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Abstract. With the growing popularity of micro-task crowdsourcing platforms, 

new workflow-based micro-task crowdsourcing approaches are starting to 

emerge. Such workflows occur in legal, political and conflict resolution do-

mains as well, presenting new challenges, namely in micro-task specification 

and human-machine interaction, which result mostly from the flow of unstruc-

tured data. Domain ontologies provide the structure and semantics required to 

describe the data flowing throughout the workflow in a way understandable to 

both humans and machines. This paper presents a method for the construction 

of micro-task workflows from legal domain ontologies. The method is currently 

being employed in the context of the UMCourt project in order to formulate in-

formation retrieval and conflict resolution workflows. 
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1 Introduction 

Several experiments in different domains have shown that micro-task crowdsourcing 

has great potential for solving large scale problems that are often difficult for comput-

ers to solve automatically, on their own [1]. These problems usually require a degree 

of creativity or just common sense plus some background knowledge [2, 3]. The in-

terpretation and recognition of images and natural language are two examples of these 

kinds of problems. 

Crowdsourcing platforms like Mechanical Turk, CloudCrowd, ShortTask and 

CrowdFlower are widely used for tasks such as (i) categorization and classification, 

(ii) data collection (e.g., finding a website address), (iii) moderation and tagging of 

images, (iv) surveys, (v) transcription from multimedia content (e.g., audio, video and 

images), and (vi) text translation. 

More recently, a special interest in employing crowdsourcing towards solving 

complex tasks has emerged [4–9]. Following the trend of the current crowdsourcing 

platforms, which feature the execution of single micro-tasks, this interest has led to 
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the emergence of new approaches built upon workflows of micro-tasks. The model-

ling of such workflows allows the crowdsourcing of a new kind of more complex 

tasks (e.g., selecting and buying a video camera, recommending points of interest), 

which require the ordered execution of multiple types of micro-tasks. 

Among these complex tasks are mediation processes often employed in relational 

law, which focuses on “justice produced through cooperative behavior, agreement, 

negotiation, or dialogue among actors in a post-conflict situation” [10]. The ordered 

execution of micro-tasks by individuals and groups selected from crowds not only 

results in cooperative solutions, but can also be used to implement conflict resolution 

and negotiation strategies in a wide scale. As a form of collective intelligence, the 

resulting data can be interpreted as a wide scale consensus or truth regarding a specif-

ic domain or topic, relevant to the law or case under scrutiny. 

Micro-task workflows present new challenges at different dimensions of the 

crowdsourcing process, namely in micro-task specification and human-machine inter-

action [4, 5]. In particular, micro-task workflow approaches like CrowdForge [5], 

Jabberwocky [4] and Turkomatic [6] employ divide-and-conquer and map reduce 

strategies to build workflows. This usually involves workflows that include tasks for 

(i) the partitioning of the complex task (partition tasks), (ii) the execution of the parti-

tioned tasks (map tasks), and (iii) the aggregation of results (reduce tasks). 

However, in most cases, task (or micro-task) responses are unstructured and in nat-

ural language. Furthermore, micro-task interfaces are built using markup languages 

that contain little or no meta-data, making it difficult for machine micro-tasks to be 

included in the workflow.  

The unstructured nature of micro-tasks in terms of domain representation makes it 

difficult (i) for task requesters not familiar with the crowdsourcing platform to build 

complex micro-task workflows and (ii) to include machine workers in the workflow 

execution process [11]. Furthermore, while some of the micro-tasks in the workflow 

are better performed by humans, others are better performed by a machine, which is 

seldom explicitly defined. 

As stated by Obrst et al. [12], ontologies “represent the best answer to the demand 

for intelligent systems that operate closer to the human conceptual level”. Domain 

ontologies are not only able to describe the domain knowledge, but also to describe 

workflow micro-tasks and the data flowing through them in a way understandable to 

both humans and machines. 

Considering these, a method for the construction of human-machine micro-task 

workflow ontologies is proposed. Although the method is intended for the construc-

tion of crowdsourced micro-task workflows, it can be employed to build workflow 

ontologies for other types of applications. Possible domains of application include 

legal information retrieval and legal conflict resolution [13–16]. In the particular case 

of mediation in relational law, the essential requirements are (i) to harness structured 

and semantically enriched information (ii) from a crowd or group of actors. While 

current crowdsourcing approaches, like CrowdForge and Jabberwocky, tackle the 

distribution and crowdsourcing of micro-tasks, the resulting data is often found poorly 

structured or in natural language.   



In this sense, the ultimate goal of this method is to define a set of ground rules for 

the assisted construction of workflow definition ontologies from domain ontologies. 

A top-level workflow definition ontology is presented, upon which any workflow 

execution and task distribution engine can be implemented. The resulting workflow 

definition ontology defines the domain and rules for each task, along with the rela-

tionships between the input and output data in and between tasks. 

The following sections of this paper start with a brief overview of crowdsourcing 

terminology and ontology-related background knowledge. Section 3 describes the 

proposed workflow construction method in four parts: (i) domain ontologies, (ii) the 

Onto2Flow ontology, (iii) micro-task specification, and (iv) workflow specification. 

Finally, conclusions are given along with some remarks on the future directions of 

this work. 

2 Background Knowledge 

2.1 Micro-Task Workflows in Crowdsourcing 

The terminology employed in the crowdsourcing domain often varies from platform 

to platform. In the context of this paper, a job (or a complex task) contains a work-

flow of tasks (or micro-tasks), along with all the data required for its execution. Mi-

cro-tasks (e.g., tag an image), as seen by the crowdsourcing community, have one or 

more units of work as input (e.g., the images to be tagged). Each of these units will be 

assigned to one or more workers, which must then submit a response (e.g., the tag-

ging of the image). Multiple assignments of the same unit to different workers allow 

redundancy and quality improvements of the overall result after the aggregation of 

responses is performed.  

Furthermore, the aggregation of responses often takes into account units for which 

a correct response is already known. These units are often referred to as reference 

units. Workers that give incorrect or invalid responses to reference units suffer credi-

bility penalties, and their responses have significantly less impact in the final result.  

Typically, in crowdsourcing platforms such as Mechanical Turk, human workers 

choose whether to perform the specific task according to the given (often monetary) 

reward. In some cases, the requesters of the task may require workers with certain 

expertise and qualifications, which are given after the worker successfully solves a 

qualification task. 

Through the analysis of the evolution of crowdsourcing platforms, it is possible to 

conclude that an effort towards structured (sets of) tasks is being made. While early 

crowdsourcing platforms such as MTurk, CrowdFlower, MicroWorkers and Cloud-

Crowd have added template construction features, more recent platforms and frame-

works such as CrowdForge, Jabberwocky, Turkomatic and Turkit have tackled this 

emerging need through different workflow representations and construction strategies. 

Table 1 presents a comparison of several crowdsourcing approaches. Each ap-

proach is compared according to five different dimensions. These dimensions reflect 

if the approach (i) relies on its own crowd or in multiple (possibly external) crowds, 

(ii) supports complex tasks, (iii) employs any task construction strategy, (iv) employs 



worker and result assessment strategies, and (v) employs result aggregation strategies 

when redundancy (multiple responses for the same unit) is found. 

Table 1. Comparison of crowdsourcing platforms. 

System Relies on 
Complex 

Tasks 

Task 

Strategy 

Worker 

Assessment 
Aggregation 

MTurk Self No 
Task Tem-

plates 

Qualification 

Tests 
Manual 

CrowdFlower Several No 
Task Tem-

plates 
Gold Units Yes 

ShortTask Self No 
Task Tem-

plates 
Manual Manual 

MicroWorkers Self No 
Task Tem-

plates 
Manual N/A 

CloudCrowd Self - - 

Credential 

Tests and 

Credibility 

- 

CrowdForge MTurk Workflows Map Reduce (MTurks’) Yes 

Jabberwocky 
Self/Seve

ral 
Workflows Map Reduce User Profiles Yes 

Turkomatic MTurk Workflows 
Divide and 

Conquer 
(MTurks’) 

Yes (Work-

ers) 

Turkit MTurk Workflows 
Crash and 

Rerun 
(MTurks’) 

Yes (Work-

ers) 

2.2 Ontologies in Description Logics 

In this paper, Description Logics (DL) knowledge bases and ontologies with ALCOQ 

expressivity are considered (see fig. 1). A DL knowledge base contains a TBox (ter-

minological box) and an ABox (assertion box) [17], where the TBox contains all the 

concepts and relationships that define a specific domain, and the ABox contains the 

instances or individuals defined according to the elements in the TBox. It is assumed 

that ontology is synonym of TBox. 

Each concept (e.g., C, D) is defined according to other concepts (e.g., C ⊔ D) and 

property restrictions (e.g., ∃R.D) that define the necessary (e.g., C ⊑ ∃R.D), and nec-

essary and sufficient (e.g., C ≡ ∃R.D) conditions for an individual to be an instance of 

the concept. 

There are two main types of properties: object properties and data-type properties. 

While object properties relate instances (or individuals) with other instances, data-

type properties relate instances with “primitive” type values (e.g., integer, string, dou-

ble, date, time). 

 



 

Fig. 1. TBox concept description syntax and rules with ALCOQ  expressivity. 

3 The Workflow Specification Method 

Micro-tasks, whether they involve physical actions or not, can be seen as a process 

that, in a specific context, results in the emergence of new data (responses) from the 

presentation of other particular pieces of data (units) to a worker. Analogously, a 

workflow of micro-tasks is the continuous ordered increment of new (different types 

of) data, in a specific context or domain. 

The proposed method suggests that micro-task responses correspond to new in-

stances of concepts (or classes) in the domain ontology, associated with input (unit) 

instances of domain ontology concepts. Thereafter, a micro-task can be considered to 

be the instantiation of domain classes and the specification of new relationships be-

tween instances according to the domain ontology. A workflow of micro-tasks is then 

considered as the incremental instantiation of the domain ontology according to its 

structure and semantics. 

With the assumption that domain ontologies represent the structure and semantics 

of the data that must be presented and retrieved from workers during the execution of 

a task, workflow ontologies extend both the Onto2Flow and domain ontologies (see 

fig. 2).  

Workflow ontologies are instantiated and executed by a workflow engine that is 

able to interpret the ontology according to the ground rules established by the pro-

posed method. During the workflow execution, the input is given as an ABox de-

scribed by the domain ontology. The output of the workflow will be described by the 

domain ontology and, in some situations, operational concepts and properties of the 

workflow ontology. 

The ground rules established by the proposed method must be employed during the 

workflow construction step (1) and followed during the instantiation and execution 

step (2).  



 

Fig. 2. Workflow construction and execution steps. 

3.1 Domain Ontologies 

Workflow ontologies capture the tasks/operations of a certain process, and the dy-

namic nature of a domain. The static structure and semantics of the specific 

knowledge domain, on the other hand, are captured by domain ontologies in the form 

of concepts and their relations. 

 

Fig. 3. The document ontology (TBox only) with a possible example ABox (or instantiation). 

The TBox is an adaptation from the DoCO (Document Components) ontology1. 

Unlike workflow ontologies, domain ontologies are very common and accessible. 

Inclusively, their structure can be analysed and employed in the construction of work-

flow ontologies. 

Consider the document ontology and example ABox presented in fig. 3. The graph 

structure of the TBox defines the known properties of instances in the ABox. Follow-

ing the restrictions specified in this structure, the incremental filling of the ABox is 

possible through the execution of several atomic operations (micro-tasks). In the spe-

                                                           
1  DoCO: http://purl.org/spar/doco/ 



cific case of the document ontology, an initial ABox with English sections may be 

supplied as input to the workflow, resulting in translated Portuguese sections. Since 

the ontology contains the semantics for the subdivision of sections, some of the work-

flow micro-tasks may consider their subdivision into smaller units (e.g., paragraphs, 

sentences). 

Translation is a typical domain of application in crowdsourcing, however, the pro-

posed method can be applied in other domains that may or may not be currently in the 

scope of crowdsourcing. A partial simplification of a possible legal ontology, depicted 

in fig. 4, describes such a domain. The concepts and relationships in this ontology can 

be used to establish workflows that inquire a crowd about past legal cases (e.g., abu-

sive discharge cases) in order to gather information for new ones. 

 

Fig. 4. A possible partial legal ontology (TBox only) with an example ABox (or instantiation). 

3.2 The Onto2Flow Ontology 

The Onto2Flow ontology captures the structure and semantics of workflows (see fig. 

5). The main concepts are: Task, Assignment, Requester and Worker (either Machine 

or Person). This ontology is further extended and its concepts refined in the workflow 

ontology as required by the domain of application. 

Assignments correspond to the execution of a task by a worker, for a single unit of 

work. The properties that define the domain of a task are: 

 unit – defines the set of instances (class) that constitute the input of the task (only 

one property restriction allowed); 

 unitContext – defines the input context classes of the task; 

 response – defines the set of instances (class) that constitute the output of the task 

(only one property restriction allowed); 

 responseContext – defines the output context classes of the task. 

The different types of atomic operations (or micro-tasks) that can be performed are 

specified in the ontology through sub-classes of Task. As presented in fig. 5, the On-



to2Flow ontology currently defines four atomic operations associated with the clas-

ses: CreateAndFillTask, FillTask, SelectionTask and AggregationTask. 

CreateAndFillTask instances will result in new instances of the response class, for 

which all data-type property values will be requested to the worker.  

A FillTask will request data-type property values for already existent instances of 

the unit class. 

SelectionTask instances will result in the definition of new relationships between 

already existent instances in the ABox, i.e., no new response instances will be created. 

Instead, they will be selected by the worker from a set of possible responses. 

 

Fig. 5. Partial representation of the Onto2Flow ontology with Task sub-classes for atomic oper-

ations. 

If more than one assignment per unit is demanded, the execution of the task will result 

in several possible Output ABoxes for each unit. In these situations, an aggregation of 

the responses must be performed through an AggregationTask. AggregationTasks 

consider the context, unit and response classes of the previous task. Furthermore, any 

number of AggregationTask sub-classes may be included in order to implement dif-

ferent aggregation strategies (e.g., majority voting, assessment-based). 

Requesters may define the set of workers that may participate in the task through 

the performableBy property. In order to restrict or create worker roles, new Worker 

(Person or Machine) sub-classes may be created with restrictions applied to their 

properties (e.g., ∃country.{portugal}). 



The performedBy property is established only after the worker accepts to partici-

pate in the task. 

3.3 Defining Micro-Tasks 

A workflow ontology describes a workflow that can be instantiated multiple times. 

The workflow ontology must import and extend the Onto2Flow ontology. Domain 

concepts must either be defined in the workflow ontology, or imported from a domain 

ontology (as depicted in fig. 2). The following parts of this document assume that 

domain concepts are always imported from an external domain ontology. 

 

Fig. 6. Structure of a basic micro-task in a workflow. Relationships between T and UC/RC 

were omitted from the figure since they are similar to those between A and UC/RC. 

In order to build the workflow ontology, the requester must extend the Task, Assign-

ment and Worker classes from the Onto2Flow ontology, and any class from the do-

main ontology. Fig. 6 depicts the ontological structure of a simple micro-task.  

A micro-task specification is an explicit partial TBox in the workflow ontology 

with, at least, the following terminological axioms: 

  ⊑      ∃                         ∃             

  ⊑            ∃                         

   ⊑   

The specification of an UC is not mandatory and is done through the following termi-

nological axioms: 

  ⊑ ∃                 

  ⊑                   

   ⊑   



   ⊑ ∃     or   ⊑ ∃     (optional) 

C and D are classes in the domain ontology. UC represents the subset of C instances 

that constitute the input of T. RC represents instances of D, which are output of T. If 

no additional property restrictions are defined on UC, any instance of C in the input 

ABox is also considered to be an instance of UC. 

A establishes an n-ary relationship between UC and RC, which reflects the opera-

tional semantics of all R. R are object property restrictions (from properties and re-

strictions typically present in the domain ontology) that establish a direct correspond-

ence between UC and RC (or vice-versa). 

If the requester needs to select specific target workers for the task, a sub-class of 

Worker ( ⊑                  , where C represents a property restriction 

onto the W class) must be created. 

The Task Domain TBox represents a partial copy of the domain ontology contain-

ing only the necessary classes and relationships: those required as input and those for 

which new instances and relationships will be established. 

Unit Context Classes. In some situations, the requester needs to provide additional 

contextual information, given through related domain classes, to the worker. For these 

tasks, unit context classes (UCCs) may be specified. The set of all UC, UCCs, and 

their relationships form the Input TBox. The Input TBox defines the set of rules that 

will filter the input data from the given ABox. For instance, the following rule would 

filter the input of the task according to the Input TBox structure presented in fig. 7: 

    ( ( )   ( )   (   )     ( )    ( )) 

Any number of UCCs may be included in the Input TBox, with any type of relation-

ships between them and to/from the UC or RC.  

Relationships to/from the RC (e.g. T) are established during the execution of the 

task. 



 

Fig. 7. Structure of a micro-task with unit context classes. 

Response Context Classes. Response context classes (RCCs) establish property re-

strictions onto the RC that must be followed by the worker (as in fig. 8). An RCC 

represents a subset of input instances (it is a sub-class of an UCC) that were chosen 

by the worker as property values for an RC instance. The mandatory sub-class-of 

relationship between the RCC and the UCC is considered a dependency. 



 

Fig. 8. Structure of a micro-task with response context classes for establishing RC property 

restrictions. 

Dependency relationships indicate that instances of the UCC are candidate instanc-

es of the RCC. In this sense, the worker will have to select which instances of UCC 

will become instances of RCC, related to RC through the property in the specified 

restriction, U. 

An RCC is defined through an UCC (where E is a class from the domain ontology) 

as: 

   ⊑ ∃      

    ⊑       

    ⊑   

Dependencies on the Response Class. When building SelectionTask and FillTask 

tasks, the requester must establish a dependency between the RC and one of the Input 

TBox classes (the UC or an UCC) (see fig. 9 for an example with a SelectionTask). 

For SelectionTask tasks, the dependency must be established between the RC and 

an UCC. Analogous to paths established through RCCs, it means that the worker will 

have to select the appropriate RC instance(s) from the set of instances given by the 

UCC. The selected instance(s) will become the response of the assignment. 



 

Fig. 9. Structure of a SelectionTask task with a dependency between the RC and an UCC. 

An RC dependency for SelectionTasks is defined (where D is a class from the domain 

ontology) as: 

   ⊑       

    ⊑   

For FillTask tasks, the dependency can be established between the RC and either the 

UC or an UCC. It means that the worker will have to fill the data-type properties for 

existent instances of the UC or UCC. 

Considering IC any class that may be the UC or an UCC, an RC dependency for 

FillTasks is defined (where D is a class from the domain ontology) as: 

   ⊑      

   ⊑   

3.4 Defining Workflows of Micro-Tasks 

Workflows of micro-tasks are defined through dependency relationships between 

Task Domain TBoxes. A micro-task A is dependent (or follows) a micro-task B if 

there is at least one dependency relationship between the Input TBox of A and the 

Task Domain TBox of B. 

Dependency relationships between micro-tasks are used to infer the next relation-

ship and to optimize the resulting workflow. The optimization process includes the 

parallelization of independent tasks. 



 

Fig. 10. Example of a CreateAndFillTask micro-task workflow built according to the transla-

tion ontology that (i) partitions sections into paragraph, (ii) translates paragraphs, and (iii) as-

sembles paragraph translations into translated sections. 

Fig. 10 depicts a section translation micro-task workflow that applies a divide-and-

conquer strategy. The Section and Paragraph domain classes from the translation 

ontology, along with their relationships, are exploited in the workflow ontology in 

order to define each of the CreateAndFillTask tasks T1, T2 and T3. Dependencies 

exist between T2 and T1, between T3 and T2, and between T3 and T1. The transitive 

closure of the inter-task dependency relation results in the workflow structure reflect-

ed by the next relationship. In this case, the three tasks are executed in the sequential 

order: T1, T2 and T3. 

The legal information retrieval workflow, presented in fig. 11, is built from the par-

tial legal ontology in fig. 4. It depicts a situation where an expert (e.g., a lawyer) is 

assessing the possibilities to take legal action against a company on behalf of a cus-

tomer [18]. 

The first task, T1, is a CreateAndFillTask micro-task that asks an entity or crowd 

for instances of abusive discharge cases. For each given case, the worker(s) must also 

fill all datatype properties of the AbusiveDischargeCase concept. The second task, T2, 

is a CreateAndFillTask micro-task where the entity or crowd must, for each case pre-

viously submitted, provide information on the defence and prosecution parties in-



volved. Finally, on task T3, workers submit information on reported abuses for each 

case submitted in T1.  

These types of information retrieval workflows allow legal parties to collect infor-

mation on previous instances of legal procedures. The retrieved information is struc-

tured and enriched with the semantics of legal domain ontologies. 

 

Fig. 11. Example of a micro-task workflow built according to a legal ontology that (i) asks for 

instances of abusive discharge cases, (ii) requests information about the legal parties involved 

in each case and (iii) asks for reported abuses in each case. 

4 Conclusions and Future Work 

The proposed method tackles the challenge of building micro-task workflows while 

promoting human-machine cooperation through high-level, declarative and semanti-

cally explicit domain ontology models. 

Although the process of manually building micro-task workflows requires some 

degree of domain expertise and knowledge of the Onto2Flow ontology, the ground 

rules for creating an assisted workflow construction process were defined. 

Since domain ontologies are interpretable by humans and machines, micro-tasks 

can be solved by either or both human and machine workers. 

Future work includes the creation of an assisted micro-task workflow construction 

process, which automates the construction of workflows through the detection of 

ontology patterns and their aggregation into different strategies. The evolution of the 



Onto2Flow ontology, in order to assimilate concepts often found in workflow defini-

tion languages (e.g., Gateway, Loop, Event), is also considered. Furthermore, the 

proposed method is being employed in the context of the UMCourt project [13, 14] in 

order to further evaluate its impact in legal use cases. 

Acknowledgements. This work is part-funded by FEDER Funds, by the ERDF (Eu-

ropean Regional Development Fund) through the COMPETE Programme (operation-

al programme for competitiveness) and by National Funds through the FCT (Portu-

guese Foundation for Science and Technology) within the project FCOMP-01-0124-

FEDER-028980 (PTDC/EEI-SII/1386/2012). The work of Nuno Luz is supported by 

the doctoral grant SFRH/BD/70302/2010. 

References 

1. Von Ahn L (2009) Human Computation. 46th ACM IEEE Des. Autom. Conf. pp 418–419 

2. Chklovski T (2003) Learner: A System for Acquiring Commonsense Knowledge by Anal-

ogy. Proc. 2nd ACM Int. Conf. Knowl. Capture. Sanibel Island, FL, USA, pp 4–12 

3. Singh P, Lin T, Mueller ET, et al. (2002) Open Mind Common Sense: Knowledge Acqui-

sition from the General Public. Move Meaningful Internet Syst. 2002 CoopIS DOA 

ODBASE. Springer, pp 1223–1237 

4. Ahmad S, Battle A, Malkani Z, Kamvar S (2011) The Jabberwocky Programming Envi-

ronment for Structured Social Computing. Proc. 24th Annu. ACM Symp. User Interface 

Softw. Technol. Santa Barbara, CA, USA, pp 53–64 

5. Kittur A, Smus B, Khamkar S, Kraut RE (2011) Crowdforge: Crowdsourcing Complex 

Work. Proc. 24th Annu. ACM Symp. User Interface Softw. Technol. Santa Barbara, CA, 

USA, pp 43–52 

6. Kulkarni AP, Can M, Hartmann B (2011) Turkomatic: Automatic Recursive Task and 

Workflow Design for Mechanical Turk. Proc. 2011 Annu. Conf. Ext. Abstr. Hum. Factors 

Comput. Syst. Vancouver, BC, Canada, pp 2053–2058 

7. Little G, Chilton LB, Goldman M, Miller RC (2010) Turkit: Human Computation Algo-

rithms on Mechanical Turk. Proc. 23rd Annu. ACM Symp. User Interface Softw. Technol. 

New York, NY, USA, pp 57–66 

8. Luz N, Silva N, Maio P, Novais P (2012) Ontology Alignment through Argumentation. 

2012 AAAI Spring Symp. Ser.  

9. Sarasua C, Simperl E, Noy NF (2012) CrowdMap: Crowdsourcing Ontology Alignment 

with Microtasks. Semantic Web – ISWC 2012. Springer, pp 525–541 

10. Casanovas P (2009) The Future of Law: Relational Justice, Web Services and Second-

generation Semantic Web. Legal Information and Communication Technologies 7:137–

156. 

11. Quinn AJ, Bederson BB (2011) Human Computation: A Survey and Taxonomy of a 

Growing Field. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. ACM, New York, NY, 

USA, pp 1403–1412 

12. Obrst L, Liu H, Wray R (2003) Ontologies for Corporate Web Applications. AI Mag 

24:49. 

13. Carneiro D, Novais P, Andrade F, et al. (2013) Using Case-Based Reasoning and Princi-

pled Negotiation to provide decision support for dispute resolution. Knowl Inf Syst 

36:789–826. 



14. Novais P, Carneiro D, Gomes M, Neves J (2013) The relationship between stress and con-

flict handling style in an ODR environment. New Front. Artif. Intell. Springer, pp 125–140 

15. Casanovas P (2012) Legal crowdsourcing and relational law: What the semantic web can 

do for legal education. J Australas Law Teach Assoc 5:159–176. 

16. Poblet M, Casanovas P, Cobo JML, Casellas N (2011) ODR, Ontologies, and Web 2.0. J 

UCS 17:618–634. 

17. Baader F, Calvanese D, McGuinness DL, et al. (2007) The Description Logic Handbook: 

Theory, Implementation, and Applications, 2nd ed. Cambridge University Press 

18. Gangemi A, Presutti V, Blomqvist E (2011) The Computational Ontology Perspective: 

Design Patterns for Web Ontologies. Approaches Leg. Ontol. Springer, pp 201–217 

 


