Skip to main content

A Manifold Learning Fusion Algorithm Based on Distance and Angle Preservation

  • Conference paper
Pattern Recognition (CCPR 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 483))

Included in the following conference series:

  • 5086 Accesses

Abstract

Each manifold learning algorithm has its own advantages and applicable situations. And it is an important question that how to select out the best one as the result. To this end, a manifold learning fusion algorithm is proposed to select out the best one from multiple results yielded by different manifold learning algorithms according to an equation of criterion. Moreover, a kind of local optimal technique is used to optimize the embedded result. By combining the advantages of classical manifold learning algorithms that preserve some properties effectively and the better preservation to distance and angle, our algorithm can yield a more satisfactory result to almost all kind of manifolds. The effectiveness and stability of our algorithm are further confirmed by some experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jolliffe, I.T.: Principal Component Analysis. Springer (1986)

    Google Scholar 

  2. Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7, 179–188 (1936)

    Article  Google Scholar 

  3. He, X., Niyogi, P.: Locality Preserving Projections. In: Advances in Neural Information Processing Systems, pp. 37–44. MIT Press, Cambridge (2003)

    Google Scholar 

  4. He, X., Cai, D., Yan, S., Zhang, H.: Neighborhood Preserving Embedding. Computer Vision, 1208–1213 (2005)

    Google Scholar 

  5. Kokiopoulou, E., Saad, Y.: Orthogonal Neighborhood Preserving Projections: A Projection-Based Dimensionality Reduction Technique. Pattern Analysis and Machine Intelligence 29(12), 2143–2156 (2007)

    Article  Google Scholar 

  6. Zhang, T., Yang, J., Zhao, D., Ge, X.: Linear Local Tangent Space Alignment and Application to Face Recognition. Neurocomputing 70, 1547–1553 (2007)

    Article  Google Scholar 

  7. Goldberg, Y., Zakai, A., Kushnir, D., Ritov, Y.: Manifold Learning: The Price of Normalization. Machine Learning Research 9, 1909–1939 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Rosman, G., Bronstein, M.M., Bronstein, A.M., Kimmel, R.: Nonlinear Dimensionality Reduction by Topologically Constrained Isometric Embedding. Computer Vision 89, 56–68 (2010)

    Article  Google Scholar 

  9. Lin, T., Zha, H.B.: Riemannian Manifold Learning. Pattern Analysis and Machine Intelligence 30(5), 796–809 (2008)

    Article  Google Scholar 

  10. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(5000), 2219–2323 (2000)

    Google Scholar 

  11. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(5000), 2323–2326 (2000)

    Article  Google Scholar 

  12. Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally Linear Embedding Techniques for High-dimensional Data. Proceedings of the National Academy of Sciences 100(10), 5591–5599 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhang, Z.Y., Zha, H.Y.: Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment. SLAM Journal of Scientific Computing 26(1), 313–338 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation 15, 1373–1396 (2002)

    Article  Google Scholar 

  15. Weinberger, K.Q., Sha, F., Saul, L.K.: Learning a Kernal Matrix for Nonlinear Dimensionality Reduction. In: Proc. 21st ICML, pp. 839–846 (2004)

    Google Scholar 

  16. Coifman, R.R., Lafon, S.: Diffusion Maps. Applied and Computational Harmonic Ayalysis 21, 5–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sha, F., Saul, L.K.: Analysis and Extension of Spectral Methods for Nonlinear Dimensionality Reduction. In: Proc. 22nd Int’l Conf. Machine Learning, pp. 785–792 (2005)

    Google Scholar 

  18. Gashler, M., Ventura, D., Martinez, T.: Manifold Learning by Graduated Optimization. System, Man, and Cybernetics-Part B: Bybernetics 41(6), 1458–1470 (2011)

    Article  Google Scholar 

  19. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948 (2005)

    Google Scholar 

  20. Mani Data set, http://www.math.ucla.edu/~wittman/mani/index.html

  21. Frey Faces Data Set, http://www.cs.nyu.edu/~roweis/data.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gu, Y., Zhang, D., Ma, Z., Niu, G. (2014). A Manifold Learning Fusion Algorithm Based on Distance and Angle Preservation. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45646-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45646-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45645-3

  • Online ISBN: 978-3-662-45646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics