Skip to main content

Adiabatic CMOS: Limits of Reversible Energy Recovery and First Steps for Design Automation

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8911))

Abstract

Standard CMOS technology discards all signal energy during every switching cycle, leading to heat generation that limits the operating speed and the achievable computing performance. Energy-recovery schemes avoid the heat generation, but are often burdened with the cost of significant increase in system complexity and the lack of automated design tools. In this paper, we propose to implement adiabatic CMOS circuits utilizing split-level rails and Bennett clocking, which enable energy-recovery in standard CMOS logic gates with only minor modifications. Using a pessimistic 32 nm bulk MOSFET technology model, a switching energy improvement factor of approximately 10X can be reached over standard CMOS, while we predict that emerging low-leakage transistor technologies potentially enable adiabatic energy improvements up to four orders-of–magnitude over the standard approach. The significant end-result of our method is that we can leverage the huge number of existing standard gate libraries and logic designs for energy-recovery circuits. We outline an approach to integrate the automatic generation of the adiabatic circuits into the standard circuit design flow, including standard gate logic synthesis and place-and-route.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ITRS, International Technology Roadmap for Semiconductors, ITRS report (2012). http://www.itrs.net/Links/2012ITRS/Home2012.html

  2. Starosel’skii, V.I.: Adiabatic logic circuits: A review. Russ. Microelectron. 31(1), 37–58 (2001) http://dx.doi.org/10.1023/A:1013857006906

  3. Valiev, K.A.: Starosel’skii, V.I.: A model and properties of a thermodynamically reversible logic gate. Russ. Microelectron. 29(2), 83–98 (2000)

    Article  Google Scholar 

  4. Younis, S.G.: Asymptotically Zero Energy Computing Using Split-Level Charge Recovery Logic. Ph.D. Thesis. http://dspace.mit.edu/handle/1721.1/7058

  5. Lent, C.S., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240–4251 (2006)

    Article  Google Scholar 

  6. Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)

    Article  Google Scholar 

  7. Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011)

    Article  Google Scholar 

  8. Patterson, D.: The trouble with multicore. IEEE Spectr. 47, 28–32 (2010)

    Article  Google Scholar 

  9. Esmaeilzadeh, H., Blem, E., Amant, R., Sankaralingam, K., Burger, D.: Dark silicon and the end of multicore scaling. In: 38th Annual International Symposium on Computer Architecture. pp. 365–376. ACM, San Jose, CA (2011)

    Google Scholar 

  10. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  11. Costello, D.J., Forney, G.D.: Channel coding: The road to channel capacity. Proc. IEEE 95, 1150–1177 (2007)

    Article  Google Scholar 

  12. Sathe, S.A.V., Ouyang, C., Papaefthymiou, M., Ishii, A., Naffziger, S.: Resonant clock design for a power-efficient high-volume x86-64 microprocessor. In: 2012 IEEE International Solid-State Circuits Conference (ISSCC). p. 68–70. IEEE, San Francisco, CA (2012)

    Google Scholar 

  13. Athas, W.C., Svensson, L.J., Koller, J.G., Tzartzanis, N., Chou, E.Y.-C.: Low-power digital systems based on adiabatic-switching principles. IEEE Trans. VLSI Syst. 2(4), 398–407 (1994)

    Article  Google Scholar 

  14. Ferrary, A.: Adiabatic Switching, Adiabatic Logic, 20 March 1966

    Google Scholar 

  15. Younis, S.G., Knight, T.F.: Asymptotically zero energy split-level charge recovery logic. In: Proceedings of 1994 International Workshop on Low Power Design, pp. 177–182 (1994)

    Google Scholar 

  16. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MATH  Google Scholar 

  17. Predictive Technology Model (PTM) library of the Arizona State University, Nano-CMOS. http://ptm.asu.edu/

  18. Linear Technology LTspice IV, version 4.20i. http://www.linear.com/designtools/software/

Download references

Acknowledgments

This work was supported in part by the National Science Foundation, grant number CHE-1124762.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismo Hänninen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hänninen, I., Snider, G.L., Lent, C.S. (2014). Adiabatic CMOS: Limits of Reversible Energy Recovery and First Steps for Design Automation. In: Gavrilova, M., Tan, C., Thapliyal, H., Ranganathan, N. (eds) Transactions on Computational Science XXIV. Lecture Notes in Computer Science(), vol 8911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45711-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45711-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45710-8

  • Online ISBN: 978-3-662-45711-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics