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Abstract. We propose a new method for controlled system synthesis on
non-deterministic automata, which includes the synthesis for deadlock-
freeness, as well as invariant and reachability expressions. Our technique
restricts the behavior of a Kripke-structure with labeled transitions, rep-
resenting the uncontrolled system, such that it adheres to a given require-
ment specification in an expressive modal logic. while all non-invalidating
behavior is retained. This induces maximal permissiveness in the con-
text of supervisory control. Research presented in this paper allows a
system model to be constrained according to a broad set of liveness,
safety and fairness specifications of desired behavior, and embraces most
concepts from Ramadge-Wonham supervisory control, including control-
lability and marker-state reachability. Synthesis is defined in this paper
as a formal construction, which allowed a careful validation of its cor-
rectness using the Coq proof assistant.

1 Introduction

This paper presents a new technique for controlled system synthesis on non-
deterministic automata for requirements in modal logic. The controlled systems
perspective treats the system under control — the plant — and a system com-
ponent which restricts the plant behavior — the controller — as a single inte-
grated entity. This means that we take a model of all possible plant behavior,
and construct a new model which is constrained according to a logical specifi-
cation of desired behavior — the requirements. The automated generation, or
synthesis, of such a restricted behavioral model incorporates a number of con-
cepts from supervisory control theory [6], which affirm the generated model as
being a proper controlled system, in relation to the original plant specification.
Events are strictly partitioned into being either controllable or uncontrollable,
such that synthesis only disallows events of the first type. In addition, synthe-
sis preserves all behavior which does not invalidate the requirements, thereby
inducing maximal permissiveness [6] in the context of supervisory control. The
requirement specification formalism extends Hennessy-Milner Logic [10] with
invariant, reachability, and deadlock-freeness expressions, and is also able to ex-
press the supervisory control concept of marker-state reachability [13].
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The intended contribution of this paper is two-fold. First, it presents a tech-
nique for controlled system synthesis in a non-deterministic context. Second,
it defines synthesis for a modal logic which is able to capture a broad set of
requirements.

Regarding the first contribution, it should be noted that supervisory control
synthesis is often approached using a deterministic model of both plant and con-
troller. Notably, the classic Ramadge-Wonham supervisory control theory [13]
is a well-researched example of this setup. The resulting controller restricts the
behavior of the deterministic plant model, thereby ensuring that it operates ac-
cording to the requirements via event-based synchronization. A controlled system
can not be constructed in this way for a non-deterministic model, as illustrated
by example in Fig. 1. Assume that we wish to restrict all technically possible
behavior of an indicator light of a printer (Fig. 1a) such that after a single refill
event, the indicator light turns green immediately. In the solution shown in Fig.
1b, the self-loop at the right-most state is disallowed, as indicated using dashed
lines, while all other behavior is preserved. Note that it is not possible to con-
struct this maximally-permissive solution using event-based synchronization, as
shown in [4]. However, an outcome as shown in Fig. 1b can be obtained by ap-
plying synthesis for the property � [refill]green, using the method described in
this paper. As this example clearly shows, the strict separation between plant
and controller is not possible for non-deterministic models, and therefore we
interpret the controlled system as a singular entity.

Ink Present Out Of Ink Ink Present Out Of Ink

Fig. 1. Example of control synthesis in a non-deterministic context. A model for all
possible behavior of an ink presence indicator light of a printer is restricted in such a
way that after every refill , the state labeled with green is reached directly. Synthesis,
as defined in this paper, of the property � [refill]green upon the model in Fig. 1a,
results in a synthesis outcome as in Fig. 1b., where disallowed behavior is indicated
using dashed lines.

The synthesized requirement in Fig. 1b represents a typical example of a
requirement in modal logic applied in this paper. This requirement formalism,
which extends Hennessy-Milner Logic with invariant and reachability operators,
and also includes a test for deadlock-freeness, is able to express a broad set
of liveness, safety, and fairness properties. For instance, an important liveness
concept in supervisory control theory involves marker-state reachability, which
is informally expressed as the requirement that it is always possible to reach a



state which is said to be marked. This requirement is modeled as �♦marked ,
using the requirement specification logic, in conjunction with assigning marked
as a separate property to the designated states in the Kripke-model.

Safety-related requirements, which model the absence of faulty behavior,
include deadlock-avoidance, expressed as � dlf (i.e., invariantly, deadlock-free)
and safety requirements of a more general nature. For instance, one might re-
quire that some type of communicating system is always able to perform a
receive step, directly after every send step. Such a property is expressed as
� [send]<receive>true, using the requirement specification logic applied in this
paper. In addition, we argue that this logic is able to model a limited class of
of fairness properties. One might require from a system which uses a shared re-
source that in every state, the system has access to the resource (the state has
the access property), or it can do a lock step to claim the resource, after which
access is achieved immediately. In order to constrain the behavior of the plant
specification such that it adheres to this requirement, we synthesize the property
� (access ∨ <lock>access).

The remainder of this paper is set up as follows. We consider a number
of related works on control synthesis in Section 2. Preliminary definitions in
Section 3 introduce formal notions up to a formal statement of the synthesis
problem. Section 4 concerns the formal definition of the synthesis construction
while Section 5 lists a number of important theorems indicating correctness of
the synthesis approach, including detailed proofs, while these proofs are available
in computer-verified form as well [16].

2 Related Work

Earlier work by the same authors concerning synthesis for modal logic includes
a recursive synthesis method for Hennessy-Milner Logic [17], and a synthesis
method for a subset of the logic considered in this paper, with additional restric-
tions on combinations of modal operators [18].

We analyze related work along three lines: 1) Allowance of non-determinism
in plant specifications, 2) Expressiveness of the requirement specification for-
malism, and, 3) Adhering to some form of maximal permissiveness. Based on
this comparison, we analyze related work alongside the intended improvements
in this paper.

Ramadge-Wonham supervisory control [13] defines a broadly-embraced meth-
odology for controller synthesis on deterministic plant models for requirements
specified using automata. It defines a number of key elements in the relationship
between plant and controlled system, such as controllability, marker-state reach-
ability, deadlock-freeness and maximal permissiveness. Despite the fact that a
strictly separated controller offers advantages from a developmental or imple-
mentational point of view, we argue that increased abstraction and flexibility
justifies research into control synthesis for non-deterministic models. In addi-
tion, we emphasize that the automata-based description of desired behavior in
the Ramadge-Wonham framework [13] does not allow the specification of require-



ments of existential nature. For instance, in this framework it is not possible to
specify that a step labeled with a particular event must exist, hence the choice
of modal logic as our requirement formalism.

Work by Pnueli and Rosner [12] concerns a treatment of synthesis for reactive
systems, based upon a finite transducer model of the plant, and a temporal spec-
ification of desired behavior. This synthesis construction is developed further for
deterministic automata in [12], but the treatment remains non-maximal. This re-
search is extended in [2], which connects reactive synthesis to Ramadge-Wonham
supervisory control using a parity-game based approach. The methodology de-
scribed in [2] transforms the synthesis control problem for µ-calculus formulas
in such a way that the set of satisfying models of a µ-calculus formula coin-
cides with the set of controllers which enforce the controlled behavior. Although
non-determinism is allowed in plant-specifications in [2], the treatment via loop-
automata does not allow straightforward modeling of all (infinite) behaviors.
Also, maximal permissiveness is not specified as a criterion for control synthesis
in [2]. Interesting follow-up research is found in [3], for non-deterministic con-
trollers over non-deterministic processes. However, the specification of desired
behavior is limited to alternating automata [3], which do not allow complete cov-
erage of invariant expressions over all modalities, or an equivalent thereof. Reac-
tive synthesis is further applied to hierarchical [1] and recursive [11] component-
based specifications. These works, which both are based upon a deterministic
setting, provide a quite interesting setup from a developmental perspective, due
to their focus on the re-usability of components.

Research in [19] relates Ramadge-Wonham supervisory control to an equiva-
lent model-checking problem, resulting in important observations regarding the
mutual exchangeability and complexity analysis of both problems. Despite the
fact that research in [19] is limited to a deterministic setting, and synthesis re-
sults are not guaranteed to be maximally permissive, it does incorporate a quite
expressible set of µ-calculus requirements. Other research based upon a dual
approach between control synthesis and model checking studies the incremental
effects of transition removal upon the validity of µ-calculus formulas [14], based
on [7].

Research by D’Ippolito and others [8], [9] is based upon the framework of
the world machine model for the synthesis of liveness properties, stated in fluent
temporal logic. A distinction is made between controlled and monitored behav-
ior, and between system goals and environment assumptions [8]. A controller is
then derived from a winning strategy in a two-player game between original and
required behavior, as expressed in terms of the notion of generalized reactivity,
as introduced in [8]. Research in [8] also emphasizes the fact that pruning-based
synthesis is not adequate for control of non-deterministic models, and it defines
synthesis of liveness goals under a maximality criterion, referred to as best-effort
controller. However, this maximality requirement is trace-based and is therefore
not able to signify inclusion of all possible infinite behaviors. In addition, some
results in [8] are based upon the assumption of a deterministic plant specification.



3 Definitions

We assume a set E of events and a set P of state-based properties. In addition, we
assume a strict partition of E into controllable events C and uncontrollable events
U , such that C∪U = E and C∩U = ∅. State-based properties are used to capture
state-based information, and are assigned to states using a labeling function.
Example properties are shown in Fig. 1, as red and green. Fig. 1 also shows
examples of the events print and refill , which are assumed to be controllable in
this example. Events are used to capture system dynamics, and represent actions
occurring when the system transitions between states. Controllable events may
be used to model actuator actions in the plant, while an uncontrollable event
may represent, for instance, a sensor reading. Basic properties and events are
used to model plant behavior in the form of a Kripke-structure [5] with labeled
transitions, to be abbreviated as Kripke-LTS, as formalized in Definition 1. Note
that we assume finiteness of the given transition relation.

Definition 1. We define a Kripke-LTS as a four-tuple (X,L,−→, x) for state-
space X, labeling function L : X 7→ 2P , finite transition relation −→⊆ X×E×X,
and initial state x ∈ X. The universe of all Kripke-LTSs is denoted by K.

As usual, we will use the notation x
e−→ x′ to denote that (x, e, x′) ∈−→.

The reflexive-transitive closure −→∗ of a transition relation −→ is defined in the
following way: For all x ∈ X it holds that (x, x) ∈−→∗ and if there exist e ∈ E
and y, x′ ∈ X such that x

e−→ y and y −→∗ x′ then (x, x′) ∈−→∗.
Two different behavioral preorders are applied in this paper. The first is the

simulation preorder, which is reiterated in Definition 2. Simulation is used to
signify inclusion of behavior, while synthesis may alter the transition structure
due to, for instance, unfolding. Simulation as applied in this paper is a straight-
forward adaptation of the definition of simulation in [15].

Definition 2. For k′ = (X ′, L′,−→′, x′) and k = (X,L,−→, x) we say that k′

and k are related via simulation (notation: k′ � k) if there exists a relation
R ⊆ X ′ ×X such that (x′, x) ∈ R and for all (y′, y) ∈ R the following holds:

1. We have L′(y′) = L(y); and

2. If y′
e−→′z′ then there exists a step y

e−→ z such that (z′, z) ∈ R.

Partial bisimulation [4] is an extension of simulation such that the subset
of uncontrollable events is bisimulated. For plant specification k ∈ K and syn-
thesis result s ∈ K we require that s is related to k via partial bisimulation.
This signifies the fact that synthesis did not disallow any uncontrollable event,
which implies controllability in the context of supervisory control. Research in
[4] details the nature of this partial bisimulation preorder.

Definition 3. If k′ = (X ′, L′,−→′, x′) and k = (X,L,−→, x), then k′ and k
are related via partial bisimulation (notation: k′ w k) if there exists a relation
R ⊆ X ′ ×X such that (x′, x) ∈ R and for all (y′, y) ∈ R the following holds:



1. We have L′(y′) = L(y);

2. If y′
e−→′z′ then there exists a step y

e−→ z such that (z′, z) ∈ R; and

3. If y
e−→ z for e ∈ U then there exists a step y′

e−→′z′ such that (z′, z) ∈ R.

Requirements are specified using a modal logic F given in Definition 5, which
is built upon the set of state-based formulas B in Definition 4.

Definition 4. The set of state-based formulas B is defined by the grammar:

B ::= true | false | P | ¬B | B ∧ B | B ∨ B

As indicated in Definition 4, state-based formulas are constructed from a
straightforward Boolean algebra which includes the basic expressions true and
false, as well as a state-based property test for p ∈ P. Formulas in B are then
combined using the standard Boolean operators ¬, ∧ and ∨.

Definition 5. The requirement specification logic F is defined by the grammar:

F ::= B | F ∧ F | B ∨ F | [E]F | <E>F | �F | ♦B | dlf

We briefly consider the elements of the requirement logic F . Basic expres-
sions in Definition 4 function as the basic building blocks in the modal logic F .
Conjunction is included, having its usual semantics, while disjunctive formulas
are restricted to those having a state-based formula in the left-hand disjunct.
This restriction guarantees correct synthesis solutions, since it enables a local
state-based test for retaining the appropriate transitions. The formula [e]f can
be used to test whether f holds after every e-step, while the formula <e>f is used
to assess whether there exists an e-step after which f holds. These two opera-
tors thereby follow their standard semantics from Hennessy-Milner Logic [10].
An invariant formula � f tests whether f holds in every reachable state, while
a reachability expression ♦ b may be used to check whether there exists a path
such that the state-based formula b holds at some state on this path. Note that
the sub-formula b of a reachability expression ♦ b is restricted to a state-based
formula b ∈ B. This is used to acquire unique synthesis solutions. The deadlock-
free test dlf tests whether there exists an outgoing step of a particular state.
Combined with the invariant operator, the formula � dlf can be used to specify
that the entire synthesized system should be deadlock-free. Validity of formulas
in B and F , with respect to a Kripke-LTS k ∈ K, is as shown in Definition 6.

Definition 6. For k = (X,L,−→, x) ∈ K and f ∈ F we define if k satisfies f
(notation: k � f) as follows:

k � true

p ∈ L(x)

(X,L,−→, x) � p
¬k � b
k � ¬b

k � f k � g
k � f ∧ g

k � f
k � f ∨ g

k � g
k � f ∨ g

∀x e−→ x′ (X,L,−→, x′) � f
(X,L,−→, x) � [e]f

x
e−→ x′ (X,L,−→, x′) � f
(X,L,−→, x) � <e>f

∀x −→∗ x′ (X,L,−→, x′) � f
(X,L,−→, x) � � f

x −→∗ x′ (X,L,−→, x′) � b
(X,L,−→, x) � ♦ b

x
e−→ x′

(X,L,−→, x) � dlf



We may now formulate the synthesis problem in terms of the previous defi-
nitions in Definition 7. Research in this paper focuses on resolving this problem.

Definition 7. Given k ∈ K and f ∈ F , find s ∈ K in a finite method such that
the following holds: 1) s � f , 2) s � k, 3) s w k, 4) For all k′ � k and k′ � f
holds k′ � s, or determine that such an s does not exist.

These four properties are interpreted in the context of supervisory control
synthesis as follows. Property 1 (validity) states that the synthesis result satis-
fies the synthesized formula. Property 2 (simulation) asserts that the synthesis
result is a restriction of the original behavior, while property 3 (controllability)
ensures that no accessible uncontrollable behavior is disallowed during synthe-
sis. Controllability is achieved if the synthesis result is related to the original
plant-model via partial bisimulation, which adds bisimulation of all uncontrol-
lable events to the second property. Note that the third property implies the
second property, as can be observed in Definitions 2 and 3. Property 4 (max-
imality) states that synthesis removes the least possible behavior, and thereby
induces maximal permissiveness. That is, the behavior of every alternative syn-
thesis option is included in the behavior of the synthesis result.

4 Synthesis

The purpose of this section is to illustrate the formal definition of the synthesis
construction. Synthesis as defined in this paper involves three major steps, after
which a modified Kripke-LTS is obtained. If synthesis is successful, the resulting
structure satisfies all synthesis requirements, as stated in Definition 7. The first
stage of synthesis transforms the original transition relation −→⊆ X×E×X, for
state-space X, into a new transition relation −→0⊆ (X×F)×E × (X×F) over
the state-formula product space. This allows us to indicate precisely which modal
(sub-)formula needs to hold at each point in the new transition relation. The
second step removes transitions based upon an assertion of synthesizability of
formulas assigned to the target states of transitions. This second step is repeated
until no more transitions are removed. The third and final synthesis step tests
whether synthesis has been successful by evaluating whether the synthesizability
predicate holds for every remaining state. An overview of the synthesis process
is shown in Fig. 2.

A formal derivation of the starting point in the synthesis process −→0 is
shown in Definition 9. This definition relies upon the notion of sub-formulas, as
formalized in Definition 8.

Definition 8. We say that f ∈ F is a sub-formula of g ∈ F (notation f ∈
sub (g)) if this can be derived by the following rules:

f ∈ sub (f)

f ∈ sub (g)

f ∈ sub (g ∧ h)

f ∈ sub (h)

f ∈ sub (g ∧ h)

f ∈ sub (g)

f ∈ sub (� g)



Fig. 2. Overview of the synthesis process. Steps in the original transition relation (Fig.
2a) of type x

e−→ x′ are combined with reductions of the synthesized requirement
(Fig. 2b), resulting in transitions of type (x, f)

e−→0 (x′, f ′), and possible inducing
unfoldings. Transition are then removed (Fig. 2c-2d) based upon a local synthesizability
test for formulas assigned to target states, until synthesizability holds in every reachable
state (Fig. 2e).

As shown in Definition 8, sub-formulas align precisely with the restrictions
on formula expansion for conjunctive and invariant formulas, as embedded in
the the formula reductions shown in Definition 9. These restrictions on formula
expansion guarantee finiteness of formula reductions.

Definition 9. For state-space X and original transition relation −→⊆ X×E ×
X, we define the starting point of synthesis −→0⊆ (X × F) × E × (X × F) as
follows:

x
e−→ x′

(x, b)
e−→0 (x, true)

(x, f)
e−→0 (x′, f ′) (x, g)

e−→0 (x′, g′) g′ ∈ sub (f ′)

(x, f ∧ g)
e−→0 (x′, f ′)

(x, f)
e−→0 (x′, f ′) (x, g)

e−→0 (x′, g′) g′ 6∈ sub (f ′)

(x, f ∧ g)
e−→0 (x′, f ′ ∧ g′)

x
e−→ x′ x � b

(x, b ∨ f)
e−→0 (x′, true)

(x, f)
e−→0 (x′, f ′)

(x, b ∨ f)
e−→0 (x′, f ′)

x
e−→ x′

(x, [e]f)
e−→0 (x′, f)

x
e−→ x′ e 6= e′

(x, [e′]f)
e−→0 (x′, true)

x
e−→ x′

(x, <e>f)
e−→0 (x′, f)

x
e−→ x′

(x, <e′>f)
e−→0 (x′, true)

(x, f)
e−→0 (x′, f ′) f ′ ∈ sub (� f)

(x,� f)
e−→0 (x′,� f)

(x, f)
e−→0 (x′, f ′) f ′ 6∈ sub (� f)

(x,� f)
e−→0 (x′,� f ∧ f ′)

x
e−→ x′

(x,♦ b)
e−→0 (x′, true)

x
e−→ x′

(x,♦ b)
e−→0 (x′,♦ b)

x
e−→ x′

(x, dlf )
e−→0 (x′, true)

The starting point of synthesis −→0 is subjected to transition removal via a
synthesizability test for formulas assigned to the target states of transitions. In



generalized form, we define a formula f ∈ F to be synthesizable in the state-
formula pair (x, g) if this can be derived by the rules in Definition 11. For an
appropriate definition of synthesizability, it is necessary to extend the notion of
sub-formulas in such a way that a state-based evaluation can be incorporated,
in order to handle disjunctive formulas correctly. This leads to the sub-formula
notion called part , which is shown in Definition 10.

Definition 10. We say that a formula f ∈ F is a part of a formula g ∈ F in
the context of a state based evaluation for (X,L,−→, x) if this can be derived as
follows:

f ∈ part (x, f)

f ∈ part (x, g)

f ∈ part (x, g ∧ h)

f ∈ part (x, h)

f ∈ part (x, g ∧ h)

x 6� b f ∈ part (x, g)

f ∈ part (x, b ∨ g)

f ∈ part (x, g)

f ∈ part (x,� g)

Partial formulas as shown in Definition 10 are used in the definition of syn-
thesizability as shown in Definition 11. In particular, this is used in the definition
of synthesizability for formulas of type <e>f . In addition, partial formulas play
a major role in the correctness proofs of the synthesis method.

Definition 11. With regard to an intermediate relation −→n⊆ (X ×F)× E ×
(X×F) in the synthesis procedure, we say that a formula f ∈ F is synthesizable
in the state-formula pair (x, g) (notation: (x, g) ↑ f) if this can be derived as
follows:

x � b
(x, g) ↑ b

(x, g) ↑ f1 (x, g) ↑ f2
(x, g) ↑ f1 ∧ f2

x � b
(x, g) ↑ b ∨ f

(x, g) ↑ f
(x, g) ↑ b ∨ f

(x, g) ↑ [e]f
(x′, g′) ↑ f (x, g)

e−→n (x′, g′) f ∈ part (x′, g′)

(x, g) ↑ <e>f

(x, g) ↑ f
(x, g) ↑ � f

(x, g) −→∗n (x′, g′) x′ � b
(x, g) ↑ ♦ b

(x, g)
e−→n (x′, g′)

(x, g) ↑ dlf

It is important to note here that the synthesizability test serves as a partial
assessment. The synthesizability predicate for f holds in the state-formula pair
(x, g) if it is possible to modify outgoing transitions of (x, g) in such a way that
f becomes satisfied in (x, g). However, synthesizability is not straightforwardly
definable for a number of formulas. For instance, it can not be directly assessed
whether it is possible to satisfy an invariant formula. Therefore, the synthe-
sizability test in Definition 11 is designed to operate in conjunction with the
process of repeated transition removal, as shown in Fig. 2. This is reflected, for
instance, in the definition of synthesizability for an invariant formula � f , which
only relies upon f being synthesizable. However, since synthesizability needs to
hold at every reachable state for synthesis to be successful, such a definition of



synthesizability for invariant formulas is appropriate due to its role in the entire
synthesis process. A synthesis example for the invariant formula � p ∧ [a]q is
shown in Fig. 3.

Fig. 3. Synthesis for the formula � p ∧ [a]q upon the model in Fig. 3a, resulting in
the restricted behavioral model shown in Fig. 3b. Note the unfolding for [a]q, the
restricted formula-expansion for invariant formulas, and transition disabling, indicated
by dashed lines, due to the state-based formula q not being synthesizable in x, and p
not being synthesizable in z.

Using the definitions stated before, we are now ready to define the main
synthesis construction. That is, how transitions are removed from the synthesis
starting point −→0, and how are the subsequent intermediate transition relations
−→1,−→2, . . . constructed. In addition, more clarity is required with regard to
reaching a stable point during synthesis, and verifying whether the synthesis
construction has been completed successfully.

Definition 12. For k = (X,L,−→, x) ∈ K and f ∈ F , we define the n-th
iteration in the synthesis construction as follows:

(x, f)
e−→n (x′, f ′) e ∈ U

(x, f)
e−→n+1 (x′, f ′)

(x, f)
e−→n (x′, f ′) (x, f) ↑ f

(x, f)
e−→n+1 (x′, f ′)

The corresponding system model Sn
k,f is defined as stated below, using the labeling

function Lproj , such that Lproj (y, g) = L(y), for all y ∈ X and g ∈ F .

Sn
k,f = (X ×F , Lproj ,−→n, (x, f))

One last definition remains, namely completeness of the synthesis construc-
tion. The formula reductions induced by Definition 9 are finite, which implies a
terminating construction of the transition relation −→0. Since −→0 consists of
finitely many transitions, only finitely many steps may be removed. This means
that at some point, no more transitions are removed, and a stable point will be
reached. If at this point, synthesizability holds at every reachable state, synthesis
is successful. Otherwise, it is not. It is natural that a formal notion representing
the first situation serves as a premise for a number of correctness results. This
notion is formalized as completeness in Definition 13.



Definition 13. For k = (X,L,−→, x) ∈ K, f ∈ F and n ∈ N, we say that Sn
k,f

is complete if the following holds:

For all (x, f) −→∗n (x′, f ′) it holds that (x′, f ′) ↑ f ′.

5 Correctness

In this section, we state the theorems for the key properties related to synthesis
correctness: termination, validity, simulation, controllability and maximality, as
given in Definition 7. All proofs are computer-verified using the Coq proof as-
sistant [16]. The first result is shown in Theorem 1: the synthesis construction
is always terminating.

Theorem 1. For k = (X,L,−→, x) ∈ K, having finite −→, and f ∈ F , there
exists an n ∈ N such that Sn

k,f = Sm
k,f for all m > n.

Proof. Observing the synthesis construction in Definition 12 it is straightforward
that from the starting point of synthesis −→0, transitions are only removed, and
not added. This means that once we are able to show that −→0⊆ (X × F) ×
E × (X ×F) is finite, given that −→ is finite, then the synthesis construction is
terminating. In other words, only finitely many transitions will ever be removed,
if they do not satisfy the synthesizability test for the formula assigned to the
target state. The focus of this proof is therefore on the finiteness of −→0.

Let _ denote the formula reduction relation as implicitly defined in Defini-

tion 9. That is f
e
_ f ′ if (x, f)

e−→0 (x′, f ′). The reflexive-transitive closure of _,
denoted as _∗, is defined in the natural way. It is clear that if (x, f) −→∗0 (x′, f ′)
then f _∗ f ′. This means that if, for each f there exists a finite set D ⊂ F such
that for all f _∗ f ′, f ′ ∈ D, then only finitely many transitions are constructed
in −→0, under the assumption that −→ is finite. We prove this property by
induction towards the structure of f .

If f ≡ b, for b ∈ B, then choose D = {b, true}, which is clearly finite. Two
other cases can be handled in a similar way. For f ≡ ♦ b, choose D = {♦ b, true}
and for f ≡ dlf , choose D = {dlf , true}.

For the case f ≡ f1 ∧ f2, then by induction we obtain two finite sets D1 ⊂ F
and D2 ⊂ F , containing the formula-reducts of f1 and f2 respectively. If we
choose D = D1 ∪ {f ′1 ∧ f ′2 | f ′1 ∈ D1, f

′
2 ∈ D2}, then D is clearly also finite.

Assume that g ∈ D and g _∗ g′, then by induction towards the length of g _∗
it is clear that g′ ∈ D. Since f1 ∧ f2 ∈ D, this completes the proof for finiteness
of reductions under conjunction. For the next case for f ≡ b ∨ f ′, for b ∈ B
we obtain a D′ ⊂ F representing the finiteness of the set of f ′-reducts. Then
simply choose D = D′ ∪ {b ∨ f ′, true}, which is clearly also finite. The cases
for f ≡ [e]f ′ and f ≡ <e>f ′ can be handled in a similar way. By induction
we obtain a finite set D′ ⊂ F corresponding to the formula-reducts of f ′. For
these two respective cases it is sufficient to choose D = D′ ∪ {[e]f ′, true} and
D = D′ ∪ {<e>f ′, true}.



The case for f ≡ � f ′, for some f ′ ∈ F , is somewhat more involved. Let
D′ ⊂ F be obtained via induction, thus containing all f ′′ ∈ F such that f ′ _∗
f ′′. Assume that D′ is restricted such that it strictly contains no other elements
f ′′ then those which satisfy the f ′ _∗ f ′′ condition. We then define the function
d : F × 2F × N 7→ 2F in the following way:

d(f,D, 0) = {� f}
d(f,D, n+ 1) = d(f,D, n) ∪ {f ′ ∧ g′ | f ′ ∈ d(f,D, n), g′ ∈ D}

As our witness, we then choose D = d(f ′, D′, | D′ |), where | D′ | refers to the
finite number of elements in D′. Clearly it holds that � f ′ ∈ D, by the definition
of d. For each f ′ _∗ f ′′, there exists an n ∈ N, such that f ′′ ∈ d(f ′, D′, n).
However, the application of sub in the formula reductions for conjunction and
invariant formulas in Definition 9 ensure that if g ∈ d(f ′, D′, n) then n ≤| D′ |,
as can be derived using induction towards | D′ |.

The second result is shown in Theorem 2: If synthesis is complete then the
synthesis result satisfies the synthesized formula. Since synthesis is terminating,
as shown in Theorem 1, this results in a stable point in the synthesis process. It
may then be quickly assessed whether synthesis is complete, by checking whether
synthesizability is satisfied in every remaining reachable state, upon which the
result in Theorem 2 holds.

Lemma 1. If (x, h) ↑ g and f ∈ part (x, g) then (x, h) ↑ f .

Proof. By induction towards the derivation of (x, h) ↑ g, using Definition 11.

Theorem 2. If Sn
k,f is complete then Sn

k,f � f .

Proof. Assume k = (X,L,−→, x) and g ∈ F . We show a more generalized
result: if f ∈ part (x, g) and Sn

k,g is complete then Sn
k,g � f . This immediately

leads to the required result, since f ∈ part (x, f). Note that we have (x, g) ↑ g by
Definition 13 and due to (x, g) −→∗n (x, g). Also, we have (x, g) ↑ f , by Lemma
1.

Apply induction towards the structure of f . Suppose that f ≡ b, for some
b ∈ B. Then from (x, g) ↑ b we have x � b, which directly leads to Sn

k,g � b, due
to the fact that validity of a state-based formula b ∈ B only depends upon the
labels assigned to x.

If f ≡ f1 ∧ f2, and f1 ∧ f2 ∈ part (x, g), then f1 ∈ part (x, g) and f2 ∈
part (x, g), as is clear from Definition 10. By induction, we then have Sn

k,g � f1
and Sn

k,g � f2. For the next case, suppose that f ≡ b∨ f ′. If x � b, then Sn
k,g � b.

However, if x 6� b, then (x, g) ↑ b also does not hold, so (x, g) ↑ f ′ must be
true. In addition, we have f ′ ∈ part (x, g). This is precisely the reason why it is
necessary to incorporate a state-based evaluation in Definition 10. Application
of the induction hypothesis now gives Sn

k,g � f ′.

Suppose that f ≡ [e]f ′, and assume that (x, g)
e−→n (x′, g′). Using Defini-

tion 10, we may then conclude that f ′ ∈ part (x′, g′). Let k′ = (X,L,−→, x′).
We apply induction in order to obtain Sn

k′,g′ � f ′. Due to the assumption of



(x, g)
e−→n (x′, g′), the induction premise for completeness is satisfied for Sn

k′,g′

as well. If f ≡ <e>f ′, then by Lemma 1 we have (x, g) ↑ <e>f ′. By Definition 11,

there now exists a step (x, g)
e−→n (x′, g′) such that f ′ ∈ part (x′, g′). The latter

condition shows why it is important to have the condition f ′ ∈ part (x′, g′) in
Definition 11, for the formula <e>f . We apply the induction hypothesis to derive
Sn
k′,g′ � f ′, for k′ = (X,L,−→, x′). Again, the induction premise for complete-

ness in Sn
k′,g′ is satisfied due to the existence of the step (x, g)

e−→ (x′, g′), and
completeness of Sn

k,g.
The next case considers f ≡ � f ′, for some f ′ ∈ F . Assume the existence

of a step-sequence (x, g) −→∗n (x′, g′). By Definitions 10 and 9, it is clear that
� f ′ ∈ part (x′, g′), and therefore f ′ ∈ part (x′, g′). This allows us to apply the
induction hypothesis for f ′, in order to obtain Sn

k′,g′ � f ′ for each (x, g) −→∗n
(x′, g′) and k′ = (X,L,−→, x′). Hence, we obtain Sn

k,g � � f ′.
Suppose that f ≡ ♦ b, for some b ∈ B. By Lemma 1, there exists a path

(x, g) −→∗n (x′, g′) such that x′ � b, leading directly to Sn
k,g � ♦ b. For f ≡ dlf ,

the derivation (x, g) ↑ dlf from Lemma 1 also leads directly to Sn
k,g � dlf .

We show that our synthesis method adheres to controllability by verifying
that the synthesis result is related to the original plant model via partial bisim-
ulation in Theorem 3. Note that this implies simulation.

Lemma 2. If (x, f) ↑ f and x
e−→ x′ and e ∈ U , then there exists an f ′ ∈ F

such that for all n ∈ N, we have (x, f)
e−→n (x′, f ′).

Proof. Using induction towards the structure of f , we may derive the existence
of an f ′ ∈ F , such that (x, f)

e−→0 (x′, f ′). Given that e ∈ U , it is then straight-

forwardly derivable that (x, f)
e−→n (x′, f ′), by induction on n.

Theorem 3. If Sn
k,f is complete then Sn

k,f w k.

Proof. Let k = (X,L,−→, x). According to Definition 3, we need to provide
a witness relation R, such that Sn

k,f wR k. Choose R = {((y, g), y) | Sn
k′,g is

complete, for k′ = (X,L,−→, y)}. Suppose that ((y, g), y) ∈ R. If there exists a

step (y, g)
e−→n (y′, g′), then by Definition 9, there also exists a step y

e−→ y′,
upon which we may conclude that ((y′, g′), y′) ∈ R, since completeness of Sn

k′,g

extends to completeness of Sn
k′′,g′ , for k′′ = (X,L,−→, y′). If y

e−→ y′, for e ∈ U ,

then by Lemma 2, there exists a g′ ∈ F , such that (y, g)
e−→n (y′, g′), which again

leads to the conclusion that ((y′, g′), y′) ∈ R. Note that the premise (y, g) ↑ g in
Lemma 2, is derived from the completeness of Sn

k′,g.

As a final result, we show that the synthesis result is maximal within the
simulation preorder, with respect to all simulants of the original system which
satisfy the synthesized formula. This result, which implies maximal permissive-
ness in the context of supervisory control, is shown in Theorem 4.

Lemma 3. For f ∈ F , k′ = (X ′, L′,−→′, x′) and k = (X,L,−→, x) such that

k′ � k and k′ � f , and if x′
e−→′y′ and x

e−→ y, there exists an f ′ ∈ F such that
(X ′, L′,−→′, y′) � f ′ and (x, f)

e−→0 (y, f ′).



Proof. By induction towards the structure of f . Note that simulation as given
in Definition 2 includes strict equivalence of labels in related states. This implies
that validity of a formula b ∈ B is preserved under simulation. This fact must
be used in order to derive existence of a step for a disjunctive formula in the
induction argument for f .

Lemma 4. If (x, f)
e−→0 (x′, f ′) and if (x′, f ′) ↑ f ′, with relation to −→n, then

(x, f)
e−→n (x′, f ′).

Proof. Note that the premise (x′, f ′) ↑ f ′, with relation to −→n, should be
interpreted as if −→n were applied in Definition 11. Apply induction towards n.
If n ≡ 0 then it is clear that (x, f)

e−→0 (x′, f ′). Suppose that (x, f)
e−→n (x′, f ′)

for some n ∈ N, and (x′, f ′) ↑ f ′, with relation to −→n+1. Then also (x′, f ′) ↑ f ′
with relation to −→n. Then, by Definition 12, it is clear that all conditions for
the derivation of (x, f)

e−→n+1 (x′, f ′) are satisfied.

Lemma 5. If k = (X,L,−→, x) and k′ = (X ′, L′,−→′, x′) such that k′ � k,
and if f ∈ part (x, g) such that k′ � g, then (x, g) ↑ f , with regard to −→n.

Proof. The proof of this lemma is somewhat complicated, and involves induction
towards n, and within this induction argument, induction towards the structure
of f . For both the inductive cases n ≡ 0 and n+ 1, a number of cases for f may
be resolved directly. This applies to the cases for f ≡ b, for b ∈ B, and f ≡ [e]f ′.
The case for f ≡ f1 ∧ f2 can be resolved via solely the induction hypotheses for
f1 and f2. If f ≡ b ∨ f ′, then we distinguish between the situations where x � b
and x 6� b. In the latter case, we have f ′ ∈ part (x, g), which allows us to apply
the induction hypothesis for f ′, in order to derive (x, g) ↑ f ′. If f ≡ � f ′, for
some f ′ ∈ F , then by Definition 11, we only need to derive (x, g) ↑ f ′, which is
straightforward using the induction hypothesis for f ′.

The remaining cases for f ≡ <e>f ′, f ≡ ♦ b and f ≡ dlf are somewhat more
involved, and rely upon the induction hypothesis for n. Since k′ � g, and <e>f ′ ∈
part (x, g), it is clear that k′ � <e>f ′. This means that there exists a step x′

e−→′y′
such that (X ′, L′,−→′, y′) � f ′. Since k′ � k, and because x′

e−→′y′, there exists

a step x
e−→ y, such that (X ′, L′,−→′, y′) � (X,L,−→, y). Using a separate

argument, by induction towards the derivation of <e>f ′ ∈ part (x, g), there exists

a g′ ∈ F such that (X ′, L′,−→′, y′) � g′, f ′ ∈ part (y, g) and (x, g)
e−→0 (y, g′).

We may then apply Lemma 4, in order to construct a step (x, g)
e−→n (y, g′)

such that (y, g′) ↑ f ′ by induction. The premise (y, g′) ↑ g′, with regard to −→n,
is obtained by the induction hypothesis for n.

The next case to consider is f ≡ ♦ b, for some b ∈ B. The construction used
here is somewhat similar to the previously applied construction for the case f ≡
<e>f ′. Since k′ � g and ♦ b ∈ part (x, g), there exists a path x′[−→′]∗z′ such that
z′ � b. We apply induction towards the length of x′[−→′]∗z′ in order to derive a
path (x, g) −→∗n (z, g′′), such that y � b. This is sufficient to derive (x, g) ↑ ♦ b,
as shown in Definition 11. Just as in the case for f ≡ <e>f ′, we use a separate
argument to derive a step (x, g)

e−→0 (y, g′) such that (X ′, L′,−→′, y′) � g′ and



♦ b ∈ part (y, g′). We then apply Lemma 4 and the induction hypothesis for n to

construct a step (x, g)
e−→n (y, g′). Since we are applying induction towards the

length of x′[−→′]∗z′, we may repeat this argument in order to construct a path
(x, g) −→n (z, g′′) such that z � b. This allows us to conclude that (x, g) ↑ ♦ b.

The remaining case for f ≡ dlf also relies upon application of Lemma 4 and
the induction hypothesis for n. Since dlf ∈ part (x, g), it is clear that k′ � dlf

and there exists a step x′
e−→ y′. By simulation, there also exists a step x

e−→ y
and by Lemma 3, there exists a g′ ∈ F such that (x, g)

e−→0 (y, g′). As said,

application of Lemma 4 and the induction hypothesis for n results in (x, g)
e−→n

(y, g′), which is sufficient to derive (x, g) ↑ dlf , by Definition 11.

Theorem 4. If k′ � k and k′ � f then k′ � Sn
k,f .

Proof. Suppose that k = (X,L,−→, x) and k′ = (X ′, L′,−→′, x′) such that
R ⊆ X ′ × X and k′ �R k. As can be observed from Definition 2, we need to
provide a witness R′ ⊆ X ′ × (X × F) such that k′ �R′ Sn

k,f . Choose R′ =
{(y′, (y, g)) | (y′, y) ∈ R and (X ′, L′,−→′, y′) � g}.

Suppose that (y′, (y, g)) ∈ R′ such that (X ′, L′,−→′, y′) � g and (y′, y) ∈ R.

If there exists a step y′
e−→ ′z′, then by Definition 2, and due to the fact that

(y′, y) ∈ R, there exists a step y
e−→ z such that (z′, z) ∈ R. We then apply

Lemma 3 to obtain a g′ ∈ F such that (X ′, L′,−→′, z′) � g′ and (y, g)
e−→0

(z, g′). By Lemma 5, we derive (z, g′) ↑ g′. This allows us to apply Lemma

4 to construct a step (y, g)
e−→n (z, g′). Upon which we may conclude that

(z′, (z, g′)) ∈ R′. Note that a premise for completeness is not required in this
theorem for maximal permissiveness, since this property is retained during syn-
thesis.

6 Conclusions

This paper presents a novel approach to controlled system synthesis for modal
logic on non-deterministic plant models. The behavior of a Kripke-structure with
labeled transitions is adapted such that it satisfies the synthesized requirement.
The relationship between the synthesis result and the original plant specifica-
tion adheres to important notions from Ramadge-Wonham supervisory control:
controllability and maximal permissiveness. The requirement specification logic
also allows expressibility of deadlock-freeness and marker-state reachability. The
synthesis approach, via a reduction on modal expressions combined with an it-
eratively applied synthesizability test for formulas assigned to target states of
transitions results in an effective synthesis procedure. Our next research efforts
will focus on determining the effectiveness of this procedure as well as its appli-
cability in case studies.
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