Skip to main content

Sequence-Based Prediction of Protein-Protein Binding Residues in Alpha-Helical Membrane Proteins

  • Conference paper
Pattern Recognition (CCPR 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 484))

Included in the following conference series:

  • 2370 Accesses

Abstract

A specific number of chains form alpha-helical membrane protein complexes in order to realize the biochemical function, i.e. as gateways to decide whether specific substances can be transported across the membrane or not. However, few structures of membrane proteins have been solved. The knowledge of protein-protein binding residues can help biologists figure out how the function works and solve the 3D structures.

We present a novel, sequence-based method to predict protein-protein binding residues from primary protein sequences by machine learning classifiers. We use a support vector regression model to predict relative solvent accessibility by features based on sequences, including position specific scoring matrix, conserved score, z-coordinate prediction, second structure prediction, physical parameter and sequence length. Afterwards, combining features mentioned above with the predicted solvent accessibility, we use ensemble support vector machines to predict protein-protein binding residues. To the best of our knowledge, there is no method to predict protein-protein binding residues in alpha-helical membrane proteins. Our method outperforms MAdaBoost successfully used in predicting protein-ligand binding residues and random forest used in protein-protein binding residues from surface residues. We also assess the importance of each individual type of features. PSSM profile and conserved score are shown to be more effective to predict protein-protein binding residues in alpha-helical membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almén, M.S., Nordström, K.J.V., Fredriksson, R., et al.: Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biology 7(1), 50 (2009)

    Article  Google Scholar 

  2. Kozma, D., Simon, I., Tusnády, G.E.: PDBTM: Protein Data Bank of transmembrane proteins after 8 years. Nucleic Acids Research 41(D1), D524–D529 (2013)

    Google Scholar 

  3. Yarov-Yarovoy, V., Schonbrun, J., Baker, D.: Multipass membrane protein structure prediction using Rosetta. Proteins: Structure, Function, and Bioinformatics 62(4), 1010–1025 (2006)

    Article  Google Scholar 

  4. Nugent, T., Jones, D.T.: Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis [J]. Proceedings of the National Academy of Sciences 109(24), E1540–E1547 (2012)

    Google Scholar 

  5. Weiner, B.E., Woetzel, N., Karakaş, M., et al.: BCL: MP-fold: folding membrane proteins through assembly of transmembrane helices. Structure 21(7), 1107–1117 (2013)

    Article  Google Scholar 

  6. Chen, K., Mizianty, M.J., Kurgan, L.: ATPsite: sequence-based prediction of ATP-binding residues. Proteome Sci. 9(suppl. 1), S4 (2011)

    Google Scholar 

  7. Yu, D., Hu, J., Yang, J., et al.: Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering (2013)

    Google Scholar 

  8. Bordner, A.J.: Predicting protein-protein binding sites in membrane proteins. BMC Bioinformatics 10(1), 312 (2009)

    Article  Google Scholar 

  9. Adamczak, R., Porollo, A., Meller, J.: Accurate prediction of solvent accessibility using neural networks–based regression. Proteins: Structure, Function, and Bioinformatics 56(4), 753–767 (2004)

    Article  Google Scholar 

  10. Illergård, K., Callegari, S., Elofsson, A.: MPRAP: An accessibility predictor for a-helical transmem-brane proteins that performs well inside and outside the membrane. BMC Bioinformatics 11(1), 333 (2010)

    Article  Google Scholar 

  11. Hubbard, S.J.T.J.: NACCESS, Computer program. Department of Biochemistry and Molecular Biology 1, 1–2 (1993), http://wolf.bi.umist.ac.uk/unix/naccess.html

    Google Scholar 

  12. McGuffin, L.J., Bryson, K., Jones, D.T.: PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000)

    Article  Google Scholar 

  13. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  14. Granseth, E., Viklund, H., Elofsson, A.: ZPRED: predicting the distance to the membrane center for residues in alpha-helical membrane proteins. Bioinformatics 22(14), e191-e196 (2006)

    Google Scholar 

  15. Mayrose, I., Graur, D., Ben-Tal, N., Pupko, T.: Comparison of site-specific rate-inference methods: Bayesian methods are superior. Mol. Biol. Evol. 21, 1781–1791 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiao, F., Shen, HB. (2014). Sequence-Based Prediction of Protein-Protein Binding Residues in Alpha-Helical Membrane Proteins. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45643-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45643-9_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45642-2

  • Online ISBN: 978-3-662-45643-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics