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Preface

This volume contains the papers presented at the 16th International Conference
on Verification, Model Checking, and Abstract Interpretation (VMCAI 2015),
held during January 12–14, 2015, in Mumbai, India.

This edition of the conference attracted 53 competitive submissions from
22 countries across the world. Each submission was reviewed by at least three
Program Committee members. The Committee decided to accept 24 papers. The
program also included four invited talks.

We would like to thank our invited speakers Supratik Chakraborty, Rustan
Leino, Antoine Miné, and Jean-François Raskin for readily agreeing to share their
insights with us through their talks and articles contributed to the conference.
We would like to thank all the Program Committee members and reviewers for
their diligent reviews that helped maintain the high standards of VMCAI. Like
many other conferences, we are indebted to EasyChair for providing us with an
excellent conference management system. We are grateful to Alfred Hofmann
and Anna Kramer of Springer for their close cooperation in publishing these
proceedings.

Finally, we would to thank ACM SIGPLAN-SIGACT and the local organiz-
ers, especially Sriram Rajamani and Paritosh Pandya, for the excellent infras-
tructural support to VMCAI.

November 2014 Deepak D’Souza
Akash Lal

Kim Guldstrand Larsen
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AstréeA: A Static Analyzer

for Large Embedded Multi-Task Software

Antoine Miné

CNRS & École Normale Supérieure
45, rue d’Ulm

75005 Paris, France

mine@di.ens.fr

Embedded critical systems, such as planes and cars, cannot be easily fixed dur-
ing missions and any error can have catastrophic consequences. It is thus pri-
mordial to ensure the correctness of their controlling software before they are
deployed. At the very least, critical embedded software must be exempt from
runtime errors, including ill-defined operations according to the specification
of the language (such as arithmetic or memory overflows) as well as failure of
programmer-inserted assertions. Sound and approximate static analysis can help,
by providing tools able to analyze the large codes found in the industry in a fully
automated way and without missing any real error. Sound and scalable static
analyzers are sometimes thought to be too imprecise and report too many false
alarms to be of any use in the context of verification. This claim was disproved
when, a decade ago [2], the Astrée static analyzer [1] successfully analyzed the
runtime errors in several Airbus control flight software, with few or no false
alarm. This result could be achieved by employing abstract interpretation [4], a
principled framework to define and compose modular sound-by-construction and
parametric abstractions, but also by adopting a design-by-refinement develop-
ment strategy. Starting from an efficient and easy to design, but rather coarse,
fully flow- and context-sensitive interval analyzer, we integrated more complex
abstractions (carefully chosen from the literature, such as octagons [10], adapted
from it, such as trace partitioning [9], or specifically invented for our needs, such
as digital filter domains [6]) to remove large sets of related false alarms, until we
reached our precision target.

In this presentation, we discuss our on-going efforts towards a similar goal:
the efficient and precise sound verification of the absence of run-time errors, but
targeting another, more complex class of software: shared-memory concurrent
embedded C software. Such software are already present in critical systems and
will likely become the norm with the generalization of multi-core processors in
embedded systems, leading to new challenging demands in verification. Our ana-
lyzer is named AstréeA [5], in reference to Astrée on which it takes its inspiration
and on the code base of which it elaborates. AstréeA’s specialization target is a
family of several embedded avionic codes, each featuring a small fixed set of a
dozen threads, more than 1.5 Mlines of C code, implicit communication through
the shared memory, and running under a real-time OS based on the ARINC 653
specification.
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One major challenge is that a concurrent program execution does not fol-
low a fixed sequential order, but one of many interleavings of executions from
different tasks chosen by the scheduler. A sound analysis must consider all pos-
sible interleavings in order to cover every corner case and race condition. As it
is impractical to build a fully flow-sensitive analysis by enumerating explicitly
all interleavings, we took inspiration from thread-modular methods: we analyze
each thread individually, in an environment consisting of (an abstraction of) the
effect of the other threads. This is a form of rely-guarantee reasoning [8], but
in a fully automatic static analysis settings formalized as abstract interpreta-
tion. Contrary to Jones’ seminal rely-guarantee proof method or its more recent
incarnations [7], our method does not require manual annotations: thread in-
terferences are automatically inferred by the analysis (including which variables
are actually shared and their possible values). Following the classic methodology
of abstract interpretation [4, 3], a thread-modular static analysis is now viewed
as a computable abstraction of a complete concrete thread-modular semantics.
This permits a fine control between precision and efficiency, and opens the way
to analysis specialization: any given safety property of a given program can be
theoretically inferred given the right abstract domain.

Following the design-by-refinement principle of Astrée, our first prototype
AstréeA [11] used a very coarse but efficient flow-insensitive and non-relational
notion of thread interference: it gathered independently for each variable and
each thread an interval abstraction of the values the thread can store into the
variable along its execution, and injected these values as non-deterministic writes
into other threads. This abstraction allowed us to scale up to our target appli-
cations, in efficiency (a few tens of hours of computation) if not in precision (a
few tens of thousands alarms).

This presentation will describe our subsequent work in improving the preci-
sion of AstréeA by specialization on our target applications, and the interesting
abstractions we developed along the way. For instance, we developed new inter-
ference abstractions enabling a limited but controllable (for efficiency) degree of
relationality and flow-sensitivity [12]. We also designed abstractions able to ex-
ploit our knowledge of the real-time scheduler used in the analysis target: i.e., it
schedules tasks on a single core and obeys a strict priority scheme.1 The resulting
analysis is less general, but more precise on our target applications, which was
deemed necessary as the correctness of the applications relies on these hypothe-
ses on the scheduler.2 Finally, not all false alarms are caused by our abstraction
of concurrency; we also developed numeric and memory domains to handle more

1 The scheduler remains fully preemptive: a low-priority thread may be interrupted at
any point by a higher-priority thread whose request to an external resource has just
been granted, resulting in a large number of possible thread interleavings.

2 It is important not to confuse here specialization with restriction: the scheduler ab-
straction is optional and can be omitted to achieve a more general, but less specialized
analysis.
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precisely some programming patterns which we did not encounter in our previous
experience with Astrée and for which no stock abstract domain was available.

The end-result is a more precise analyzer on our target applications, with cur-
rently around a thousand alarms. We stress that AstréeA is a work in progress
and that its results, although they are not yet as impressive as those of As-
trée, are likely to improve through further specialization. We also believe that,
thanks to the intrinsic modularity of the abstract interpretation framework, the
analysis performed by AstréeA can be adapted to other settings (other families
of applications, other schedulers, other concurrency models) by developing new
abstractions, while the abstractions we designed along the journey may also be
of use in similar or different static analyses.
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5. Cousot, P., Cousot, R., Feret, J., Miné, A., Rival, X.: The AstréeA static analyzer,
http://www.astreea.ens.fr

6. Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 33–48. Springer, Heidelberg (2004)

7. Flanagan, C., Freund, S.N., Qadeer, S.: Thread-Modular Verification for Shared-
Memory Programs. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp.
262–277. Springer, Heidelberg (2002)

8. Jones, C.B.: Tentative steps toward a development method for interfering programs.
ACM TOPLAS 5, 596–619 (1983)

9. Mauborgne, L., Rival, X.: Trace Partitioning in Abstract Interpretation Based Static
Analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20. Springer,
Heidelberg (2005)
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A first order theory T is said to admit quantifier elimination if every T -formula
of the form Qx.ϕ(x, y1, . . . yn), where ϕ(x, y1, . . . yn) is quantifier-free and Q is
either ∃ or ∀, is T -equivalent to a quantifier-free formula of the form ϕ̂(y1, . . . yn).
The process of systematically deriving ϕ̂(y1, . . . yn) from ϕ(x, y1, . . . yn) is called
“quantifier elimination”.

Quantifier elimination is an important operation in several verification, syn-
thesis and analysis tasks. When reasoning about hardware and software with
finite precision arithmetic, the theory T of relevance is that of fixed-width bit-
vectors (or words). Since each variable in this theory has a fixed finite domain,
the theory is easily seen to admit quantifier elimination via expansion of quan-
tified variables. This naive approach, however, does not translate to a practical
algorithm for eliminating quantifiers, since the domain of a variable is exponen-
tial in its bit-width. Therefore, the formula resulting from expansion of quan-
tified variables blows up exponentially, rendering the naive approach infeasible
in practice. Approaches based on bit-blasting ϕ(x, y1, . . . yn), followed by quan-
tifier elimination techniques for quantified propositional formulas are not very
useful either, since the result obtained via such approaches have no word-level
structure at all. This makes it difficult to apply further word-level reasoning on
the formula resulting from quantifier elimination. It is therefore important to de-
velop word-level quantifier elimination algorithms that avoid variable expansion
and bit-blasting as much as possible, and instead reason directly at the level of
bit-vectors (or words).

The importance of word-level quantifier elimination in several application do-
mains has spurred a lot of interesting work in this area in the recent past. This
talk surveys these techniques, and discusses in more depth some quantifier elim-
ination algorithms for linear word-level constraints, developed in our research
group. Since the output of each word-level quantifier elimination technique is a
word-level formula, it is indeed possible to harness the power of multiple tech-
niques in a co-operative manner to quantify a set of variables. The talk concludes
with an overview of sub-problems that still remain to be addressed satisfacto-
rily in our quest for word-level quantifier elimination techniques for real-world
verification, synthesis and analysis problems.
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Abstract. Technology that accurately models, analyzes, and verifies
software has come a long way since its conception several decades ago.
One mode of using such technology is to look for defects in software that
has already left the hands of developers. Another mode is to integrate
the technology into the process of software authoring (see, for example,
[2,1,5,3,4]). The advantage of this mode is that it lends analytical power
to the developer’s thinking. To be used in this way, the technology must
be packaged in a way that is understandable, unobtrusive, and respon-
sive. In this talk, I showcase an integrated development environment
that supports reasoning and verification, trying to provide an aid to the
developer earlier during the software development process.
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Distributed Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Ratul Saha, Javier Esparza, Sumit Kumar Jha, Madhavan Mukund,
and P.S. Thiagarajan

Analysis of Infinite-State Graph Transformation Systems by Cluster
Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Peter Backes and Jan Reineke

A Model for Industrial Real-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Md Tawhid Bin Waez, Andrzej W ↪asowski, Juergen Dingel,
and Karen Rudie

Abstraction-Based Computation of Reward Measures for Markov
Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
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Effective Abstractions for Verification under Relaxed Memory
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Andrei Dan, Yuri Meshman, Martin Vechev, and Eran Yahav

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467




