Skip to main content

An Empirical Study of the Robustness of Energy-Aware Schedulers for High Performance Computing Systems under Uncertainty

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 485))

Abstract

This article presents an empirical evaluation of energy-aware schedulers under uncertainties in both the execution time of tasks and the energy consumption of the computing infrastructure. We address an important problem with direct application in current clusters and distributed computing systems, by analyzing how the list scheduling techniques proposed in a previous work behave when considering errors in the execution time estimation of tasks and realistic deviations in the power consumption. The experimental evaluation is performed over realistic workloads and scenarios, and validated by in-situ measurements using a power distribution unit. Results demonstrate that errors in real-world scenarios have a significant impact on the accuracy of the scheduling algorithms. Different online and offline scheduling approaches were evaluated, and online approach showed improvements of up to 32% in computing performance and up to 18% in energy consumption over the offline approach using the same scheduling algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, I., Ranka, S.: Handbook of Energy-Aware and Green Computing. Chapman & Hall/CRC (2012)

    Google Scholar 

  2. Ali, S., Maciejewski, A., Siegel, H., Kim, J.: Measuring the robustness of a resource allocation. IEEE Trans. Parallel Distrib. Syst. 51(7), 630–641 (2004)

    Article  Google Scholar 

  3. Bailey Lee, C., Schwartzman, Y., Hardy, J., Snavely, A.: Are user runtime estimates inherently inaccurate? In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277, pp. 253–263. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Brigham, O.: The Fast Fourier Transform. Prentice-Hall, New Jersey (1974)

    MATH  Google Scholar 

  5. Cirne, W., Berman, F.: A comprehensive model of the supercomputer workload. In: International Workshop on Workload Characterization, pp. 140–148 (2001)

    Google Scholar 

  6. Dongarra, J.: The LINPACK benchmark: An explanation. In: Proceedings of the 1st International Conference on Supercomputing, pp. 456–474 (1988)

    Google Scholar 

  7. Dorronsoro, B., Bouvry, P., Cañero, J., Maciejewski, A., Siegel, H.: Multi-objective robust static mapping of independent tasks on grids. In: IEEE Congress on Evolutionary Computation, pp. 3389–3396 (2010)

    Google Scholar 

  8. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel job scheduling a status report. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277, pp. 1–16. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Ghafoor, A., Yang, J.: Distributed heterogeneous supercomputing management system. IEEE Comput. 26(6), 78–86 (1993)

    Article  Google Scholar 

  10. Kafil, M., Ahmad, I.: Optimal task assignment in heterogeneous distributed computing systems. IEEE Concurrency 6(3), 42–51 (1998)

    Article  Google Scholar 

  11. Lee, Y., Zomaya, A.: Minimizing energy consumption for precedence-constrained applications using dynamic voltage scaling. In: Proc. of the 9th International Symposium on Cluster Computing and the Grid, Shanghai, China, pp. 92–99 (2009)

    Google Scholar 

  12. Leung, J., Kelly, L., Anderson, J.H.: Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRC Press, Inc., Boca Raton (2004)

    Google Scholar 

  13. Mehta, A., Smith, J., Siegel, H., Maciejewski, A., Jayaseelan, A., Ye, B.: Dynamic resource allocation heuristics that manage tradeoff between makespan and robustness. Journal of Supercomputing, Special Issue on Grid Technology 42(1), 33–58 (2007)

    Article  Google Scholar 

  14. Minh, T.N., Wolters, L.: Using historical data to predict application runtimes on backfilling parallel systems. In: 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, pp. 246–252 (February 2010)

    Google Scholar 

  15. Mu’alem, A., Feitelson, D.: Utilization, predictability, workloads, and user runtime estimates in scheduling the ibm sp2 with backfilling. IEEE Trans. Parallel Distrib. Syst. 12(6), 529–543 (2001)

    Article  Google Scholar 

  16. Nesmachnow, S., Dorronsoro, B., Pecero, J.E., Bouvry, P.: Energy-aware scheduling on multicore heterogeneous grid computing systems. Journal of Grid Computing 11(4), 653–680 (2013)

    Article  Google Scholar 

  17. Shmueli, E., Feitelson, D.: On simulation and design of parallel-systems schedulers: Are we doing the right thing? IEEE Trans. Parallel Distrib. Syst. 20(7), 983–996 (2009)

    Article  Google Scholar 

  18. Tang, W., Desai, N., Buettner, D., Lan, Z.: Job scheduling with adjusted runtime estimates on production supercomputers. Journal of Parallel and Distributed Computing 73(7), 926–938 (2013)

    Article  Google Scholar 

  19. Tsafrir, D.: Using inaccurate estimates accurately. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS, vol. 6253, pp. 208–221. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Zhu, D., Melhem, R., Childers, B.: Scheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systems. IEEE Trans. Parallel Distrib. Syst. 14, 686–700 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iturriaga, S., García, S., Nesmachnow, S. (2014). An Empirical Study of the Robustness of Energy-Aware Schedulers for High Performance Computing Systems under Uncertainty. In: Hernández, G., et al. High Performance Computing. CARLA 2014. Communications in Computer and Information Science, vol 485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45483-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45483-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45482-4

  • Online ISBN: 978-3-662-45483-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics