
s’

Distributed Markov Chains

Sumit Kumar Jha1, Madhavan Mukund2, Ratul Saha3, and P. S. Thiagarajan3

1 University of Central Florida, USA, jha@eecs.ucf.edu
2 Chennai Mathematical Institute, India, madhavan@cmi.ac.in

3 National University of Singapore, Singapore, {ratul,thiagu}@comp.nus.edu.sg

Abstract. The formal verification of large probabilistic models is im-
portant and challenging. Exploiting the concurrency that is often present
is one way to address this problem. Here we study a restricted class
of asynchronous distributed probabilistic systems in which the synchro-
nizations determine the probability distribution for the next moves of
the participating agents. The key restriction we impose is that the syn-
chronizations are deterministic, in the sense that any two simultaneously
enabled synchronizations must involve disjoint sets of agents. As a result,
this network of agents can be viewed as a succinct and distributed pre-
sentation of a large global Markov chain. A rich class of Markov chains
can be represented this way.

We define an interleaved semantics for our model in terms of the
local synchronization actions. The network structure induces an inde-
pendence relation on these actions, which, in turn, induces an equiva-
lence relation over the interleaved runs in the usual way. We construct
a natural probability measure over these equivalence classes of runs by
exploiting Mazurkiewicz trace theory and the probability measure space
of the associated global Markov chain.

It turns out that verification of our model, called DMCs (distributed
Markov chains), can often be efficiently carried out by exploiting the
partial order nature of the interleaved semantics. To demonstrate this,
we develop a statistical model checking (SMC) procedure and use it to
verify two large distributed probabilistic networks.

1 Introduction

We present here a class of distributed probabilistic systems called distributed
Markov chains (DMCs). A DMC is a network of probabilistic transition systems
that synchronize on common actions. The synchronzations are deterministic in
the sense that two simultaneously enabled synchronization actions must involve
disjoint sets of agents. The information that the agents gain through a synchro-
nization determines the probability distribution for their next moves. Internal
actions correspond to synchronizations involving only one agent.

In many distributed probabilistic systems, the communication protocol can
be designed to be deterministic—some examples are discussed in Section 8.
Hence, the determinacy restriction is less limiting than may appear at first sight.

We define an interleaved semantics where one synchronization action is exe-
cuted at a time. The resulting object is, in general, not a Markov chain. Thus,

ar
X

iv
:1

40
8.

09
79

v1
 [

cs
.D

C
]

 5
 A

ug
 2

01
4

s’

defining a valid probability measure over interleaved runs—called trajectories—
is a technical challenge. We address this by noting that there is a natural inde-
pendence relation on local actions—two actions are independent if they involve
disjoint sets of agents. Using this relation, we partition the trajectories into
equivalence classes. As usual, each equivalence class will correspond to a par-
tially ordered execution. This leads to a trajectory space that resembles the usual
path space of a Markov chain [3], except that it will not be tree-like. Hence, one
cannot readily define a probability measure over this space.

Due to the determinacy restriction, at any global state any two enabled
actions will be independent. Thus, by letting all the enabled actions at a global
state occur as a single step followed by probabilistic moves by all the involved
agents, one obtains a Markov chain.

Using Mazurkiewicz trace theory [8], we then embed the trajectory space
derived from the interleaved semantics into the path space of the global Markov
chain. This induces a probability measure over the trajectory space. This is the
key technical contribution of the paper. We are not aware of a similar result for
any well-defined class of distributed probabilistic systems [1, 2, 22,23].

Due to its exponential size (in the number of agents), it will often be infeasible
to analyze a DMC in terms of its global Markov chain. In contrast, due to the
partial order nature of the trajectory space, the global behaviour of the network
can often be efficiently analyzed using the interleaved semantics. To bring this
out, we formulate a statistical model checking (SMC) problem for DMCs in
which the specifications consist of boolean combinations of local bounded linear
temporal logic (BLTL) [3] formulas. We then develop a sequential probability
ratio test (SPRT) based SMC procedure [25,26] to solve this problem. We view
our SMC procedure as a first step. Other partial order based reduction techniques
such as ample sets [6] and finite prefixes of unfoldings [9] can also be readily
developed for DMCs. Furthermore, one can develop model checking procedures
for more powerful specification logics.

We illustrate the potential of our approach by using our SMC procedure to
analyze two distributed probabilistic algorithms. The first is a distributed leader
election protocol in an anonymous ring [14]. The second one is a randomized
solution to the classical dining philosophers problem [20]. We show that for
DMCs, simulations based on asynchronous trajectories are significantly faster
than working directly with the global state space.

To summarize, our main contribution is identifying determinacy of communi-
cations as a fruitful restriction for distributed stochastic systems and construct-
ing a probability measure over a partially ordered space of runs. We believe
DMCs represent a restricted but clean combination of concurrent and stochastic
dynamics and can lead to fruitful applications in domains such as embedded
systems [12,15,19], biological processes [5,18], and distributed protocols [7,16].

Related work Our work is in line with partial order based methods for
Markov Decision Processes (MDPs) [11] where, typically, a partial commutation
structure is imposed on the actions of a global MDP. For instance, in [4], partial
order reduction is used to identify “spurious” nondeterminism arising out of the

2

s’

interleaving of concurrent actions, in order to determine when the underlying
behaviour corresponds to a Markov chain. In contrast, in a DMC, deterministic
communication ensures that local behaviours always generate a global Markov
chain. The independence of actions is directly given by the local state spaces of
the components. This also makes it easier to model how components influence
each other through communications.

The interplay between concurrency and stochasticity has also been explored
in the setting of event structures [1,23]. In these approaches, the global behaviour—
which is not a Markov chain—is endowed with a probability measure. Further,
probabilistic verification problems are not formulated and studied. Markov nets,
studied in [2] can be easily modeled as DMCs. In [2], the focus is on working
out a probabilistic event structure semantics rather than developing a model
checking procedure based on the interleaved semantics, as we do here.

Our model is formulated as a sub-class of probabilistic asynchronous au-
tomata [22], where we require synchronizations to be deterministic. This restric-
tion allows us to develop a probability measure over the (infinite) trajectory
space, which in turn paves the way for carrying out formal verification based on
probabilistic temporal logic specifications. In contrast, the work reported in [22]
is language-theoretic, with the goal of generalizing Zielonka’s theorem [28] to
a probabilistic setting. However, in the model of [22], conflicting actions may
be enabled at a global state and it is difficult to see how one can formulate a
σ-algebra over the runs with a well-defined probability measure.

2 The Distributed Markov Chain (DMC) Model

We fix n agents {1, 2, . . . , n} and set [n] = {1, 2, . . . , n}. For convenience, we
denote various [n]-indexed sets of the form {Xi}i∈[n] as just {Xi}. We begin
with some notation for distributed state spaces.

Definition 1. For i ∈ [n], let Si be a finite set of local states, where {Si} is
pairwise disjoint.

– We call S =
⋃
i Si the set of local states.

– For nonempty u ⊆ [n], Su =
∏
i∈u Si is the set of u-states.

– S[n] is the set of global states, which we typically denote S.
– For a state v ∈ Su and w ⊆ u, vw denotes the projection of v to Sw.
– For u = {i}, we write Si and vi rather than S{i} and v{i}, respectively.

Our model is a restricted version of probabilistic asynchronous automata [22].

Definition 2. A probabilistic asynchronous system is a structure
({Si}, {sini }, A, loc, en, {πa}a∈A) where:

– Si is a finite set of local states for each i and {Si} is pairwise disjoint.
– sini ∈ Si is the initial state of agent i.
– A is a set of synchronization actions.
– loc : A→ 2[n] \ ∅ specifies the agents that participate in each action a.

3

s’

• For a ∈ A, we write Sa instead of Sloc(a) and call it the set of a-states.

– For each a ∈ A, ena ⊆ Sa is the subset of a-states where a is enabled.
– With each a ∈ A, we associate a probabilistic transition function πa : ena →

(Sa → [0, 1]) such that, for every v ∈ ena,
∑

u∈Sa
πa(v)(u) = 1.

The action a represents a synchronized communication between the agents
in loc(a) and it is enabled at the global state s if sa ∈ ena. When a occurs at s,
only the components in loc(a) are involved in the move to the new global state
s′; the new a-state s′a is chosen probabilistically according to the distribution
assigned to the current a-state sa by πa. For every j /∈ loc(a), sj = s′j .

We would like to lift the probabilities associated with individual moves to
a probability measure over runs of the system. This is difficult to achieve, in
general, because of the combination of nondeterminism, concurrency and prob-
ability in the model. This motivates us to restrict the nondeterminism in the
model.

For an agent i and a local state s ∈ Si, we define the set of actions compatible
with s to be act(s) = {a | i ∈ loc(a), s = vi for some v ∈ ena}.

Definition 3. A distributed Markov chain (DMC) is a probabilistic asynchronous
system D = ({Si}, {sini }, A, loc, en, {πa}a∈A) in which, for each agent i and each
local state s ∈ Si, |act(s)| = 1.

In other words, in a DMC, the set of partners that an agent can communicate
with next is fixed deterministically by its current local state. Hence, if two actions
a and b are enabled at a global state s, they must involve disjoint sets of agents—
that is, loc(a)∩ loc(b) = ∅. This allows us to capture the global behaviour of the
model as a Markov chain—as shown in Section 4—whence the name DMC.

Events Let D be a DMC. An event of D is a triple e = (v, a,v′) where v,v′ ∈
Sa, v ∈ ena and πa(v)(v′) > 0. We extend loc to events via loc((v, a,v′)) =
loc(a).

Suppose e = (v, a,v′) is an event and p = πa(v)(v′). Then e represents an
occurrence of the synchronization action a followed by a joint move by the agents
in loc(a) from v to v′ with probability p. Again, components outside loc(e) are
unaffected by this move.

Let Σ denote the set of events of D and e, e′, . . . range over Σ. With the
event e = (v, a,v′) we associate the probability pe = πa(v)(v′).

The interleaved semantics We now associate a global transition system with
D based on event occurrences.

Recall that S is the set of global states. The event e = (v, a,v′) is enabled at
s ∈ S iff v = sa ∈ ena. The transition system of D is TS = (S, Σ,→, sin), where

→ ⊆ S × (Σ × (0, 1]) × S is given by s
e,pe−−→ s′ iff e = (v, a,v′) is enabled at s,

s′a = v′ and sj = s′j for every j /∈ loc(e).
In Fig. 1 we show the transition system of a DMC describing a simple two

player game. Each player tosses an unbiased coin. If the tosses have the same

4

s’

Fig. 1. The transition system of a DMDP for a two player game

outcome the players toss again. If the outcomes are different then the player
who tossed heads wins. In this 2-component system, Si = {ini, Ti, Hi, Li,Wi}
for i = 1, 2, where Ti/Hi denote that a tail/head was tossed, respectively, and
Li/Wi denote local losing/winning states, respectively. Agent 1, for instance, has
an internal action a1 with loc(a1) = {1}, ena1 = {in1} and πa1(in1)(T1) = 0.5 =
πa1(in1)(H1). Thus eh = ({in1}, a1, {H1}) and et = ({in1}, a1, {T1}) are both
events that are enabled at (in1, in2). Symmetrically, agent 2 has the internal
action {a2} with loc(a2) = {2}, ena2 = {in2} and corresponding events e′h and
e′t. On the other hand, b is an action with loc(b) = {1, 2}, enb = {(T1, T2)} where
tt = ({T1, T2}, b, {in1, in2}) is an event with πb((T1, T2))((in1, in2)) = 1. To aid
readability, if the probability of an event is 1 then this value is not shown.

The trace alphabet (Σ, I) We conclude this section by defining the inde-
pendence relation I ⊆ Σ ×Σ given by e I e′ iff loc(e) ∩ loc(e′) = ∅. Clearly I is
irreflexive and symmetric and hence (Σ, I) is a Mazurkiewicz trace alphabet [8].

3 The trajectory space

Let TS be the transition system associated with a DMC D. To reason about the
probabilistic behaviour of TS, one must follow the technique used for Markov
chains—namely, build a σ-algebra over the paths of this transition system, en-
dowed with a probability measure. The major difficulty is that, due to the mix
of concurrency and stochasticity, TS is not a Markov chain in general. In Fig. 1,
for instance, the sum of the probabilities of the transitions originating from the
state (in1, in2) is 2. To get around this, we will filter out concurrency by working
with equivalence classes of paths rather than individual paths.

We refer to paths in TS as trajectories. A finite trajectory of TS from s ∈ S is
a sequence of the form s0e0s1 . . . sk−1ek−1sk such that s0 = s and, for 0 ≤ ` < k,

s`
e`,p`−−−→ s`+1 (with p` = pe`). Infinite trajectories are defined as usual.
For the trajectory ρ = s0e0s1 . . . sk−1ek−1sk, we define ev(ρ) to be the event

sequence e0e1 . . . ek−1. Again, this notation is extended to infinite trajectories in
the natural way. Due to concurrency, one can have infinite trajectories that are
not maximal, so we proceed as follows.

Let Σi = {e | i ∈ loc(e)}. Suppose ξ is an event sequence (finite or infinite).
Then proji(ξ) is the sequence obtained by erasing from ξ all events that are not
in Σi. This leads to the equivalence relation ≈ over event sequences given by

5

s’

ξ ≈ ξ′ iff proji(ξ) = proji(ξ
′) for every i. We let [ξ] denote the ≈-equivalence

class containing ξ and call it a (Mazurkiewicz) trace.4 The partial order relation
v over traces is defined as [ξ] v [ξ′] iff proji(ξ) is a prefix of proji(ξ

′) for every
i. Finally the trace [ξ] is said to be maximal iff for every ξ′, [ξ] v [ξ′] implies
[ξ] = [ξ′]. The trajectory ρ is maximal iff [ev(ρ)] is a maximal trace. In the
transition system of Fig. 1, (in1, in2)eh(H1, in2)e′T (H1, T2)ht((W1, L2)l′)ω is a
non-maximal infinite trajectory.

The σ-algebra of trajectories We denote by Trjs the set of maximal tra-
jectories from s. Two trajectories can correspond to interleavings of the same
partially ordered execution of events. Hence one must work with equivalence
classes of maximal trajectories to construct a probability measure. The equiva-
lence relation ' over Trjs that we need is defined as ρ ' ρ′ iff ev(ρ) ≈ ev(ρ′).
As usual [ρ] will denote the equivalence class containing the trajectory ρ.

Let ρ be finite trajectory from s. Then ↑ρ is the subset of Trjs satisfying
ρ′ ∈ ↑ρ iff ρ is a prefix of ρ′. We now define BC(ρ), the basic trj-cylinder at
s generated by ρ, to be the least subset of Trjs that contains ↑ρ and satisfies
the closure property that if ρ′ ∈ BC(ρ) and ρ′ ' ρ′′ then ρ′′ ∈ BC(ρ). In other
words, BC(ρ) = {[ρ′] | ρ′ ∈ Trjs, [ev(ρ)] v [ev(ρ′)]}.

It is worth noting that we could have BC(ρ) ∩ BC(ρ′) 6= ∅ without hav-
ing ρ ' ρ′. For instance, in Fig. 1, let ρ = (in1, in2)eh(H1, in2) and ρ′ =
(in1, in2)e′t(in1, T2). Then BC(ρ) and BC(ρ′) will have common maximal tra-
jectories of the form (in1, in2)eh(H1, in2)e′t(H1, T2)

We now define ŜA(s) to be the least σ-algebra that contains the basic trj-
cylinders at s and is closed under countable unions and complementation (rela-
tive to Trjs).

To construct the probability measure P̂ : ŜA(s) → [0, 1] we are after, a
natural idea would be to assign a probability to each basic trj-cylinder as fol-
lows. Let BC(ρ) be a basic trj-cylinder with ρ = s0e0s1 . . . sk−1ek−1sk. Then

P̂ (BC(ρ)) = p0 · p1 . . . pk−1, where p` = pe` , for 0 ≤ ` < k. This is inspired by
the Markov chain case in which the probability of a basic cylinder is defined to
be the product of the probabilities of the events encountered along the common
finite prefix of the basic cylinder. However, showing directly that this extends
canonically to a probability measure over ŜAs is very difficult.

We shall tackle this problem by associating a Markov chain M with D and
then embedding ŜAs into SAs, the σ-algebra generated by the infinite paths in
M starting from s. The standard probability measure over SAs will then induce
a probability measure over ŜAs.

4 The Markov chain semantics

We associate a Markov chain with a DMC using the notion of maximal steps
with respect to the trace alphabet (Σ, I) . A nonempty set of events u ⊆ Σ is

4 For infinite sequences, it is technically more convenient to define traces using pro-
jection equivalence rather than permutation of independent actions.

6

s’

Fig. 2. Markov chain for the DMC in Fig 1

a step at s iff each e ∈ u is enabled at s and for every distinct pair of events
e, e′ ∈ u, e I e′. We say u is a maximal step at s iff u is a step at s and u ∪ {e}
is not a step at s for any e /∈ u. In Fig. 1, {eh, e′h}, {eh, e′t}, {et, e′h} and {et, e′t}
are maximal steps at the initial state (in1, in2).

Let u be a maximal step at s. Then s′ is the u-successor of s iff the following
conditions are satisfied: (i) For each e ∈ u, if e = (v, a,v′) and i ∈ loc(e) then
s′i = v′i, and (ii) sj = s′j if j /∈ loc(u), where, as usual, loc(u) =

⋃
e∈u loc(e).

Suppose u is a maximal step at s and i ∈ loc(u). Then, because events in
a step are independent, it follows that there exists a unique e ∈ u such that
i ∈ loc(e), so the u-successor of s is unique. We say s′ is a successor of s iff
there exists a maximal step u at s such that s′ is the u-successor of s. From the
definition of a DMC, it is easy to see that if s′ is a successor of s then there
exists a unique maximal step u at s such that s′ is the u-successor of s. Finally,
we say that s is a deadlock iff no event is enabled at s.

Definition 4. The Markov chain M : S × S → [0, 1] generated by D is given
by:

– If s ∈ S is a deadlock then M(s, s) = 1 and M(s, s′) = 0 if s 6= s′.
– Suppose s ∈ S is not a deadlock. ThenM(s, s′) = p iff there exists a maximal

step u at s such that s′ is the u-successor of s and p =
∏
e∈u pe.

– If s is not a deadlock and s′ is not a successor of s then M(s, s′) = 0.

It follows thatM(s, s′) ∈ [0, 1] for every s, s′ ∈ S. In addition, if u and u′ are
two maximal steps at s then loc(u) = loc(u′) and |u| = |u′|. Using these facts it
is easy to verify that M is indeed a finite state Markov chain. The initial state
of M is sin = (sin1 , s

in
2 , . . . , s

in
n).

In Fig. 2 we show the Markov chain of the DMC whose transition system
was shown in Fig. 1. Again, unlabelled transitions have probability 1. A DMC
may have a reachable deadlock—a sequence of global states s0s1 . . . sk such that
s0 = sin, M(s`, s`+1) > 0, for 0 ≤ ` < k, and sk is a deadlock. One can effectively
check for reachable deadlocks by forming a non-deterministic asynchronous tran-
sition system and analyze it using traditional verification methods. Henceforth,
for simplicity, we assume that DMCs are free of (reachable) deadlocks. Our re-
sults can be easily extended to handle deadlocks.

Suppose u is a maximal step at s with |u| = m and |Si| = k for each i ∈ loc(u).
In M there will be, in general, km transitions at s. In contrast there will be at
most k · m transitions at s in TS. Hence—assuming that we do not explicitly

7

s’

construct S—there can be substantial computational gains if one can verify the
properties of D by working with TS instead of M. This will become clearer
when we look at some larger examples in Section 8.

The path space of M Let M be the Markov chain associated with a DMC
D. A finite path inM from s is a sequence τ = s0s1 . . . sm such that s0 = s and
M(s`, s`+1) > 0, for 0 ≤ ` < m. The notion of an infinite path starting from s is
defined as usual. Paths and Pathfins denote the set of infinite and finite paths
starting from s, respectively.

For τ ∈ Pathsfins , ↑τ ⊆ Pathss is the set of infinite paths that have τ as
a prefix. Υ ⊆ Paths is a basic cylinder at s if Υ = ↑τ for some τ ∈ Pathsfins .
The σ-algebra over Paths, denoted SA(s), is the least family that contains the
basic cylinders at s and is closed under countable unions and complementation
(relative to Paths). Ps : SA(s) → [0, 1] is the usual probability measure that
assigns to each basic cylinder ↑τ , with τ = s0s1 . . . sm, the probability p =
p0 · p1 · · · pm−1, where M(s`, s`+1) = p`, for 0 ≤ ` < m.

5 The probability measure for the trajectory space

To construct a probability measure over the trajectory space we shall associate
infinite paths in M with maximal trajectories in TS. The Foata normal form
from Mazurkiewicz trace theory will help achieve this. Let ξ ∈ Σ?. A standard
fact is that [ξ] can be canonically represented as a “step” sequence of the form
u1u2 . . . uk. More precisely, the Foata normal form of the finite trace [ξ], denoted
FN([ξ]), is defined as follows [8].

– FN([ε]) = ε.
– Suppose ξ = ξ′e and FN([ξ′]) = u1u2 . . . uk. If there exists e′ ∈ uk such

that (e′, e) /∈ I then FN([ρ]) = u1u2 . . . uk{e}. If not, let ` be the least
integer in {1, 2, . . . , k} such that e I e′ for every e′ ∈

⋃
`≤m≤k um. Then

FN([ρ]) = u1 . . . u`−1(u` ∪ {e})u`+1 . . . um.

For the example shown in Fig. 1, FN(eh e
′
t ht `

′ w w) = {eh, e′t} {ht} {w, `′} {w}.
This notion is extended to infinite traces in the obvious way. Note that ξ ≈ ξ′

iff FN(ξ) = FN(ξ′).
Conversely, we can extract a (maximal) step sequence from a path in M.

Suppose s0s1 . . . is a path in Pathss. There exists a unique sequence u1 u2 . . .
such that u` is a maximal step at s`−1 and s` is the u`-successor of s`−1 for every
` > 0. We let st(τ) = u1 u2 . . . and call it the step sequence induced by τ .

This leads to the map tp : Trjs → Pathss given by tp(ρ) = τ iff FN(ev(ρ)) =
st(τ). It is easy to check that tp is well-defined. As usual, for X ⊆ Trjs we define
tp(X) = {tp(ρ) | ρ ∈ X}. It turns out that tp maps each basic cylinder in the
trajectory space to a finite union of basic cylinders in the path space. As a
result, tp maps every measurable set of trajectories to a measurable set of paths.
Consequently, one can define the probability of a measurable set of trajectories
X to be the probability of the measurable set of paths tp(X).

8

s’

To understand how tp acts on the basic cylinder BC(ρ), let FN(ev(ρ)) =
u1u2 . . . uk. We associate with ρ the set of finite paths paths(ρ) = {π | st(π) =
U1U2 . . . Uk and u` ⊆ U` for 1 ≤ ` ≤ k}. In other words π ∈ paths(ρ) if it
extends each step in FN(ev(ρ)) to a maximal step. Then, tp maps BC(ρ) to the
(finite) union of the basic cylinders in paths(ρ). These observations and their
main consequence, namely the construction of a probability measure over the
trajectory space, can be summarized as:

Lemma 5.
(i) Let B = BC(ρ) be a basic trj-cylinder from s, with FN(ev(ρ)) = u1u2 . . . uk.

Then tp(B) is a finite union of basic cylinder sets in SA(s) and is hence a
member of SA(s). Furthermore P (tp(B)) =

∏
1≤`≤k p` where p` =

∏
e∈u`

pe
for 1 ≤ ` ≤ k.

(ii) If B ∈ ŜA(s) then tp(B) ∈ SA(s).

(iii) Define P̂ : ŜA(s) → [0, 1] as P̂ (B) = P (tp(B)). Then P̂ is a probability

measure over ŜA(s).

Proof sketch Let BC(ρ) be the basic trj-cylinder from s generated by ρ 6= ε
and FN(ev(ρ)) = u1u2 . . . uk. Suppose τ ∈ Paths. Then, using the semantic
definitions, it is tedious but straightforward to show that τ ∈ tp(BC(ρ)) iff
ui ⊆ st(τ)(`), for 1 ≤ ` ≤ k. (Here, st(τ)(`) is the maximal step appearing
in position ` of the sequence st(τ).) It will then follow that tp(BC(ρ)) is a
finite union of basic cylinder sets in SA(s) and is hence a member of SA(s).
Furthermore, one can argue that P (tp(BC(ρ)) =

∏
1≤`≤k p`.

For the other two parts, we first establish easily that if B ∈ ŜA(s), ρ ∈ B
and ρ ' ρ′ then ρ′ ∈ B as well. Next, it is straightforward to show that if
B,B′ ∈ ŜA(s) with B ∩ B′ = ∅ then tp(B) ∩ tp(B′) = ∅ too. Finally, one can
also show tp is onto. Using these facts, the second and third parts of the lemma
can be easily established. 2

Note that while a finite path inM always induces a maximal step sequence,
a finite trajectory, in general, does not have this structure. Some components
can get ahead of others by an arbitrary amount. The lemma above states that,
despite this, any finite trajectory defines a basic cylinder whose probability can
be easily computed. This helps considerably when verifying the properties of
M. In particular local reachability properties can be checked by exercising only
those components that are relevant.

Going back to our running example let ρt = (in1, in2)et(T1, in2)), and Xt =
↑ρt. Let ρ′t = (in1, in2)e′t(in1, T2)), and X ′t = ↑ρt. Assume ρh, Xh, ρ′h and X ′h
are defined similarly. Then P̂ (Xt) = P̂ (X ′h) = 0.5 while P̂ (Xh ∪ Xt) = 1. On
the other hand due to the fact that eh and e′h are independent we will have

P̂ (Xh ∪X ′h) = 0.75.

6 Model checking PBLTL⊗ specifications

We have designed a statistical model checking procedure to verify dynamic prop-
erties of DMCs. The specification logic PBLTL⊗ (product PBLTL) is a simple

9

s’

generalization of probabilistic bounded linear time temporal logic (PBLTL) [17]
that captures boolean combinations of local properties of the components. The
logic can express interesting global reachablity properties as well as the manner
in which the components influence each other.

We assume a collection of pairwise disjoint sets of atomic propositions {APi}.
As a first step, the formulas of BLTL⊗ are given as follows.

(i) ap ∈ APi is a BLTL⊗ formula and type(ap) = {i}.
(ii) If ϕ and ϕ′ are BLTL⊗ formulas with type(ϕ) = type(ϕ′) = {i} then so is

ϕUt
iϕ
′ where t is a non-negative integer. Further, type(ϕUt

iϕ
′) = {i}. As

usual, 3tϕ abbreviates true Utϕ and 2tϕ is defined as ¬3t¬ϕ.
(iii) If ϕ and ϕ′ are BLTL⊗ formulas then so are ¬ϕ and ϕ∨ϕ′ with type(¬ϕ) =

type(ϕ) and type(ϕ ∨ ϕ′) = type(ϕ) ∪ type(ϕ′).

The formulas of PBLTL⊗ are given by:

(i) Suppose ϕ is a BLTL⊗ formula and γ a rational number in the open
interval (0, 1). Then Pr≥γ(ϕ) is a PBLTL⊗ formula.

(ii) If ψ and ψ′ are PBLTL⊗ formulas then so are ¬ψ and ψ ∨ ψ′.

To define the semantics, we project each trajectory to its components. For
s ∈ S and i ∈ [n] we define Proji : Trjfins → S+

i inductively.

(i) Proji(s) = si.
(ii) Suppose ρ = s0eos1 . . . smemsm+1 is in Trjfins and ρ′ = s0e0s1 . . . sm.

If i ∈ loc(em) then Proji(ρ) = Proji(ρ
′)(sm+1)i. Otherwise Proji(ρ) =

Proji(ρ
′).

We lift Proji to infinite trajectories in the obvious way—note that Proji(ρ)
can be a finite sequence for the infinite trajectory ρ. We assume a set of local
valuation functions {Vi}, where Vi : Si → 2APi . Let ϕ be a BLTL⊗ formula with
type(ϕ) = {i}. We begin by interpreting such formulas over sequences generated
by the alphabet Si. For % ∈ S+

i ∪ Sωi , the satisfaction relation %, k |=i ϕ, with
0 ≤ k ≤ |%|, is defined as follows.

(i) %, k |=i ap for ap ∈ APi iff ap ∈ Vi(%(k)(i)), where %(k)(i) is the Si-state
at position k of the sequence %.

(ii) ¬ and ∨ are interpreted in the usual way.
(iii) %, k |=i ϕ1U

t
iϕ2 iff there exists ` such that k ≤ ` ≤ max(k + t, |%|) with

%, ` |=i ϕ2, and %,m |=i ϕ1, for k ≤ m < `.

As usual, % |=i ϕ iff %, 0 |=i ϕ. Next, suppose ϕ is a BLTL⊗ formula and
ρ ∈ Paths. Then the relation ρ |=s ϕ is defined as follows.

(i) If type(ϕ) = {i} then ρ |=s ϕ iff Proji(ρ) |=i ϕ.
(ii) Again, ¬ and ∨ are interpreted in the standard way.

Given a formula ϕ in BLTL⊗ and a global state s, we define Trjs(ϕ) to be the
set of trajectories {ρ ∈ Trjs | ρ |=s ϕ}.

Lemma 6. For every formula ϕ, Trjs(ϕ) is a member of ŜA(s).

10

s’

Proof sketch If we interpret the formulas overM, we easily derive that Paths(ϕ)
is a member of SA(s) for every ϕ. We then use Lemma 5 to obtain this result.

2

The semantics of PBLTL⊗ is now given by the relation D |=trj
s ψ, defined as:

(i) Suppose ψ = Pr≥γ(ϕ). Then D |=trj
s ψ iff P̂ (Paths(ϕ)) ≥ γ.

(ii) Again, the interpretations of ¬ and ∨ are the standard ones.

For the example in Fig. 1, one can assert P̂≥0.99((37L1∧37W2)∨(37W1∧37L2)).
Here the local states also serve as the atomic propositions. Hence, the formula
says that with probability ≥ 0.99, a winner will be decided within 7 rounds.

We writeD |=trj ψ forD |=trj
sin ψ. The model checking problem is to determine

whether D |=trj ψ. We shall adapt the SMC procedure developed in [27] to solve
this problem approximately.

7 Statistical model checking

Given a DMC D and a PBLTL⊗ specification ψ, our goal is to determine
whether D |=trj ψ (that is, D |=trj

sin ψ). We develop a statistical model checking
(SMC) procedure to provide an approximate solution to this problem. We note
that in the Markov chain setting, given a BLTL formula and a path in the chain,
there is a bound k that depends only on the formula such that we can decide
whether the path is a model of the formula by examining just a prefix of length
k of the path [17]. By the same reasoning, for a BLTL⊗ formula ϕ, we can
compute a vector of bounds (k1, k2, . . . , kn) that depends only on ϕ such that
for any trajectory ρ starting from sin, we only need to examine a finite prefix
ρ′ of ρ that satisfies |Proji(ρ′)| ≥ ki, for 1 ≤ i ≤ n. The complication in our
setting is that such a prefix of ρ may not exist.

To cope with this, we maintain a count vector (c1, c2, . . . , cn) that records
how many times each component has moved along the trajectory ρ that has been
generated so far. A simple reachability analysis will reveal whether a component
is dead in the current global state; that is, starting from the current state, there
is no possibility of reaching a state in which an event involving this agent can be
executed. We mark such components as dead. We then execute, one by one, all
the enabled actions—using a fixed linear order over the set of actions—followed
by one move by each of the participating agents according to the underlying
probabilities. Recall that action a is enabled at s iff sa ∈ ena. Due to the
determinacy of communication, the global state thus reached will depend only
on the probabilistic moves chosen by the participating agents. We then update
the count vector to (c′1, c

′
2, . . . , c

′
n) and mark the new dead components. It is

not difficult to prove that, continuing in this manner, with probability 1 we will
eventually generate a finite trajectory ρ̂ and reach a global state s with count
vector (ĉ1, ĉ2, . . . , ĉn) such that for each component i, either ĉi ≥ ki or i is dead
at s. We then check if ρ̂ satisfies ϕ and update the score associated with the
statistical test described below.

11

s’

The parameters for the test are δ, α, β, where δ is the size of the indifference
region and (α, β) is the strength of the test, with α bounding the Type I er-
rors (false positives) and β bounding the Type II errors (false negatives). These
parameters are to be chosen by the user. We generate finite i.i.d. sample trajec-
tories sequentially. We associate a Bernoulli random variable x` with the sample
ρ` and set x` = 1 if ρ` ∈ Trjsin(ϕ) and set x` = 0 otherwise. We let cm =

∑
` x`

and compute the score SPRT via

SPRT =
(γ+)cm(1− γ+)n−cm

(γ−)
cm(1− γ−)n−cm

Here γ+ = γ + δ and γ− = γ − δ. If SPRT ≥ 1−β
α , we declare D |=trj P̂≥rϕ.

If SPRT ≤ β
1−α , we declare D 6|=trj P̂≥γϕ. Otherwise, we draw one more sample

and repeat.
This test is then extended to handle formulas of the form ¬ψ and ψ1 ∨ψ2 in

the usual way [17]. It is easy to establish the correctness of this statistical model
checking procedure.

8 Experimental results

We have tested our statistical verification procedure on two probabilistic dis-
tributed algorithms: (i) a leader election protocol for a unidirectional ring of
anonymous processes by Itai and Rodeh [10, 14] and (ii) a randomized solution
to the dining philosophers problem by Lehman and Rabin [20].

For comparison with Markov chain based verification we used the proba-
bilistic model checking tool Prism, which tackles these two examples as case
studies [13,24]. Since Prism does not currently support SMC for BLTL specifi-
cations, we used the simulation based approximate verification feature of Prism.
We compared the time taken by our SMC procedure with that of approximate
verification in Prism for roughly the same number of simulations,.

In the leader election protocol, each process randomly chooses an identity
from {1, 2, . . . , N}, and passes it on to its neighbour. If a process receives an
identity lower than its own, the message is dropped. If the identity is higher
than its own, the process drops out of the election and forwards the message.
Finally, if the identity is the same as its own, the process forwards the message,
noting the identity clash. If an identity clash is recorded, all processes with the
highest identity choose a fresh identity and start another round.

We have built a DMC model of this system in which each process and channel
is an agent. Messages are transferred between processes and channels via syn-
chronizations. For simplicity, all channels in our implementation have capacity
1. We can easily construct higher capacity channels by cascading channels of
capacity 1 while staying within the DMC formalism.

The challenge in modelling the dining philosphers problem as a DMC is
to represent the forks between philosophers, which are typically modelled as
shared variables. We use a deterministic round robin protocol to simulate shared
variables. The same technique can be used for a variety of other randomized
distributed algorithms presented as case studies for Prism.

12

s’

Fig. 3. Comparison of simulation times in DMC and Prism

We ran our trajectories based SPRT procedure on a Linux server (Intel Xeon
2.30 GHz, 16 core, 72GB RAM). For the first example, we verified that a leader is
elected with probability above 0.99 within N rounds, for a ring of N processes,
upto N = 1000. For the dining philosophers, we verified that every philoso-
pher eventually eats, upto N = 500 philosophers. This property could not be
checked using approximate verification in Prism because it exceeded the sim-
ulation bounds even for N = 11. To compare with Prism, we introduced a
boolean variable that is set when a philosopher eats for the first time and veri-
fied the property that with probability above 0.95, a fixed fraction (0.4) of the
philosophers have eaten at least once within a bounded number of steps.

We tested the same properties on the Prism model, using simulation based
approximate verification. For a fair comparison, we ensured that the number of
simulation runs in Prism were approximately the same as the average number
of simulation runs required for SPRT verification in the DMC model.

In Fig. 3, we have compared the running time for SPRT model-checking
in the DMC model against the running time for approximate verification in
Prism. The x-axis is the number of processes in the system and the y-axis is
the running time, in seconds. Both axes are rendered in a log scale. In Prism,
we could not check the leader election property beyond N = 250 and, for the
dining philosophers example, the largest system we could run had N = 50. The
experiments show that simulations using asynchronous trajectories are 10 to 100
times faster.

9 Conclusion

We have formulated a distributed probabilistic system model called DMCs. Our
model achieves a clean mix of concurrency and probabilistic dynamics by re-
stricting synchronizations to be deterministic. Our key technical contribution is
the construction of a probability measure over the σ-algebra generated by the
(interleaved) trajectories of a DMC. This opens up the possibility of using par-
tial order reduction techniques to efficiently verify the dynamic properties of a

13

s’

DMC. As a first step in this direction we have developed a SPRT based statisti-
cal model checking procedure for the logic PBLTL⊗. Our experiments suggest
that our method can handle systems of significant sizes.

The main partial order concept we have used is to group trajectories into
equivalence classes. One can also explore how ample sets [6] and related notions
can be used to model check properties specified in logics such as PCTL [3].
Another possibility is to see if the notion of finite unfoldings from Petri net
theory can be applied in the setting of DMCs [9,21].

In the two examples we have discussed, the specification has a global charac-
ter, since it mentions every agent in the system. In many specifications, only a few
agents may be mentioned. If the system is loosely coupled, we can check whether
the required property is fulfilled without having to exercise all the agents. This
will lead to additional computational gains.

One observation is that in standard randomized distributed algorithms, like
the case studies in [24], probabilistic moves are always local. The DMC model
allows synchronous probabilistic moves where the probability distribution is in-
fluenced by information obtained through communication. This allows us to
model situations such as an actuator for an implanted device making proba-
bilistic transitions based on information received from external sensors. In such
situations, the overall dynamics would typically be too complex to explore ex-
haustively using traditional model checking techniques, but statistical model
checking can be applied provided we can perform efficient simulations, which we
have demonstrated is possible with DMCs.

We currently allow agents to gain complete information about the state of the
agents they synchronize with. In practice, only a part of this state may/should
be exposed. An interesting extension would be point-to-point asynchronous com-
munications through bounded buffers using a finite message alphabet.

Finally, though almost all the case studies in [24] can be recast as DMCs, it
will be fruitful to understand the theoretical and practical limitations of deter-
ministic communications in a distributed probabilistic setting.

References

1. S. Abbes and A. Benveniste. True-concurrency probabilistic models: Branching
cells and distributed probabilities for event structures. Inf. Comput., 204(2):231–
274, 2006.

2. S. Abbes and A. Benveniste. True-concurrency probabilistic models: Markov nets
and a law of large numbers. Theor. Comput. Sci., 390(2-3):129–170, 2008.

3. C. Baier and J.P. Katoen. Principles of Model Checking. MIT Press, 2008.
4. J. Bogdoll, L.M.F. Fioriti, A. Hartmanns, and H. Hermanns. Partial order methods

for statistical model checking and simulation. In FMOODS/FORTE, pages 59–74,
2011.

5. E.M. Clarke, J.R. Faeder, C.J. Langmead, L.A. Harris, S.K. Jha, and A. Legay.
Statistical model checking in BioLab: Applications to the automated analysis of
t-cell receptor signaling pathway. In CMSB, pages 231–250, 2008.

6. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 1999.

14

s’

7. A. David, K.G. Larsen, A. Legay, M. Mikučionis, and Z. Wang. Time for statistical
model checking of real-time systems. In Computer Aided Verification, pages 349–
355. Springer, 2011.

8. V. Diekert and G. Rozenberg. The Book of Traces. World Scientific, 1995.
9. J. Esparza and K. Heljanko. Unfoldings: A Partial-Order Approach to Model Check-

ing. Monographs in theoretical computer science. Springer-Verlag Berlin Heidel-
berg, 2008.

10. W. Fokkink and J. Pang. Variations on Itai-Rodeh leader election for anonymous
rings and their analysis in Prism. J. of Universal Computer Science, 12(8):981–
1006, 2006.

11. M. Größer and C. Baier. Partial order reduction for Markov Decision Processes:
A survey. In FMCO, pages 408–427, 2005.

12. R. Grosu, X. Huang, S.A. Smolka, W. Tan, and S. Tripakis. Deep random search for
efficient model checking of timed automata. In Fabrice Kordon and Oleg Sokolsky,
editors, Monterey Workshop, volume 4888 of Lecture Notes in Computer Science,
pages 111–124. Springer, 2006.

13. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool for auto-
matic verification of probabilistic systems. In 12th TACAS, pages 441–444, 2006.

14. A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Information
and Computation, 88(1):60–87, 1990.

15. C. Jegourel, A. Legay, and S. Sedwards. A platform for high performance statistical
model checking–PLASMA. Tools and Algorithms for the Construction and Analysis
of Systems, pages 498–503, 2012.

16. S. Jha. Statistical analysis of privacy and anonymity guarantees in randomized
security protocol implementations. arXiv preprint arXiv:0906.5110, 2009.

17. S.K. Jha, E.M. Clarke, C.J. Langmead, A. Legay, A. Platzer, and P. Zuliani. A
Bayesian approach to model checking biological systems. In CMSB, pages 218–234,
2009.

18. C.J Langmead and S.K. Jha. Predicting protein folding kinetics via temporal logic
model checking. In WABI, pages 252–264, 2007.

19. A. Legay and M. Viswanathan. Simulation + hypothesis testing for model checking
of probabilistic systems. In QEST, page 3. IEEE Computer Society, 2009.

20. D. Lehmann and M. Rabin. On the advantage of free choice: A symmetric and
fully distributed solution to the dining philosophers problem (extended abstract).
In Proc. 8th Annual ACM Symposium on Principles of Programming Languages
(POPL’81), pages 133–138, 1981.

21. K.L. McMillan. A technique of state space search based on unfolding. Formal
Methods in System Design, 6(1):45–65, 1995.

22. G. Pighizzini S. Jesi and N. Sabadini. Probabilistic asynchronous automata. Math-
ematical Systems Theory, 29(1):5–31, 1996.

23. D. Varacca, H. Völzer, and G. Winskel. Probabilistic event structures and domains.
Theor. Comput. Sci., 358(2-3):173–199, 2006.

24. Various. Prism case studies. http://www.prismmodelchecker.org/casestudies,
2013.

25. A. Wald. Sequential Analysis. John Wiley and Sons, 1st edition, 1947.
26. H.L.S. Younes. Verification and planning for stochastic processes with asyn-

chronous events. PhD thesis, Pittsburgh, PA, USA, 2004. AAI3159989.
27. H.L.S. Younes and R.G. Simmons. Probabilistic verification of discrete event sys-

tems using acceptance sampling. In CAV, pages 223–235, 2002.
28. W. Zielonka. Notes on finite asynchronous automata. ITA, 21(2):99–135, 1987.

15

http://www.prismmodelchecker.org/casestudies

	Distributed Markov Chains

