Skip to main content

Stochastic Sensitivity Oversampling Technique for Imbalanced Data

  • Conference paper
  • First Online:
Machine Learning and Cybernetics (ICMLC 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 481))

Included in the following conference series:

Abstract

Data level technique is proved to be effective in imbalance learning. The SMOTE is a famous oversampling technique generating synthetic minority samples by linear interpolation between adjacent minorities. However, it becomes inefficiency for datasets with sparse distributions. In this paper, we propose the Stochastic Sensitivity Oversampling (SSO) which generates synthetic samples following Gaussian distributions in the Q-union of minority samples. The Q-union is the union of Q-neighborhoods (hypercubes centered at minority samples) and such that new samples are synthesized around minority samples. Experimental results show that the proposed algorithm performs well on most of datasets, especially those with a sparse distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. He, H., Garcia, E.: Learning from imbalanced data. IEEE Transactions on Data and Knowledge Engineering 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  2. Ng, W.W.Y., He, Z.-M., Yeung, D.S., Chan, P.P.K.: Steganalysis Classifier Training via Minimizing Sensitivity for Different Imaging Source. Information Science, 211–224 (2014)

    Google Scholar 

  3. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: Synthetic Minority Over-sampling Technique. J. of Artifical Intelligence Research 16, 341–378 (2002)

    Google Scholar 

  4. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 475–482. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Maciejewski, T., Stefanowski, J.: Local neighbourhood extension of smote for mining imbalanced data. In: Proceedings of 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 104 –111 (2011)

    Google Scholar 

  7. Yeung, D.S., Ng, W.W.Y., Wang, D., Tsang, E.C.C., Wang, X.-Z.: Localized Generalization Error and Its Application to Architecture Selection for Radial Basis Function Neural Network. IEEE Trans. on Neural Networks 18, 1294–1305 (2007)

    Article  Google Scholar 

  8. Tejchman, J., Kozicki, J.: General. In: Tejchman, J., Kozicki, J. (eds.) Experimental and Theoretical Investigations of Steel-Fibrous Concrete. SSGG, vol. 3, pp. 3–26. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Chan, P.P.K., Ng, W.W.Y., Yeung, D.S.: Active Learning using Localized Generalization Error of Candidate Sample as Criterion. In: IEEE Proceedings of International Conference on Systems, Man and Cybernetics, pp. 3604–3609 (2005)

    Google Scholar 

  10. Yeung, D.S., Zhang, Y., Ng, W.W.Y., Chen, Q.-C.: Active Learning using Localized Generalization Error for Text Categorization. In: Proceedings of International Conference on Machine Learning and Cybernetics, pp. 2686–2691 (2006)

    Google Scholar 

  11. Ng, W.W.Y., Yeung, D.S., Cloete, I.: Input Sample Selection for RBF Neural Network Classification Problems using Sensitivity Measure In: IEEE Proceedings of International Conference on Systems, Man and Cybernetics, pp. 2593—2598 (2003)

    Google Scholar 

  12. Wilson D.R., Martinez, TR.: Improved heterogeneous distance functions. arXiv preprint cs/9701101 (1997)

    Google Scholar 

  13. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University (2003)

    Google Scholar 

  14. Sun, B., Ng, W.W.Y., Yeung, D.S., Wang, J.: Localized Generalization Error based Active Learning for Image Annotation. In: IEEE Proceedings of International Conference on Systems, Man and Cybernetics, pp. 60–65 (2008)

    Google Scholar 

  15. Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Data Mining Researchers Technical Report HPL-2003-4, HP Labs (2003)

    Google Scholar 

  16. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., et al.: RUSBoost: A hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 40(1), 185–197 (2010)

    Article  Google Scholar 

  17. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(2), 539–550 (2009)

    Article  Google Scholar 

  18. Mani, I, Zhang, I.: kNN approach to unbalanced data distributions: a case study involving information extraction. In: Proceedings of Workshop on Learning from Imbalanced Datasets (2003)

    Google Scholar 

  19. Kubat, M., Matwin, S.: Addressing the Curse of Imbalanced Training Sets: One-sided Selection//ICML. 97, 179–186 (1997)

    Google Scholar 

  20. Van Hulse, J., Khoshgoftaar, T.: Knowledge discovery from imbalanced and noisy data. Data & Knowledge Engineering 68(12), 1513–1542 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongwen Rong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rong, T., Gong, H., Ng, W.W.Y. (2014). Stochastic Sensitivity Oversampling Technique for Imbalanced Data. In: Wang, X., Pedrycz, W., Chan, P., He, Q. (eds) Machine Learning and Cybernetics. ICMLC 2014. Communications in Computer and Information Science, vol 481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45652-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45652-1_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45651-4

  • Online ISBN: 978-3-662-45652-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics