
A Method for Defining Human-Machine Micro-Task

Workflows for Gathering Legal Information

Nuno Luz
1
, Nuno Silva

1
, Paulo Novais

2

1 GECAD (Knowledge Engineering and Decision Support Group), Polytechnic of Porto

Porto, Portugal

{nmalu,nps}@isep.ipp.pt
2 CCTC (Computer Science and Technology Center), University of Minho

Braga, Portugal

pjon@di.uminho.pt

Abstract. With the growing popularity of micro-task crowdsourcing platforms,

new workflow-based micro-task crowdsourcing approaches are starting to

emerge. Such workflows occur in legal, political and conflict resolution do-

mains as well, presenting new challenges, namely in micro-task specification

and human-machine interaction, which result mostly from the flow of unstruc-

tured data. Domain ontologies provide the structure and semantics required to

describe the data flowing throughout the workflow in a way understandable to

both humans and machines. This paper presents a method for the construction

of micro-task workflows from legal domain ontologies. The method is currently

being employed in the context of the UMCourt project in order to formulate in-

formation retrieval and conflict resolution workflows.

Keywords: Legal Crowdsourcing, Micro-Tasks, Workflows, Relational Law

1 Introduction

Several experiments in different domains have shown that micro-task crowdsourcing

has great potential for solving large scale problems that are often difficult for comput-

ers to solve automatically, on their own [1]. These problems usually require a degree

of creativity or just common sense plus some background knowledge [2, 3]. The in-

terpretation and recognition of images and natural language are two examples of these

kinds of problems.

Crowdsourcing platforms like Mechanical Turk, CloudCrowd, ShortTask and

CrowdFlower are widely used for tasks such as (i) categorization and classification,

(ii) data collection (e.g., finding a website address), (iii) moderation and tagging of

images, (iv) surveys, (v) transcription from multimedia content (e.g., audio, video and

images), and (vi) text translation.

More recently, a special interest in employing crowdsourcing towards solving

complex tasks has emerged [4–9]. Following the trend of the current crowdsourcing

platforms, which feature the execution of single micro-tasks, this interest has led to

mailto:pjon@di.uminho.pt

the emergence of new approaches built upon workflows of micro-tasks. The model-

ling of such workflows allows the crowdsourcing of a new kind of more complex

tasks (e.g., selecting and buying a video camera, recommending points of interest),

which require the ordered execution of multiple types of micro-tasks.

Among these complex tasks are mediation processes often employed in relational

law, which focuses on “justice produced through cooperative behavior, agreement,

negotiation, or dialogue among actors in a post-conflict situation” [10]. The ordered

execution of micro-tasks by individuals and groups selected from crowds not only

results in cooperative solutions, but can also be used to implement conflict resolution

and negotiation strategies in a wide scale. As a form of collective intelligence, the

resulting data can be interpreted as a wide scale consensus or truth regarding a specif-

ic domain or topic, relevant to the law or case under scrutiny.

Micro-task workflows present new challenges at different dimensions of the

crowdsourcing process, namely in micro-task specification and human-machine inter-

action [4, 5]. In particular, micro-task workflow approaches like CrowdForge [5],

Jabberwocky [4] and Turkomatic [6] employ divide-and-conquer and map reduce

strategies to build workflows. This usually involves workflows that include tasks for

(i) the partitioning of the complex task (partition tasks), (ii) the execution of the parti-

tioned tasks (map tasks), and (iii) the aggregation of results (reduce tasks).

However, in most cases, task (or micro-task) responses are unstructured and in nat-

ural language. Furthermore, micro-task interfaces are built using markup languages

that contain little or no meta-data, making it difficult for machine micro-tasks to be

included in the workflow.

The unstructured nature of micro-tasks in terms of domain representation makes it

difficult (i) for task requesters not familiar with the crowdsourcing platform to build

complex micro-task workflows and (ii) to include machine workers in the workflow

execution process [11]. Furthermore, while some of the micro-tasks in the workflow

are better performed by humans, others are better performed by a machine, which is

seldom explicitly defined.

As stated by Obrst et al. [12], ontologies “represent the best answer to the demand

for intelligent systems that operate closer to the human conceptual level”. Domain

ontologies are not only able to describe the domain knowledge, but also to describe

workflow micro-tasks and the data flowing through them in a way understandable to

both humans and machines.

Considering these, a method for the construction of human-machine micro-task

workflow ontologies is proposed. Although the method is intended for the construc-

tion of crowdsourced micro-task workflows, it can be employed to build workflow

ontologies for other types of applications. Possible domains of application include

legal information retrieval and legal conflict resolution [13–16]. In the particular case

of mediation in relational law, the essential requirements are (i) to harness structured

and semantically enriched information (ii) from a crowd or group of actors. While

current crowdsourcing approaches, like CrowdForge and Jabberwocky, tackle the

distribution and crowdsourcing of micro-tasks, the resulting data is often found poorly

structured or in natural language.

In this sense, the ultimate goal of this method is to define a set of ground rules for

the assisted construction of workflow definition ontologies from domain ontologies.

A top-level workflow definition ontology is presented, upon which any workflow

execution and task distribution engine can be implemented. The resulting workflow

definition ontology defines the domain and rules for each task, along with the rela-

tionships between the input and output data in and between tasks.

The following sections of this paper start with a brief overview of crowdsourcing

terminology and ontology-related background knowledge. Section 3 describes the

proposed workflow construction method in four parts: (i) domain ontologies, (ii) the

Onto2Flow ontology, (iii) micro-task specification, and (iv) workflow specification.

Finally, conclusions are given along with some remarks on the future directions of

this work.

2 Background Knowledge

2.1 Micro-Task Workflows in Crowdsourcing

The terminology employed in the crowdsourcing domain often varies from platform

to platform. In the context of this paper, a job (or a complex task) contains a work-

flow of tasks (or micro-tasks), along with all the data required for its execution. Mi-

cro-tasks (e.g., tag an image), as seen by the crowdsourcing community, have one or

more units of work as input (e.g., the images to be tagged). Each of these units will be

assigned to one or more workers, which must then submit a response (e.g., the tag-

ging of the image). Multiple assignments of the same unit to different workers allow

redundancy and quality improvements of the overall result after the aggregation of

responses is performed.

Furthermore, the aggregation of responses often takes into account units for which

a correct response is already known. These units are often referred to as reference

units. Workers that give incorrect or invalid responses to reference units suffer credi-

bility penalties, and their responses have significantly less impact in the final result.

Typically, in crowdsourcing platforms such as Mechanical Turk, human workers

choose whether to perform the specific task according to the given (often monetary)

reward. In some cases, the requesters of the task may require workers with certain

expertise and qualifications, which are given after the worker successfully solves a

qualification task.

Through the analysis of the evolution of crowdsourcing platforms, it is possible to

conclude that an effort towards structured (sets of) tasks is being made. While early

crowdsourcing platforms such as MTurk, CrowdFlower, MicroWorkers and Cloud-

Crowd have added template construction features, more recent platforms and frame-

works such as CrowdForge, Jabberwocky, Turkomatic and Turkit have tackled this

emerging need through different workflow representations and construction strategies.

Table 1 presents a comparison of several crowdsourcing approaches. Each ap-

proach is compared according to five different dimensions. These dimensions reflect

if the approach (i) relies on its own crowd or in multiple (possibly external) crowds,

(ii) supports complex tasks, (iii) employs any task construction strategy, (iv) employs

worker and result assessment strategies, and (v) employs result aggregation strategies

when redundancy (multiple responses for the same unit) is found.

Table 1. Comparison of crowdsourcing platforms.

System Relies on
Complex

Tasks

Task

Strategy

Worker

Assessment
Aggregation

MTurk Self No
Task Tem-

plates

Qualification

Tests
Manual

CrowdFlower Several No
Task Tem-

plates
Gold Units Yes

ShortTask Self No
Task Tem-

plates
Manual Manual

MicroWorkers Self No
Task Tem-

plates
Manual N/A

CloudCrowd Self - -

Credential

Tests and

Credibility

-

CrowdForge MTurk Workflows Map Reduce (MTurks’) Yes

Jabberwocky
Self/Seve

ral
Workflows Map Reduce User Profiles Yes

Turkomatic MTurk Workflows
Divide and

Conquer
(MTurks’)

Yes (Work-

ers)

Turkit MTurk Workflows
Crash and

Rerun
(MTurks’)

Yes (Work-

ers)

2.2 Ontologies in Description Logics

In this paper, Description Logics (DL) knowledge bases and ontologies with ALCOQ

expressivity are considered (see fig. 1). A DL knowledge base contains a TBox (ter-

minological box) and an ABox (assertion box) [17], where the TBox contains all the

concepts and relationships that define a specific domain, and the ABox contains the

instances or individuals defined according to the elements in the TBox. It is assumed

that ontology is synonym of TBox.

Each concept (e.g., C, D) is defined according to other concepts (e.g., C ⊔ D) and

property restrictions (e.g., ∃R.D) that define the necessary (e.g., C ⊑ ∃R.D), and nec-

essary and sufficient (e.g., C ≡ ∃R.D) conditions for an individual to be an instance of

the concept.

There are two main types of properties: object properties and data-type properties.

While object properties relate instances (or individuals) with other instances, data-

type properties relate instances with “primitive” type values (e.g., integer, string, dou-

ble, date, time).

Fig. 1. TBox concept description syntax and rules with ALCOQ expressivity.

3 The Workflow Specification Method

Micro-tasks, whether they involve physical actions or not, can be seen as a process

that, in a specific context, results in the emergence of new data (responses) from the

presentation of other particular pieces of data (units) to a worker. Analogously, a

workflow of micro-tasks is the continuous ordered increment of new (different types

of) data, in a specific context or domain.

The proposed method suggests that micro-task responses correspond to new in-

stances of concepts (or classes) in the domain ontology, associated with input (unit)

instances of domain ontology concepts. Thereafter, a micro-task can be considered to

be the instantiation of domain classes and the specification of new relationships be-

tween instances according to the domain ontology. A workflow of micro-tasks is then

considered as the incremental instantiation of the domain ontology according to its

structure and semantics.

With the assumption that domain ontologies represent the structure and semantics

of the data that must be presented and retrieved from workers during the execution of

a task, workflow ontologies extend both the Onto2Flow and domain ontologies (see

fig. 2).

Workflow ontologies are instantiated and executed by a workflow engine that is

able to interpret the ontology according to the ground rules established by the pro-

posed method. During the workflow execution, the input is given as an ABox de-

scribed by the domain ontology. The output of the workflow will be described by the

domain ontology and, in some situations, operational concepts and properties of the

workflow ontology.

The ground rules established by the proposed method must be employed during the

workflow construction step (1) and followed during the instantiation and execution

step (2).

Fig. 2. Workflow construction and execution steps.

3.1 Domain Ontologies

Workflow ontologies capture the tasks/operations of a certain process, and the dy-

namic nature of a domain. The static structure and semantics of the specific

knowledge domain, on the other hand, are captured by domain ontologies in the form

of concepts and their relations.

Fig. 3. The document ontology (TBox only) with a possible example ABox (or instantiation).

The TBox is an adaptation from the DoCO (Document Components) ontology1.

Unlike workflow ontologies, domain ontologies are very common and accessible.

Inclusively, their structure can be analysed and employed in the construction of work-

flow ontologies.

Consider the document ontology and example ABox presented in fig. 3. The graph

structure of the TBox defines the known properties of instances in the ABox. Follow-

ing the restrictions specified in this structure, the incremental filling of the ABox is

possible through the execution of several atomic operations (micro-tasks). In the spe-

1 DoCO: http://purl.org/spar/doco/

cific case of the document ontology, an initial ABox with English sections may be

supplied as input to the workflow, resulting in translated Portuguese sections. Since

the ontology contains the semantics for the subdivision of sections, some of the work-

flow micro-tasks may consider their subdivision into smaller units (e.g., paragraphs,

sentences).

Translation is a typical domain of application in crowdsourcing, however, the pro-

posed method can be applied in other domains that may or may not be currently in the

scope of crowdsourcing. A partial simplification of a possible legal ontology, depicted

in fig. 4, describes such a domain. The concepts and relationships in this ontology can

be used to establish workflows that inquire a crowd about past legal cases (e.g., abu-

sive discharge cases) in order to gather information for new ones.

Fig. 4. A possible partial legal ontology (TBox only) with an example ABox (or instantiation).

3.2 The Onto2Flow Ontology

The Onto2Flow ontology captures the structure and semantics of workflows (see fig.

5). The main concepts are: Task, Assignment, Requester and Worker (either Machine

or Person). This ontology is further extended and its concepts refined in the workflow

ontology as required by the domain of application.

Assignments correspond to the execution of a task by a worker, for a single unit of

work. The properties that define the domain of a task are:

 unit – defines the set of instances (class) that constitute the input of the task (only

one property restriction allowed);

 unitContext – defines the input context classes of the task;

 response – defines the set of instances (class) that constitute the output of the task

(only one property restriction allowed);

 responseContext – defines the output context classes of the task.

The different types of atomic operations (or micro-tasks) that can be performed are

specified in the ontology through sub-classes of Task. As presented in fig. 5, the On-

to2Flow ontology currently defines four atomic operations associated with the clas-

ses: CreateAndFillTask, FillTask, SelectionTask and AggregationTask.

CreateAndFillTask instances will result in new instances of the response class, for

which all data-type property values will be requested to the worker.

A FillTask will request data-type property values for already existent instances of

the unit class.

SelectionTask instances will result in the definition of new relationships between

already existent instances in the ABox, i.e., no new response instances will be created.

Instead, they will be selected by the worker from a set of possible responses.

Fig. 5. Partial representation of the Onto2Flow ontology with Task sub-classes for atomic oper-

ations.

If more than one assignment per unit is demanded, the execution of the task will result

in several possible Output ABoxes for each unit. In these situations, an aggregation of

the responses must be performed through an AggregationTask. AggregationTasks

consider the context, unit and response classes of the previous task. Furthermore, any

number of AggregationTask sub-classes may be included in order to implement dif-

ferent aggregation strategies (e.g., majority voting, assessment-based).

Requesters may define the set of workers that may participate in the task through

the performableBy property. In order to restrict or create worker roles, new Worker

(Person or Machine) sub-classes may be created with restrictions applied to their

properties (e.g., ∃country.{portugal}).

The performedBy property is established only after the worker accepts to partici-

pate in the task.

3.3 Defining Micro-Tasks

A workflow ontology describes a workflow that can be instantiated multiple times.

The workflow ontology must import and extend the Onto2Flow ontology. Domain

concepts must either be defined in the workflow ontology, or imported from a domain

ontology (as depicted in fig. 2). The following parts of this document assume that

domain concepts are always imported from an external domain ontology.

Fig. 6. Structure of a basic micro-task in a workflow. Relationships between T and UC/RC

were omitted from the figure since they are similar to those between A and UC/RC.

In order to build the workflow ontology, the requester must extend the Task, Assign-

ment and Worker classes from the Onto2Flow ontology, and any class from the do-

main ontology. Fig. 6 depicts the ontological structure of a simple micro-task.

A micro-task specification is an explicit partial TBox in the workflow ontology

with, at least, the following terminological axioms:

 ⊑ ∃ ∃

 ⊑ ∃

 ⊑

The specification of an UC is not mandatory and is done through the following termi-

nological axioms:

 ⊑ ∃

 ⊑

 ⊑

 ⊑ ∃ or ⊑ ∃ (optional)

C and D are classes in the domain ontology. UC represents the subset of C instances

that constitute the input of T. RC represents instances of D, which are output of T. If

no additional property restrictions are defined on UC, any instance of C in the input

ABox is also considered to be an instance of UC.

A establishes an n-ary relationship between UC and RC, which reflects the opera-

tional semantics of all R. R are object property restrictions (from properties and re-

strictions typically present in the domain ontology) that establish a direct correspond-

ence between UC and RC (or vice-versa).

If the requester needs to select specific target workers for the task, a sub-class of

Worker (⊑ , where C represents a property restriction

onto the W class) must be created.

The Task Domain TBox represents a partial copy of the domain ontology contain-

ing only the necessary classes and relationships: those required as input and those for

which new instances and relationships will be established.

Unit Context Classes. In some situations, the requester needs to provide additional

contextual information, given through related domain classes, to the worker. For these

tasks, unit context classes (UCCs) may be specified. The set of all UC, UCCs, and

their relationships form the Input TBox. The Input TBox defines the set of rules that

will filter the input data from the given ABox. For instance, the following rule would

filter the input of the task according to the Input TBox structure presented in fig. 7:

 (() () () () ())

Any number of UCCs may be included in the Input TBox, with any type of relation-

ships between them and to/from the UC or RC.

Relationships to/from the RC (e.g. T) are established during the execution of the

task.

Fig. 7. Structure of a micro-task with unit context classes.

Response Context Classes. Response context classes (RCCs) establish property re-

strictions onto the RC that must be followed by the worker (as in fig. 8). An RCC

represents a subset of input instances (it is a sub-class of an UCC) that were chosen

by the worker as property values for an RC instance. The mandatory sub-class-of

relationship between the RCC and the UCC is considered a dependency.

Fig. 8. Structure of a micro-task with response context classes for establishing RC property

restrictions.

Dependency relationships indicate that instances of the UCC are candidate instanc-

es of the RCC. In this sense, the worker will have to select which instances of UCC

will become instances of RCC, related to RC through the property in the specified

restriction, U.

An RCC is defined through an UCC (where E is a class from the domain ontology)

as:

 ⊑ ∃

 ⊑

 ⊑

Dependencies on the Response Class. When building SelectionTask and FillTask

tasks, the requester must establish a dependency between the RC and one of the Input

TBox classes (the UC or an UCC) (see fig. 9 for an example with a SelectionTask).

For SelectionTask tasks, the dependency must be established between the RC and

an UCC. Analogous to paths established through RCCs, it means that the worker will

have to select the appropriate RC instance(s) from the set of instances given by the

UCC. The selected instance(s) will become the response of the assignment.

Fig. 9. Structure of a SelectionTask task with a dependency between the RC and an UCC.

An RC dependency for SelectionTasks is defined (where D is a class from the domain

ontology) as:

 ⊑

 ⊑

For FillTask tasks, the dependency can be established between the RC and either the

UC or an UCC. It means that the worker will have to fill the data-type properties for

existent instances of the UC or UCC.

Considering IC any class that may be the UC or an UCC, an RC dependency for

FillTasks is defined (where D is a class from the domain ontology) as:

 ⊑

 ⊑

3.4 Defining Workflows of Micro-Tasks

Workflows of micro-tasks are defined through dependency relationships between

Task Domain TBoxes. A micro-task A is dependent (or follows) a micro-task B if

there is at least one dependency relationship between the Input TBox of A and the

Task Domain TBox of B.

Dependency relationships between micro-tasks are used to infer the next relation-

ship and to optimize the resulting workflow. The optimization process includes the

parallelization of independent tasks.

Fig. 10. Example of a CreateAndFillTask micro-task workflow built according to the transla-

tion ontology that (i) partitions sections into paragraph, (ii) translates paragraphs, and (iii) as-

sembles paragraph translations into translated sections.

Fig. 10 depicts a section translation micro-task workflow that applies a divide-and-

conquer strategy. The Section and Paragraph domain classes from the translation

ontology, along with their relationships, are exploited in the workflow ontology in

order to define each of the CreateAndFillTask tasks T1, T2 and T3. Dependencies

exist between T2 and T1, between T3 and T2, and between T3 and T1. The transitive

closure of the inter-task dependency relation results in the workflow structure reflect-

ed by the next relationship. In this case, the three tasks are executed in the sequential

order: T1, T2 and T3.

The legal information retrieval workflow, presented in fig. 11, is built from the par-

tial legal ontology in fig. 4. It depicts a situation where an expert (e.g., a lawyer) is

assessing the possibilities to take legal action against a company on behalf of a cus-

tomer [18].

The first task, T1, is a CreateAndFillTask micro-task that asks an entity or crowd

for instances of abusive discharge cases. For each given case, the worker(s) must also

fill all datatype properties of the AbusiveDischargeCase concept. The second task, T2,

is a CreateAndFillTask micro-task where the entity or crowd must, for each case pre-

viously submitted, provide information on the defence and prosecution parties in-

volved. Finally, on task T3, workers submit information on reported abuses for each

case submitted in T1.

These types of information retrieval workflows allow legal parties to collect infor-

mation on previous instances of legal procedures. The retrieved information is struc-

tured and enriched with the semantics of legal domain ontologies.

Fig. 11. Example of a micro-task workflow built according to a legal ontology that (i) asks for

instances of abusive discharge cases, (ii) requests information about the legal parties involved

in each case and (iii) asks for reported abuses in each case.

4 Conclusions and Future Work

The proposed method tackles the challenge of building micro-task workflows while

promoting human-machine cooperation through high-level, declarative and semanti-

cally explicit domain ontology models.

Although the process of manually building micro-task workflows requires some

degree of domain expertise and knowledge of the Onto2Flow ontology, the ground

rules for creating an assisted workflow construction process were defined.

Since domain ontologies are interpretable by humans and machines, micro-tasks

can be solved by either or both human and machine workers.

Future work includes the creation of an assisted micro-task workflow construction

process, which automates the construction of workflows through the detection of

ontology patterns and their aggregation into different strategies. The evolution of the

Onto2Flow ontology, in order to assimilate concepts often found in workflow defini-

tion languages (e.g., Gateway, Loop, Event), is also considered. Furthermore, the

proposed method is being employed in the context of the UMCourt project [13, 14] in

order to further evaluate its impact in legal use cases.

Acknowledgements. This work is part-funded by FEDER Funds, by the ERDF (Eu-

ropean Regional Development Fund) through the COMPETE Programme (operation-

al programme for competitiveness) and by National Funds through the FCT (Portu-

guese Foundation for Science and Technology) within the project FCOMP-01-0124-

FEDER-028980 (PTDC/EEI-SII/1386/2012). The work of Nuno Luz is supported by

the doctoral grant SFRH/BD/70302/2010.

References

1. Von Ahn L (2009) Human Computation. 46th ACM IEEE Des. Autom. Conf. pp 418–419

2. Chklovski T (2003) Learner: A System for Acquiring Commonsense Knowledge by Anal-

ogy. Proc. 2nd ACM Int. Conf. Knowl. Capture. Sanibel Island, FL, USA, pp 4–12

3. Singh P, Lin T, Mueller ET, et al. (2002) Open Mind Common Sense: Knowledge Acqui-

sition from the General Public. Move Meaningful Internet Syst. 2002 CoopIS DOA

ODBASE. Springer, pp 1223–1237

4. Ahmad S, Battle A, Malkani Z, Kamvar S (2011) The Jabberwocky Programming Envi-

ronment for Structured Social Computing. Proc. 24th Annu. ACM Symp. User Interface

Softw. Technol. Santa Barbara, CA, USA, pp 53–64

5. Kittur A, Smus B, Khamkar S, Kraut RE (2011) Crowdforge: Crowdsourcing Complex

Work. Proc. 24th Annu. ACM Symp. User Interface Softw. Technol. Santa Barbara, CA,

USA, pp 43–52

6. Kulkarni AP, Can M, Hartmann B (2011) Turkomatic: Automatic Recursive Task and

Workflow Design for Mechanical Turk. Proc. 2011 Annu. Conf. Ext. Abstr. Hum. Factors

Comput. Syst. Vancouver, BC, Canada, pp 2053–2058

7. Little G, Chilton LB, Goldman M, Miller RC (2010) Turkit: Human Computation Algo-

rithms on Mechanical Turk. Proc. 23rd Annu. ACM Symp. User Interface Softw. Technol.

New York, NY, USA, pp 57–66

8. Luz N, Silva N, Maio P, Novais P (2012) Ontology Alignment through Argumentation.

2012 AAAI Spring Symp. Ser.

9. Sarasua C, Simperl E, Noy NF (2012) CrowdMap: Crowdsourcing Ontology Alignment

with Microtasks. Semantic Web – ISWC 2012. Springer, pp 525–541

10. Casanovas P (2009) The Future of Law: Relational Justice, Web Services and Second-

generation Semantic Web. Legal Information and Communication Technologies 7:137–

156.

11. Quinn AJ, Bederson BB (2011) Human Computation: A Survey and Taxonomy of a

Growing Field. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. ACM, New York, NY,

USA, pp 1403–1412

12. Obrst L, Liu H, Wray R (2003) Ontologies for Corporate Web Applications. AI Mag

24:49.

13. Carneiro D, Novais P, Andrade F, et al. (2013) Using Case-Based Reasoning and Princi-

pled Negotiation to provide decision support for dispute resolution. Knowl Inf Syst

36:789–826.

14. Novais P, Carneiro D, Gomes M, Neves J (2013) The relationship between stress and con-

flict handling style in an ODR environment. New Front. Artif. Intell. Springer, pp 125–140

15. Casanovas P (2012) Legal crowdsourcing and relational law: What the semantic web can

do for legal education. J Australas Law Teach Assoc 5:159–176.

16. Poblet M, Casanovas P, Cobo JML, Casellas N (2011) ODR, Ontologies, and Web 2.0. J

UCS 17:618–634.

17. Baader F, Calvanese D, McGuinness DL, et al. (2007) The Description Logic Handbook:

Theory, Implementation, and Applications, 2nd ed. Cambridge University Press

18. Gangemi A, Presutti V, Blomqvist E (2011) The Computational Ontology Perspective:

Design Patterns for Web Ontologies. Approaches Leg. Ontol. Springer, pp 201–217

