Skip to main content

Lower Bounds for Linear Decision Trees with Bounded Weights

  • Conference paper
  • 1294 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8939))

Abstract

In this paper, we consider a linear decision tree such that a linear threshold function at each internal node has a bounded weight: the sum of the absolute values of its integer weights is at most w. We prove that if a Boolean function f is computable by such a linear decision tree of size (i.e., the number of leaves) s and rank r, then f is also computable by a depth-2 threshold circuit containing at most s(2w + 1)r threshold gates with weight at most (2w + 1)r + 1 in the bottom level. Combining a known lower bound on the size of depth-2 threshold circuits, we obtain a 2Ω(n/logw) lower bound on the size of linear decision trees computing the Inner-Product function modulo 2, which improves on the previous bound \(2^{\sqrt{n}}\) if \(w=2^{o(\sqrt{n})}\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beigel, R., Reingold, N., Spielman, D.: PP is closed under intersection. Journal of Computer and System Sciences 50(2), 191–202 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blum, A.: Rank-r decision trees are a subclass of r-decision lists. Information Processing Letters 42(4), 183–185 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dobkin, D.P., Lipton, R.J.: On the complexity of computations under varying sets of primitives. Journal of Computer and System Sciences 3, 1–8 (1982)

    Google Scholar 

  4. Ehrenfeucht, A., Haussler, D.: Learning decision trees from random examples. Information and Computation 82(3), 231–246 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Erickson, J.: Lower bounds for linear satisfiability problems. In: Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 388–395 (1995)

    Google Scholar 

  6. Fleischer, R.: Decision trees: Old and new results. Information and Computation 152, 44–61 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Forster, J., Krause, M., Lokam, S.V., Mubarakzjanov, R., Schmitt, N., Simon, H.U.: Relations between communication complexity, linear arrangements, and computational complexity. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 171–182. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Gröger, H.D., Turán, G.: On linear decision trees computing boolean functions. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 707–718. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  9. Håstad, J.: On the size of weights for threshold gates. SIAM Journal on Discrete Mathematics, 484–492 (1994)

    Google Scholar 

  10. Hofmeister, T.: A Note on the Simulation of Exponential Threshold Weights. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 136–141. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  11. Klivans, A.R., Servedio, R.A.: Learning DNF in time \(2^{n^{1/3}poly(\log n)}\). Journal of Computer and System Sciences 68(2), 303–318 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Parberry, I.: Circuit Complexity and Neural Networks. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  13. Siu, K.Y., Roychowdhury, V., Kailath, T.: Discrete Neural Computation; A Theoretical Foundation. Prentice-Hall, Inc., Upper Saddle River (1995)

    MATH  Google Scholar 

  14. Steele, J.M., Yao, A.C.: Lower bounds for algebraic decision trees. Journal of Algorithms 18, 86–91 (1979)

    Google Scholar 

  15. Nisan, N.: The communication complexity of threshold gates. In: Proceedings of “Combinatorics, Paul Erdös is Eighty”, pp. 301–315 (1999)

    Google Scholar 

  16. Klivans, A.R., Servedio, R.A.: Learning DNF in time \(2^{\tilde{O}(n^{1/3})}\). Journal of Computer and System Sciences 68(2), 303–318 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Turán, G., Vatan, F.: Linear decision lists and partitioning algorithms for the construction of neural networks. Foundations of Computational Mathematics, 414–423 (1997)

    Google Scholar 

  18. Uchizawa, K., Takimoto, E.: Lower Bounds for Linear Decision Trees via an Energy Complexity Argument. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 568–579. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uchizawa, K., Takimoto, E. (2015). Lower Bounds for Linear Decision Trees with Bounded Weights. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, JJ., Wattenhofer, R. (eds) SOFSEM 2015: Theory and Practice of Computer Science. SOFSEM 2015. Lecture Notes in Computer Science, vol 8939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46078-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46078-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46077-1

  • Online ISBN: 978-3-662-46078-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics