution for evaluation of 
large-scale matrix expressions in a distributed environment. Our solution is 
based on automatic generation of BPEL workflows in order to coordinate long 
running, asynchronous and parallel invocation of services. We optimize the in-
put expression in order to maximize parallel execution of independent opera-
tions while reducing the matrix transfer cost to a minimum. Our approach frees 
the end-user of the system from the burden of writing and debugging lengthy 
BPEL workflows. We evaluated our solution on realistic mathematical expres-
sions executed on large-scale matrices distributed on multiple clouds. 

Keywords: location-aware optimization, distributed computations, BPEL 
workflows, large-scale matrices. 

1 Introduction 

Cloud computing offers an attractive alternative to easily and quickly acquire IT 
services such as storage and computation services. Its adoption continues to grow as 
companies opt for flexibility, cost savings, performance and scalability. Cloud services 
such as Elastic MapReduce offer an attractive platform for outsourcing the storage and 
computations on large scale data because of their optimized algorithmic 
implementations and access to on-demand large-scale resources. We focus particularly 
on matrix algebra computations since they are used in many scientific domains; 
including but not limited to analysis of big data, image processing, computer graphics, 
information retrieval and data mining applications. The inputs are typically large-scale 
matrices and performing math operations (e.g. multiply, inverse, transpose, 
add/subtract, dot product…) on them could be long-running. In this paper, we consider 
the scenario where several cloud services are offering matrix storage and basic matrix 
operations with different service characteristics. Based on availability, quality of 
service (QoS), reliability, security and data locality, the optimal decomposition, task 
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scheduling and task assignment of a mathematical expression vary. We propose 
automated workflow generation and execution in order to optimize the response time 
of expression evaluation, given the available services and their characteristics, as well 
the data locality. Our solution improves the productivity of the users by releasing them 
from the tedious task of manually and timely generating and editing the workflows 
depending on the input expressions. 

The composition could be written using a business workflow language such as 
BPEL (Business Process Execution Language) [2] or YAWL (Yet Another Workflow 
Language) [3]. Scientific workflow tools like Taverna [4], Kepler [5], and Pegasus [6] 
can do similar task; some of them adopt BPEL whereas others use their own language. 
We choose BPEL because it is a standard XML based language for specifying a Web 
Services composition. It is also used by some scientific workflow systems. A BPEL 
process is composed of activities that can be combined through structured operators 
that specify the control and data flow that govern the ordering of these activities. BPEL 
constructs include messaging activities (e.g. invoke, receive, reply), sequential 
execution, conditional branching, structured loops, concurrency constructs (e.g., 
parallel execution, event-action constructs, correlation sets), exception handling (try-
catch blocks). A BPEL engine is responsible for managing the process instances 
lifecycle, such as process instance creation, termination, and executing according to the 
process definition. The engine is also responsible for binding the partners to specific 
Web Services. Many BPEL engines are available as Open Source, such as Apache 
ODE [7], and commercial engines such as IBM WebSphere Choreographer [8]. 

Even though workflows can be used to automatically manage the execution of the 
expression computation, the system is not convenient if the end-users (e.g. researchers, 
developers) have to manually create a workflow and properly assign the tasks upon the 
addition of a new expression. Moreover the optimal execution is dependent on the data 
locality of input matrices and the QoS characteristics of the available matrix 
computations services. Our system automates the optimization and the generation of a 
BPEL workflow for the input expression. The resulting workflow is deployed to a 
BPEL workflow engine for execution. 

The rest of the paper is organized as follows. Section 2 overviews related work. 
Section 3 gives an overview of the proposed method and section 4 presents the details 
of the transformation from a mathematical expression to a BPEL workflow and the 
optimization process. Section 5 highlights implementation details. Finally, we 
conclude and discuss future work in section 6. 

2 Related Work 

Service composition is closely related to workflow [9]; automatic workflow genera-
tion can be considered a subtask from automated web service composition. The latter 
term is considered more general as it includes an extra step of the automatic service 
discovery and selection from the set of available services. According to a survey of 
automated web services composition [10], this can be done using workflow techniques 
or AI planning. The workflow techniques can be further classified as either static or 
dynamic [9]. The static techniques mean that the requester should build an abstract 
process model before the composition planning starts. Only the selection and binding 
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to atomic web services is done automatically. On the other hand, the dynamic compo-
sition both creates process model and selects atomic services automatically. This re-
quires the requester to specify several constraints, including the dependency of atomic 
services, the user’s preference and so on. An example for a static workflow generation 
approach was implemented in ASTRO project [11].  

According to [11], one of the phases for the automatic composition of web services 
is the translation between the external and internal languages used by the service 
composition system. The external language is used by the service users to express 
what they can offer or what they want in a relatively easy manner. For example, 
BPMN (Business Process Modeling Notation) to BPEL translation is presented in [12] 
where the designer uses BPMN graphical notations to easily describe the process 
control flow and data flow and then it gets automatically translated to BPEL. This 
work can also be considered static in the sense that BPMN is describing the con-
trol/data flow as input. Similar work was proposed in [13] but using XPDL (XML 
Process Definition Language) which is a graph-structured language mainly used in 
internal process modeling.  However, in this work the generated outputs are abstract 
BPEL processes that are not fully executable and deployable and they need some 
manual editing to be ready for deployment. Also in [12], it is stated that it cannot 
detect all pattern types and the code produced by this transformation lacks readability. 

Our approach for automatic workflow generation presented in this paper is consi-
dered dynamic in the sense that the workflow steps and the process model that describes 
the control flow and data flow are not input by the requester but they are created auto-
matically according to the parsing of the input expression. Additionally the atomic ser-
vices used for computations are selected based on their functionality and QoS such as 
accuracy, reliability, performance and security. We assume that developers/researchers 
are using contract-based web service composition; and they are provided with the 
WSDLs representing the interfaces of the available services and their characteristics. 
Our proposed framework depends on the service-oriented architecture where large-scale 
mathematical computations are offered as services and this differs from other distributed 
execution engines like MapReduce [23] or DryadLINQ [24]. 

3 Overview of the Proposed Framework 

We can think of the problem of mathematical expression to workflow transformation 
with analogy to the compilation process [15]. In software compilation, the compiler 
compiles a program into intermediate form, optimizes intermediate form and generates 
target code for the running architecture. In hardware compilation, the compiler 
compiles an HDL model into a sequencing graph, optimizes the sequencing graph and 
generates gate-level interconnection for a cell library [16].  

In our framework of distributed mathematical expression evaluation using services 
on the web or on the clouds, the end-user (researcher/developer) enters a mathematical 
expression (e.g.ܣ כ ൅ ܤ ܥ  כ  following a specific grammar such as XPath grammar (ܦ
or JEP (Java Expression Parser) [14].  The expression is then compiled to an 
intermediate form of a parsed expression tree. This intermediate form is optimized and 
then the workflow is generated to coordinate the execution of services on the 
distributed environment. We focus on mathematical expressions but the framework can 
be extended to more generic computation models.  
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The main components of our proposed framework are depicted in Fig. 1. First, the 
developer/researcher inputs the expression and the resources' references corresponding 
to the aliases of the operands (i.e., the location where each operand is stored). A 
configuration file specifies additional parameters such as the registry address where the 
WSDLs of the services are stored. These WSDLs serve as the interface to the external 
cloud services to be invoked or composed in the generated BPEL process. A parser 
parses the input mathematical expression into an expression tree. An optimizer then 
transforms the tree to a more consolidate form based on data locality of operands and 
identifies independent operations that can be done in parallel. The optimizer also 
annotates the nodes of the tree based on their types (operands vs. operators). Then the 
translator traverses the tree and maps the tree parts to corresponding BPEL activities. 
Attributes of these activities like the partner link to the service to invoke, the values of 
the input variables to this service and their types are initialized according to the 
annotations set by the optimizer. The output of the translator is a BPEL process 
accompanied by a deployment descriptor so that it can be deployed to a BPEL engine 
for execution. In the next section we present formal definitions and explain in more 
details the different steps of the automation process. 

4 From Expression to BPEL 

Before we go through the automation steps in details, it is important to formally define 
the following key terms: computation services, operations, operands and expression 
trees. 

 
Definition 1: [Computation Services] are defined as a set of services S = {s1,s2,…sn}, n 
≥ 1 where each si  S is defined by [ id, ௦ܱ೔ ௦೔ܵ݋ܳ ,  ] where id is the unique service 
identifier (e.g. the URL of the service) and  ௦ܱ೔  is a set of operations ሼ݋௝௦೔ሽ provided by 
si. Each ݋௝௦೔ א  ௦ܱ೔  is further defined by its input, output and port type (ܺ௢ೕೞ೔  , ௢ܻೕೞ೔ ,ܲ ௢ܶೕೞ೔) where 1 ≤ j ≤ ห ௦ܱ೔ห. ܳܵ݋௦೔  is the set of quality of service parameters for each 

service si: < ௜ܲ , ,௜ܦ ௜ݎ , ܽ௜ ൐ where  ௜ܲ  is the set of execution price for all ݋௝௦೔ ௦ܱ೔ א  ௜ܦ ,  is 
the set of expected execution durations for all ݋௝௦೔  ௜ is the reliability and ܽ௜ is theݎ ,
availability of the overall service. 
 

In our framework the service definitions are obtained from a local registry by 
parsing the corresponding WSDL files.  

 
Definition 2: [Operators] are the set of predefined tokens representing unary and 
binary operations on matrices such as addition, subtraction, multiplication, dot product, 
inverse of a matrix and transpose of a matrix: ܱ ൌ ሼ ൅, െ, ,כ ., െ, ^ିଵ, ′ ሽ.  

 
Definition 3: [Operands] are the set of input literals ܮ used in the input mathematical 
expression, ܮ ൌ ሼ ݈ଵ, ݈ଶ, . . . ݈௠ሽ where each  ݈௞ is an alias for a resource matrix ܯ௞ with 
metadata (location, nRows, nCols, datatype). The  ሺ݈௞ ,  ௞ሻ mapping tuples are storedܯ
to a hash map so-called LM. 
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Fig. 1. Mathematical expression to BPEL workflow generation 

Definition 4: [Expression Tree] is the binary tree obtained from parsing the input 
string expression and is defined by ሺݐ݋݋ݎ, ܰ, ܰ ሻ whereܥ ൌ ሼ݊ଵ, ݊ଶ … ݊௪ሽ is the set of 
tree nodes, ݊௧ א   ሼܱ, א ݐ݋݋ݎ ,ሽܮ ܥ ݀݊ܽ ܰ ൌ ሼ ሺ݊௨, ݊௩ሻ, ሺ݊௨, ݊௖ሻ … . ሽ represents the 
connections between the nodes, where ሺ݊௨, ݊௩ሻ means ݊௨ is a parent of ݊௩. The 
following conditions apply: 

 ݐ݋݋ݎ is the only node with no parents. 
 The leaf nodes must belong to ܮ. 
 Internal nodes belong to O, a hash map OS maps each operator node ݊௧ א ܱ to the service ݏ௞ א ܵ offering this operation and being selected to 

do the operation according to data locality, concurrency considerations and 
QoS parameters. 

 Each node has at most two direct children. 
 Methods ݈݂݁ݐሺ݊௧ሻ and ݐ݄݃݅ݎሺ݊௧ሻ get the left and right child of node ݊௧. 

Given these definitions, we discuss next expression-to-BPEL translation steps in 
more details.  

4.1 Expression Parser 

Parsers have undergone significant progress and can now be automatically generated 
from a simple specification of the language (i.e., BNF grammar). This can be done 
using one of the existing parser generators like YACC, Bison or ANLTR. There are 
two main approaches to building parsers that are used in practice: top-down (also 
known as recursive descent or LL and its variant LL(*) [17] used by ANTLR) and 
bottom-up (aka shift-reduce, LR and its variant LALR used by YACC and Bison).  

In our work, we use the open-source JEP which implements the Shunting-yard 
algorithm that is considered a bottom-up parser and is used to convert the human-
readable infix notation to RPN (Reverse Polish Notation) that is optimized for 
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expression evaluation. The output of this step is a left-deep parse tree, an example is 
shown in Fig. 2(a). 

4.2 Tree Optimization 

The goal of tree optimization is to maximize parallel execution of independent opera-
tions within the expression and minimize overall evaluation time. The time is mainly 
composed of two factors: the computation time for the operations run by the different 
services, and the data transfer time for matrix resources that need to be moved from 
one location to another in the distributed environment. As a first step, we assume that 
all the servers implement all the operations and have similar computation capabilities 
and quality of service characteristics. In this context, the tree execution cost is meas-
ured by the data transfer cost. 

For an expression tree of ࢞ operator nodes and a set S of  ࢔ available servers all 
implementing services for these operators, there are ࢞࢔ possible execution plans to 
select services from S to execute the ࢞ operations. The order in which to invoke these 
x operations makes the search space even larger.  Using exhaustive search to select 
the optimal plan in this space becomes practically impossible when the expression 
size increases. We refer to the query optimization problem in distributed databases 
that have similar conditions to get an optimal query execution plan [19, 20] where 
projection is done before join and joins of collocated tables are done first to decrease 
the data to be transferred, cost-optimization techniques are used to choose the optimal 
execution plan. 

We narrow down the search space using the matrix locality information, where we 
favor operations involving collocated matrices. The basic principle is that matrices 
that are co-located in storage must be close to each other in the tree whenever it is 
possible. To do so, we use properties of commutativity, associativity and distributivity 
of the different operators to identify chains of commutative operators (e.g., matrix 
addition) and chains of associative operators (e.g., matrix multiplication). We sort the 
commutative chains based on the data locations. In this way, collocated matrices 
would be close and put into parenthesis to be operands of the same operator. We also 
use matrix size as a tie break for associative chains (i.e., we prefer to put together into 
parenthesis the operands of which the multiplication leads to smaller-size matrices). 
This problem is the same as the matrix chain multiplication problem [18] and has a 
well-known dynamic programming solution which we modified its score to favor 
doing computations for collocated matrices first. 

To simplify the explanation of the optimization procedure we consider as example 
the expression ࡭ ൅ ࡮ ൅ ࡯ כ ࡰ כ ࡱ ൅ ࡲ ൅ -and the size-location description shown in Ta ࡳ
ble 1. The optimization of this expression is shown in Fig. 2. Fig. 2(a) represents the 
tree as output by the parser. In Fig. 2(b) we use the associative property of multiplica-
tion to do D*E first as matrix D and matrix E both belong to server S1 and must be 
given priority to decrease data transfer. Similarly the commutative property of addi-
tion is used to swap matrix B and matrix F. Indeed matrix A and matrix F both belong 
to server S1 and can be locally added without additional data transfer. 

Note that within the same sub-tree, well known compiler optimization techniques 
for arithmetic expressions are used to optimize further the execution and identify 
independent sequences of operations that can be done in parallel. There are a lot of 
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optimization techniques for arithmetic expressions, like tree-height reduction, factori-
zation, expansion and common sub-expression elimination [16, 17]. For example if we 
assume all the matrices belong to the same location in Fig. 2(a), tree height reduction 
would recognize that the root node must be changed so the tree height would be 4 
instead of 6.  
 
After this step is done we apply the following two-phases-traversal algorithm: 

1. The first phase: we identify independent sub-trees that can be run in parallel while 
traversing down the tree based on the two following conditions: 
─ All the nodes of a sub-tree must be hosted by the same server 
─ A sub-tree must contain as much nodes as possible. In other words, we expand a 

tree until no more nodes can be added. 
─ Each sub-tree is annotated according to the hosting server where its operations 

would be invoked so that the generated workflow invokes the services for com-
putations of the sub-trees in parallel e.g. Fig. 2(c). 

2. The second phase: going up the tree we generate the main meta-tree representing 
the final computation steps with annotations added specifying the servers selected 
to do each operation. Again the goal is to reduce the data transfer volume. So we 
choose the server where most matrices are located. The metric can be merely the 
number of matrices but preferably we select the server hosting the maximum sum 
of the sizes of the operands.  

We analyze the transfer cost in terms of the number of matrix elements which is 
practically reflected in the file size. In this simple example the transfer cost is reduced 
from 2100100 elements (if re-ordering and optimization algorithm were omitted) to 
1001000 elements. This gain is computed given the sizes depicted in Table 1 and 
assuming dense matrices. Another factor affecting the selection of services and dis-
cussed extensively in literature is the QoS parameters. For example, QoS parameters 
and techniques used in [21] can be applied to choose services with least response time 
and price. Currently our prototype is based solely on data locality and data size but we 
intend to extend it to QoS optimization as well. The last step is transforming the op-
timized tree, along with the annotations of the selected transfer and computation ser-
vices and obtaining the finally executable BPEL workflow as described next. 

Table 1. Example of a distribution of sizes and locations 

Matrix 
ID 

A B C D E F G 

Size 1000 
*1000 

1000 
*1000 

1000 
*1 

1 
*100 

100 
*1000 

1000 
*1000 

1000 
*1000 

Location S1 S2 S2 S1 S1 S1 S2 

4.3 BPEL Code Generation 

The translation task from the optimized expression tree to BPEL workflow is based on 
the mapping rules shown in Fig. 3. In the rules, ou, ov and ol represent operator nodes 
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and li, lj represent operand nodes. The rules has for mission to map the expression tree 
parts to their equivalent BPEL constructs such as assign, invoke, receive, sequence,  
and flow. BPEL Assign activity is used to exchange values between incoming and 
outgoing message variables. Invoke activity is used to do the service invocation. 
Receive activity is to receive an input message or a callback message. Sequence 
activity is to group some activities to be done in sequence. Flow activity is used when 
different sequences are to be done in parallel. Attributes of these activities like the 
partner link to the service to invoke, values of input variables to the service and their 
types are initialized according to the annotations values of the nodes (operands and 
operators:  ݊௧ א   ሼܱ,  .(ሽܮ

 

Fig. 2. Simple scenario example for tree optimization for                                   
A+B+C*D*E+F+G  (A+F) +C*(D*E)+(B+G) 



 Automatic Generation of Optimized Workflow for Distributed Computations 87 

 

The output of this transformation is a BPEL process saved to a “.bpel” file, a workflow 
interface description saved to a “.wsdl” file. This is because workflow itself is 
deployed as a web-service. A deployment descriptor saved to “deploy.xml” is also 
generated so that the workflow can be deployed to a BPEL engine for execution. 

The translation algorithm of an expression tree T to executable BPEL code that 
includes the BPEL constructs to be used and the control flow is shown in Fig. 4. The 
algorithm is a post-order traversal for the expression tree T with the mapping rules 
shown in Fig. 3 applied. The rule case (c) in Fig. 3(c) is considered the base case used 
for the recursive traversal where the tree has an operator ݋௨ א ܱ as a parent and its two 
children are operands ൛݈௜, ௝݈ൟ א  ௨ is a unary݋ or only left child ݈௜ in case where ܮ
operator. In this case, the mapping is a sequence activity that includes (assign, invoke, 
receive). The BPEL assign activity is for assigning input values for the variable used in 
the invocation. The invoke activity and then the callback receive activity are to get the 
information about the intermediate result location. The attributes of these activities are 
determined from the computation services definition S and the ܱܵ  mapping.ܱܵ ሺ݋௨ሻis 
the selected service for operation ݋௨. The ܯܮ ሺ݈௞ ,  ௞ሻ mapping is used to get theܯ
metadata of the input matrices. Case (a) occurs when the two children are operators 
which mean that the services in these two paths can be executed in parallel. This 
corresponds to the BPEL Flow construct including two sequences for the mapping of 
the two children where each child has its own scope. Case (b) occurs when one of the 
children is an operator݋௜  and the other is a literal ௝݈ which means that the mapping of ݋௜  
and ݋௨ will be a Sequence activity. A flow stack is maintained so that during traversal 
if case (a) is encountered a Flow activity is pushed into the stack and the two paths  
are executed in parallel. The activity is popped out once its left and right children 
return. 

5 Implementation and Experimentation  

We made the prototype for Mathematical Expression to BPEL (ME2BPEL) available 
at https://code.google.com/p/me2bpel/. The objective of the system is to generate a 
correct, optimized and executable BPEL workflow from the input mathematical ex-
pression and resources' references to aliases used in the expression. The inputs are 
WSDL files representing the interface to different web services on different servers 
and an expression to be evaluated with metadata about operands used in the expres-
sion provided. The whole system operation can be summarized as follows. First, the 
expression is being parsed using JEP API that uses shunting yard algorithm. Then we 
detect commutative chains and matrix multiplication chains by traversing the tree. 
Matrix multiplication chains and their order of execution are determined using the 
modified dynamic programming approach using data locality as well as matrices  
sizes. Sorting the commutative chain is done with respect to data locality and the ex-
pression tree structure is updated accordingly with annotating operator nodes for col-
located operands. The rest of operator nodes are then annotated with the location to  
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execute according to the minimum data transfer criterion. BPEL code generation is 
done according to the algorithm in Fig. 4. We modified the unified framework pack-
age [22] for generation and serialization of BPEL constructs. We used web services 
using MapReduce for matrix multiplication and addition operations that we used in 
[1] for testing. These input WSDLs are read and de-serialized using wsdl4j library. 
 

 

Fig. 3. Mapping expression tree patterns to the corresponding BPEL constructs where  
Mapping(ox) is a recursive function with case (c) as the base case 
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Fig. 4. Translation algorithm of expression tree to BPEL workflow 

The first experiment is to test for ten different expressions available on the project 
page as a sample dataset with different number of literals ranging from 4 to 10. The 
data locality optimization is not taken into consideration in this experiment and it is 
assumed that the data matrices are stored on the same server offering these web ser-
vices. Results are shown in Fig. 5 with an average speed-up (Tsequential/Tworkflow) 
of 1.8. From the results it is clear that the optimized workflow achieve better results 
for expressions with larger number of literals and which have operations that can be 
done in parallel. 
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Fig. 5. Optimized workflow execution time vs. the sequential execution time for 10 different 
expressions 

In the second experiment, we assume matrices are stored on different servers and 
according to the data locality optimization step; a service is chosen to execute a certain 
operation in an expression tree so that it minimizes the data transfer between servers. 
So we compare the time taken for data transfer being logged by the web services under 
test between the optimized workflow with web services selection according to data 
locality and random web services selection. Fig. 6 shows that for most of the 
expressions under test, the data transfer time is less when web services are selected 
according to data locality (expression 8 has all its data stored on the same server, that’s 
why no data transfer time recorded). Some cases show no improvement; this depends 
on the heterogeneity of the distributed data. 

6 Conclusion 

Web and cloud-based services evaluating large-scale mathematical operations are 
typically long running and require the composition of multiple asynchronous 
computation services. We proposed an automated workflow generation solution in 
order to coordinate and optimize the execution of these services. We show how to 
automatically generate workflows for evaluating composed expressions while taking 
into account the storage location of input matrices and minimizing the data transfer 
between servers. Our solution optimizes the run-time execution of the services 
composition by maximizing parallel calls whenever possible. We aim by this 
contribution to increase the productivity of the system users (researchers or developers) 
and equipping them with a dynamic workflow generation tool, making the system 
accessible for non-expert workflow developers. 
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For future work, we aim to incorporate QoS-based service selection. This feature 
will allow selecting the most appropriate service among functionally-equivalent 
computation services having the same score according to data locality and size of input 
data but offering different QoS guarantees. 

 

Fig. 6. Data transfer time taken by services selected according to data locality vs. random selec-
tion for different expressions 
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