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Abstract. Genetic Algorithms (GAs) are known to be valuable tools for optimi-
zation purposes. In general, GAs can find good solutions by setting their config-
uration parameters, such as mutation and crossover rates, population size, etc., to 
standard (i.e., widely used) values. In some application domains, changing the 
values of these parameters does not improve the quality of the solution, but 
might influence the ability of the algorithm to find such solution. In other appli-
cation domains, fine tuning these parameters could result into a significant im-
provement of the solution quality. In this paper we present an experimental study 
aimed at finding how fine tuning the parameters of a GA used for the insertion of 
a fragile watermark into a bitmap image influences the quality of the resulting 
digital object. However, when proposing a GA based new tool to non-expert us-
ers, selecting the best parameter setting is not an easy task. Therefore, we will 
suggest how to automatically set the GA parameters in order to meet the quality 
and/or running time performances requested by the user. 

Keywords: Information hiding · Fragile watermarking · Genetic algorithms · 
Karhunen-Loève Transform 

1 Introduction 

The digital revolution of the last decade, in which every piece of information is repre-
sented, manipulated, stored and reproduced in digital form, brought about new oppor-
tunities along with new challenges. One important issue, that is deserving a lot of 
attention in the literature, is how to determine if a digital object is genuine, i.e., it has 
not been altered with respect to its original version. 

A possible solution to ensure the protection of the media content is digital watermark-
ing [5]. In general, the watermarking process consists of two phases: the embedding 
phase and the verification phase. During embedding, the digital host object is modified to 
carry a watermark signal. Then the watermarked object is released into an environment 
that may alter it. The aim of the verification is to look for the presence of the watermark 
into the (possibly) altered object. To improve the security, in case the host object is an 
image the watermark can be embedded in transform domains like the discrete cosine 
transform (DCT) or the Karhunen-Loève transform (KLT). 
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The watermark embedded into the host object could be robust against manipula-
tions or fragile. Fragile watermarking is a particular class of schemes that uses the 
watermark to alert for any alterations induced to the host signal. There are three main 
properties required for a fragile watermarking algorithm: 1) the ability of the fragile 
watermark to detect alterations, 2) the capacity of the fragile watermark to localize the 
tampered areas and 3) the preservation of the quality of the host signal. 

In this paper we evaluate the performance of a Genetic Algorithm (GA) used for 
embedding a watermark into a bitmap image. The watermark is inserted into a secret 
space of features extracted from the image, and the GA is used to modify the pixels of 
the image in such a way that these features contain the intended watermark. In this 
way, only the entities having knowledge of the secret space will be able to detect 
modifications to the image by extracting the watermark and comparing it with the one 
that was inserted, providing a tool to check the authenticity of the image. Moreover, 
without the knowledge of the secret space it is highly unlikely to successfully tamper 
(parts of) the image without altering the watermark. 

The performance of the GA will be evaluated by varying some of its parameters 
and measuring the time required for the watermark insertion and the quality of the 
resulting images. It should be pointed out that in the presented application, the GA is 
run multiple times, depending on the size of the image to be watermarked, and we 
must use the best settings that results in lower running times and highest quality. 
Therefore, after observing the relation among quality, time and GA parameters, we 
extended the algorithm with the ability to automatically select the appropriate GA 
parameter settings in order to fulfill the user requirements in terms of quality. 

The rest of the paper is organized as follows: in the next section some previous 
works related to the use of GA for watermarking will be analyzed, while in section 3 
the watermarking algorithm will be briefly presented. Section 4 will discuss the ex-
perimental results and an analysis of the GA parameters tuning. The final section will 
draw some conclusions. 

2 GA-Based Watermarking Schemes 

There are two main techniques to improve the performances of a watermarking sys-
tem. The first is to use statistical properties during the watermark verification (e.g. in 
detection). The latter is to employ genetic optimization to find the values of the em-
bedding features that generate almost optimal performances, in terms of impercepti-
bility and efficacy. This is the most common approach, due to the simplicity of the 
technique (does not imply mathematical analysis) and the ease in adapting it to many 
different types of watermarking systems. 

Wang et al. [16] optimized a Least Significant Bit (LSB) substitution watermarking 
method with the use of GA. The insertion works in the spatial domain, and is based 
on a mapping function that is optimized by a GA in order to find one that achieves 
both robustness and imperceptibility. The fitness function takes into consideration  
the distortion induced by the watermark insertion. A similar approach is adopted by 
Wu et al. [17] who generates optimal mapping functions for finer regions (blocks) of 
the host image in order to increase the quality of the watermarked image. 
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Shieh et al. [12] introduce a GA-based watermarking in DCT domain. The water-
mark insertion is performed via the manipulation of the polarity between the water-
mark and the DCT coefficients. The GA is employed to find the DCT coefficients that 
give the optimal trade-off between robustness and image quality. The same strategy 
was used by Lu et al. [11] for the DWT coefficients to embed the watermark in a 
color image while Huang et al. [8] adopt a slight variation of [12]. 

In order to optimize a DCT-based watermarking method Díaz and Romay [6] use a 
Pareto-based Multi-Objective Genetic Algorithm. The parameters considered for the 
optimization are the DCT coefficients. The fidelity and robustness are measured di-
rectly on the selected coefficients. 

Usman et al. [15] present an algorithm that uses the DCT domain for embedding a 
fragile watermark with the purpose of content integrity. The host image is divided 
into blocks of size 8×8, and a GA is used to select five DCT coefficients per block for 
storing the watermark; at the same time, to deal with possible attacks, the non-
selected coefficients of the block and of its neighbours are also involved in the wa-
termark embedding. The GA selects the coefficients using a fitness function that con-
siders the distortion w.r.t. the host image. 

Aslantas et al. [1] compare some optimization methods by applying them to an al-
gorithm that inserts a fragile watermark into the DCT coefficients of an image. Given 
that the inverse transformation in the pixel domain may alter some of the inserted bits 
due to the integer rounding of the pixels, an optimization step is required to restore 
the correct watermark values. Differential evolution, clonal selection, particle swarm 
optimization and genetic algorithms are evaluated varying the parameters of each 
algorithm and comparing the resulting fitness values, computation times and water-
mark imperceptibility. 

Lee and Ho [9] describe the insertion of a fragile watermark in the LSBs of the 
pixels of an image. The image is divided into blocks that are classified according to 
the type of edge content (using the discrete cosine transform coefficients). The edge 
block classification is used in the fitness function of a genetic algorithm employed for 
the insertion of the watermark bits. 

Shih and Wu [13, 14] applied a GA in order to cope with rounding errors that can oc-
cur in the DCT coefficients during the embedding stage. The basic issue is that in DCT 
embedding, integer pixel values are transformed into real value DCT coefficients fol-
lowed by the insertion of the watermark. Afterwards, the watermarked coefficients are 
transformed back to integer pixel values by an inverse DCT. However, information might 
be lost due to rounding errors. The fitness function applied by the scheme is based on the 
normalized correlation (NC) between embedded and detected watermark and the distor-
tion between host and watermarked images. 

3 The Watermarking Algorithm 

Some of the previously cited papers compute a linear transform1 from pixels to a coef-
ficient space (e.g., DCT), also called frequency space or frequency domain, insert the 
watermark into the coefficients, inverse transform the coefficients into the pixel do-
main, and then use a GA to improve the quality of the watermarked image by either 
                                                           
1 For a presentation of linear transforms refer to [7]. 
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The GA usually runs for a maximum number of generations, but it can be termi-
nated as soon as a viable solution is found. The GA fitness function may take into 
account many parameters; typically, the distortion of the modified sub-image w.r.t. 
the original one is a considered factor, and the other is the fact that the modified sub-
image should store the s watermark bits. The fitness function F we used for our GA 
takes into account these two terms: the Bit Error Rate (BER), i.e., the correct extrac-
tion of the watermark bits from the KLT coefficients, and the Mean Square Error 
(MSE), i.e., the distortion w.r.t. the host image: 

 

 (2) 
 

where  >  are chosen so that if F   then BER = 0; this allows to verify if the GA 
found a viable solution. Moreover, we adopted the convention the smaller F is, the 
better the individual. 

The result of running the GA optimization on all the host sub-images is the water-
mark stored in a secret space, so it cannot be easily extracted by an attacker; more-
over, any modification to the watermarked image y will result in the modification of 
one or more watermark bits stored into the coefficients. 

A measure of the objective image quality is the Peak Signal-to-Noise Ratio (PSNR) 

computed as  (for 256 grey levels images) where m.s.e. is the 

mean square error between the host image pixels and the watermarked image pixels. 
The higher this value the better is the resulting watermarked image. 

To verify the integrity of a previously watermarked image the secret KLT basis is 
used to compute the coefficients: from these the watermark bits may be extracted as 
specified in (1), and compared to the original ones; possibly differing bits reveal a 
tampering. 

4 Experimental Results 

Almost all previously cited works did not perform a thorough analysis and tuning of 
GA parameters, but just reported the used settings. In a previous study [4], we also 
focused on the analysis of the watermarking algorithm properties, by setting the GA 
parameters to default values (population size=100, mutation probability pm=0.05, 
crossover probability pc=0.8, terminate if best individual does not change in the last 
10 generations or 2000 generations reached) and obtaining good quality results (PSNR 
between 53 and 54 dB). 

Here we evaluate the performances of the proposed algorithm and further investi-
gate whether a wise selection of parameters for the GA may further improve the 
quality of the resulting watermarked images. 

We ran a large number of experiments, for a total of more than 90000 watermarked 
images, on about 100 different combinations of the four GA parameters we studied in 
this paper, namely population size, number of stable generations (i.e. the minimum 
number of generations the best solution found so far by the GA does not improve), 
mutation and crossover probabilities, and collected quality and running times. 
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For every parameter combination, we report average values computed by inserting 
a watermark of 8 bits per block (of size 8×8) into 1000 images taken from OPTIMOL 
[10]: the images are 256 gray levels bitmaps of 256×256 pixels. All experiments have 
been performed on a set of workstations, each equipped with 4GB RAM and an In-
tel(R) Xeon(R) E5410 2.33GHz processor. As a multi-dimensional plot would not be 
easily readable, we will project some of the results obtained along the dimensions we 
investigated and show simpler plots. 

4.1 Convergence Ability 

In this application we faced two aspects of convergence: for some sub-images there is 
a large number of easy reachable solutions and the GA might premature converge to a 
local minima, while for other sub-images a solution might not even exist, and the GA 
does not converge at all. To address the premature convergence issue, we varied the 
number of stable generations as we report in the following. For what concern the se-
cond issue, Figure 2 reports the number of images for which the GA failed to find a 
solution: with population sizes smaller than 50, even setting 70 stable generations, 
there are a few images on which the GA fails. We also noted that with mutation prob-
ability smaller than 0.03 the algorithm does not find a solution in all the cases, even 
setting population size = 100 and stable generations = 70. 

 

 

Fig. 2. The covergence of the algorithm vs the size of the population, varying the number of 
stable generations required to terminate. The labels report the number of images the GA failed 
for 70 stable generations. 

As we would not allow for GA failures (i.e., we want that the watermark is always 
carried by the image after running the algorithm), we performed experiments and 
report results for population sizes larger than 50 individuals and pm  0.03. 
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4.2 Image Quality 

The first experiment was aimed at analyzing how smaller populations than the default 
(100) influence the performances of the algorithm, in order to find an optimal trade-
off between quality and running time. Moreover, for every population size, we varied 
the number of stable generations, from 0 (stops as soon as a solution is found) to 70 
(stops when the best solution does not change for 70 consecutive generations), in 
steps of 10. Figure 3(a) reports the average quality of the watermarked images as a 
function of population size (different lines) and number of stable generations, by set-
ting pc = 0.8 and pm = 0.05 (similar behaviours were obtained with other combinations 
of pc and pm). As expected, increasing the GA population size slightly improves the 
quality of the resulting images, but the gain becomes less meaningful for increasingly 
larger populations. This is probably due to the fact that the exploration ability of the 
GA in this context does not depend so much on the number of individuals, but rather 
on other GA parameters. Indeed, as it can be seen from Figure 3(a), the PSNR in-
creases by 6 dB for an increasing number of stable generations in which the GA was 
left running after having reached a solution. This behavior was not anticipated even 
though it is not really surprising: the fitness function we used has a lot of local mini-
ma, so by letting the GA run for longer, a better solution can be found. Anyway, by 
analyzing the running times (see Figure 3(b)) larger populations and larger number of 
stable generations result in longer running times. It should be pointed out that there is 
a linear correlation between PSNR and time, on one side, and population size and 
stable generations on the other side. We will exploit these correlations later on. 
 

 
Fig. 3. The PSNR (a) and Running Time (b) vs the number of stable generations, varying the 
size of the population, pc = 0.8, pm = 0.05 

4.3 Crossover Probability 

Figure 4(a) shows the influence of the crossover probability on the image quality. 
Again, the population size has been set to 100, stable generations to 10 and the muta-
tion probability varies between 0.03 and 0.06. We note that large crossover probabili-
ties do not significantly increase the PSNR of the watermarked images, as crossing 
good individuals better explores solutions that may be quasi optimal. Running times 
are not very affected by crossover probability (Figure 4(b)), even though pc=0.9 is 
consistently faster than pc=0.8. 

 

 (a) (b) 
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Fig. 4. (a) The watermarked image quality (measured in dB) vs the crossover probability and 
(b) the average running time for one image vs the crossover probability 

4.4 Mutation Probability 

Figure 5 reports the quality and running times of the watermarked images when vary-
ing the mutation probability used by the GA, and by setting the population size to 
100, stable generations to 10 and pc from 0.6 to 0.9 (in steps of 0.1). As pointed out 
above for mutation probabilities lower than 0.03, the algorithm does not always find a 
solution. Both PSNR and running times decrease with larger mutation probabilities, so 
the algorithm is faster but with lower quality. This is due to the fact that once a solu-
tion is found, it is likely that it remains the best for the requested stable generations, 
as new offsprings will undergo mutation at a higher rate and explore far from optimal 
solutions. There is no significant difference in terms of PSNR, even though pc = 0.8 is 
faster than the other settings for increasing values of pm; nonetheless a value of pm 
larger than 0.04 worsen the achievable results. 

 

 
Fig. 5. (a) Quality of the watermarked images (in terms of PSNR) vs the probability of 
mutation. (b) Running time (for a single image) of the insertion algorithm vs the probability of 
mutation. 

 

 (a) (b) 

 

 (a) (b) 
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4.5 Sensitivity to Modifications 

Given that the objective of fragile image watermarking is the detection of unauthor-
ized pixel modifications, a set of tests aimed at verifying the ability of the algorithm 
to detect modifications to a single pixel in an image block were performed. In particu-
lar, we wanted to verify if the images with increased quality (i.e. PSNR) obtained 
from a fine tuning of the GA parameters, were still bearing a watermark able to detect 
the modification of a single pixel by a single gray level. Figure 6 reports the percent-
age of image blocks from which an alteration of a single pixel (by ±1 gray level, Fig-
ure 6(a), and ±2 gray levels, Figure 6(b)) was detected by the verification algorithm. 

As it can be seen the sensitivity does not significantly increase for increasing popu-
lations for small number of stable generations, while for larger values of stable genera-
tions the sensitivity of the detection algorithm raises of 6-8% for ±1 and 3% for ±2. We 
can conclude that a larger number of stable generations not only results in higher quali-
ty watermarked images, but also increases the probability of detecting alterations. 
 

 
Fig. 6. The percentage of recognized tampered blocks (changing the gray level by ±1 (a) and by 
±2 (b)) vs the size of the population, varying the number of generations required for a stable 
fitness value, pc = 0.8, pm = 0.05 

5 Discussion and Conclusions 

The GA-based optimization techniques have been efficiently applied in many differ-
ent watermarking scenarios. A base line watermarking system, due to its modular 
nature, can be easily extended to incorporate a GA. 

However, the use of a GA rises several important concerns such as the dimension-
ality of the parameters to be adjusted in order to achieve an optimum tradeoff between 
robustness and quality, the time overhead, and the statistic assumption (i.e., Gaussian) 
of the host signal and noise source. Moreover, for a non-expert user to optimally set 
GA parameters is even more difficult. 

In this paper, by fine tuning the parameters of the GA, we significantly improved 
(> 5dB) the performances of a watermarking system without affecting the sensitivity 
of the embedded watermark, but at the expense of larger computation times. It should 
be pointed out that from a pure statistical point of view, all the reported results are 
statistically significant (p<0.0001), due to the large number of images used for testing, 
but from an application point of view, only changes of PSNR greater than 1dB can be 
considered a real improvement. 
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found that changing the common GA parameters, such as mutation and crossover 
probabilities or population size, does not influence the performances as much as 
changing the number of stable generations. We think that this is mainly due to the fact 
that the optimization problem has a large number of solutions, so finding a viable one 
is pretty simple, but letting the GA running for more generations helps improving the 
quality of the solution returned. This should be taken into consideration when using 
GAs in other application domains in which there are a lot of possible solutions. 

As future work, we are planning to investigate the implications of automatically 
choose different GA parameter settings for different sub-images, by predicting the 
effort necessary to store the watermark bits in each of them, instead of using the same 
configuration on every sub-image. 
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