Skip to main content

Filling Logarithmic Gaps in Distributed Complexity for Global Problems

  • Conference paper
SOFSEM 2015: Theory and Practice of Computer Science (SOFSEM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8939))

Abstract

Communication complexity theory is a powerful tool to show time complexity lower bounds of distributed algorithms for global problems such as minimum spanning tree (MST) and shortest path. While it often leads to nearly-tight lower bounds for many problems, polylogarithmic complexity gaps still lie between the currently best upper and lower bounds. In this paper, we propose a new approach for filling the gaps. Using this approach, we achieve tighter deterministic lower bounds for MST and shortest paths. Specifically, for those problems, we show the deterministic \(\Omega(\sqrt{n})\)-round lower bound for graphs of O(n ε) hop-count diameter, and the deterministic \(\Omega(\sqrt{n/\log n})\) lower bound for graphs of O(logn) hop-count diameter. The main idea of our approach is to utilize the two-party communication complexity lower bound for a function we call permutation identity, which is newly introduced in this paper.

This work is supported in part by KAKENHI No. 25106507 and No. 25289114.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. In: Proc. of the 43rd Annual ACM Symposium on Theory of Computing, pp. 363–372 (2011)

    Google Scholar 

  2. Dinitz, Y., Moran, S., Rajsbaum, S.: Bit complexity of breaking and achieving symmetry in chains and rings. Journal of the ACM 55(1) (2008)

    Google Scholar 

  3. Elkin, M.: An unconditional lower bound on the hardness of approximation of distributed minimum spanning tree problem. In: Proc the 30th ACM Symposium on Theory of Computing(STOC), pp. 331–340 (2004)

    Google Scholar 

  4. Garay, J.A., Kutten, S., Peleg, D.: A sublinear time distributed algorithm for minimum-weight spanning trees. SIAM Journal on Computing 27(1), 302–316 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ghaffari, M., Kuhn, F.: Distributed minimum cut approximation. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 1–15. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and applications. In: Proc. of the 2012 ACM Symposium on Principles of Distributed Computing (PODC), pp. 355–364 (2012)

    Google Scholar 

  7. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press (1997)

    Google Scholar 

  8. Lenzen, C., Patt-Shamir, B.: Fast routing table construction using small messages: Extended abstract. In: Proc. of the 45th Annual ACM Symposium on Symposium on Theory of Computing (STOC), pp. 381–390 (2013)

    Google Scholar 

  9. Lenzen, C., Peleg, D.: Efficient distributed source detection with limited bandwidth. In: Proc. of the 2013 ACM Symposium on Principles of Distributed Computing (PODC), pp. 375–382 (2013)

    Google Scholar 

  10. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed mst for constant diameter graphs. Distributed Computing 18(6), 453–460 (2006)

    Article  MATH  Google Scholar 

  11. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths. In: Proc. of the 46th ACM Symposium on Theory of Computing (STOC), pp. 565–573 (2014)

    Google Scholar 

  12. Nanongkai, D., Das Sarma, A., Pandurangan, G.: A tight unconditional lower bound on distributed random walk computation. In: Proc. of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 257–266 (2011)

    Google Scholar 

  13. Peleg, D., Roditty, L., Tal, E.: Distributed algorithms for network diameter and girth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 660–672. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time complexity of distributed minimum-weight spanning tree construction. SIAM Journal on Computing 30(5), 1427–1442 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Yao, A.C.-C.: Some complexity questions related to distributive computing(preliminary report). In: Proc. of the 11th Annual ACM Symposium on Theory of Computing (STOC), pp. 209–213 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ookawa, H., Izumi, T. (2015). Filling Logarithmic Gaps in Distributed Complexity for Global Problems. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, JJ., Wattenhofer, R. (eds) SOFSEM 2015: Theory and Practice of Computer Science. SOFSEM 2015. Lecture Notes in Computer Science, vol 8939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46078-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46078-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46077-1

  • Online ISBN: 978-3-662-46078-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics