Skip to main content

Kernel-Distance Target Alignment

  • Conference paper
  • 5081 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 483))

Abstract

The success of kernel methods are dependent on the kernel, thus a choice of a kernel and proper setting of its parameters are crucial importance. Learning a kernel from the data requires evaluation measures to assess the quality of the kernel. In this paper, we propose a new measure named kernel distance target alignment (KDTA). The measure retains the property of state-of-the-art evaluation measures, kernel target alignment (KTA) and feature space-based kernel matrix evaluation measure (FSM), additionally overcomes the limitation of them. Comparative experiments indicate that the new measure is a good indication of the superiority of a kernel and can get better parameter of RBF kernel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baram, Y.: Learning by kernel polarization. Neural Computation 17, 1264–1275 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Camargo, J.E., González, F.A.: A multi-class kernel alignment method for image collection summarization. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 545–552. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Chudzian, P.: Evaluation measures for kernel optimization. Pattern Recognition Letters 33, 1108–1116 (2012)

    Article  Google Scholar 

  4. Cristianini, N., Shawe-Taylor, J., Elisseeff, A., Kandola, J.: On kernel-target alignment. In: Advances in Neural Information Processing Systems, vol. 14, pp. 367–373 (2001)

    Google Scholar 

  5. Girolami, M., Rogers, S.: Hierarchic bayesian models for kernel learning. In: Proceedings of the 22nd Internatinoal Conference on Machine Learning, pp. 241–248. Springer, Bonn (2005)

    Google Scholar 

  6. Gönen, M., Alpaydin, E.: Multiple kernel learning algorithms. Journal of Machine Learning Research 12, 2211–2268 (2011)

    MATH  Google Scholar 

  7. Hoi, S.C., Lyu, M.R., Chang, E.Y.: Learning the unified kernel machines for classification. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 187–196. Springer, Philadelphia (2006)

    Chapter  Google Scholar 

  8. Igel, C., Glasmachers, T., Mersch, B., Pfeifer, N., Meinicke, P.: Gradient-based optimization of kernel-target aligment for sequence kernels applied to bacterial gene start detections. IEEE Transactions on Computational Biology and Bioinformatics 4(2), 216–226 (2007)

    Article  Google Scholar 

  9. Lesot, M.J., Rifqi, M.: Similarity measures for binary and numerical data: A survey. International Journal of Knowledge Engineering and Soft Data Paradigms 1(1), 63–84 (2009)

    Article  Google Scholar 

  10. Nguyen, C.H., Ho, T.B.: An efficient kernel matrix evaluation measure. Pattern Recognition 41, 3366–3372 (2008)

    Article  MATH  Google Scholar 

  11. Ong, C.S., Smola, A.J., Williamson, R.C.: Learning the kernel with hyperkernels. Journal of Machine Learning Research 6, 1043–1071 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Ramona, M., Richard, G., David, B.: Multiclass feature selection with kernel gram-matrix-based criteria. IEEE Transactions on Neural Networks and Learning Systems 23(10), 1611–1623 (2012)

    Article  Google Scholar 

  13. Schölkopf, B.: The kernel trick for distance. In: Advances in Neural Information Processing Systems, vol. 13, pp. 301–307 (2001)

    Google Scholar 

  14. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  15. Wang, T., Tian, S., Huang, H., Deng, D.: Learning by local kernel polarization. Neurocomputing 72, 3077–3084 (2009)

    Article  Google Scholar 

  16. Wang, T., Zhao, D., Tian, S.: An overview of kernel alignment and its applications. Artificial Intelligence Review (November 2012)

    Google Scholar 

  17. Wong, W.W., Burkowski, F.J.: Using kernel alignment to select features of molecular descriptors in a qsar study. IEEE Transactions on Computational Biology and Bioinformatics 8(5), 1373–1384 (2011)

    Article  Google Scholar 

  18. Xiong, H., Swamy, M.N.S., Ahmad, M.O.: Optimizing the kernel in the empirical feature space. IEEE Transactions on Neural Networks 16(3), 461–474 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, P., Dongfeng, C. (2014). Kernel-Distance Target Alignment. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45646-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45646-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45645-3

  • Online ISBN: 978-3-662-45646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics