Skip to main content

Image Matching Using Mutual k-Nearest Neighbor Graph

  • Conference paper
Intelligent Computation in Big Data Era (ICYCSEE 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 503))

Abstract

Though weighted voting matching is one of most successful image matching methods, each candidate correspondence receives voting score from all other candidates, which can not apparently distinguish correct matches and incorrect matches using voting scores. In this paper, a new image matching method based on mutual k-nearest neighbor (k-nn) graph is proposed. Firstly, the mutual k-nn graph is constructed according to similarity between candidate correspondences. Then, each candidate only receives voting score from its mutual k nearest neighbors. Finally, based on voting scores, the matching correspondences are computed by a greedy ranking technique. Experimental results demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang, C.R., Chen, C.S., Chung, P.C.: Contrast context histogram—an efficient discriminating local descriptor for object recognition and image matching. Pattern Recognition 41, 3071–3077 (2008)

    Article  MATH  Google Scholar 

  2. Misra, I., Manthira Moorthi, S., Dhar, D., et al.: An automatic satellite image registration technique based on Harris corner detection and random sample consensus outlier rejection model. In: 1st International Conference on Recent Advances in Information Technology, pp. 68–73. IEEE Computer Society, United States (2012)

    Google Scholar 

  3. Shin, D., Tjahjadi, T.: Clique descriptor of affine invariant regions for robust wide baseline image matching. Pattern Recognition 43, 3261–3272 (2010)

    Article  MATH  Google Scholar 

  4. Zhang, G.P., Wang, Y.H.: Robust 3D face recognition based on resolution invariant features. Pattern Recognition Letter 32, 1009–1019 (2011)

    Article  Google Scholar 

  5. Liu, Z.X., An, J.B., Meng, F.R.: A Robust Point Matching Algorithm for Image Registration. In: 4th International Conference on Machine Vision. SPIE, United States (2012)

    Google Scholar 

  6. Lowe, D.G.: Distinctive Image Features from Scale-invariant Keypoints. Int. J. Comput. Vision 60, 91–110 (2004)

    Article  Google Scholar 

  7. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: 10th IEEE International Conference on Computer Vision, pp. 1482–1489. IEEE Press (2005)

    Google Scholar 

  8. Caelli, T., Kosinov, S.: An eigenspace projection clustering method for inexact graph matching. IEEE Trans. Pattern. Anal. Mach. Intell. 26, 515–519 (2004)

    Article  Google Scholar 

  9. Tao, D.C., Li, X.L., Wu, X.D., et al.: Geometric mean for subspace selection. IEEE Trans. Pattern Anal. Mach. Intell. 31, 260–274 (2009)

    Article  Google Scholar 

  10. Yuan, Y., Pan, Y.W., Wang, K.Q., et al.: Efficient image matching using weighted voting. Pattern Recogn. Lett. 33, 471–475 (2012)

    Article  Google Scholar 

  11. Lipman, Y., Funkhouser, T.: Mőbius voting for surface correspondence. ACM Trans. Graphics 28, 1–12 (2009)

    Article  Google Scholar 

  12. Kin-Chung Au, O., Tai, C.-L., Cohen-Or, D., et al.: Electors voting for fast automatic shape correspondence. Computer Graphics Forum 29, 645–654 (2010)

    Article  Google Scholar 

  13. Berton, L., De Andrade Lopes, A.: Informativity-Based Graph: Exploring Mutual kNN and Labeled Vertices for Semi-Supervised Learning. In: 4th International Conference on Computational Aspects of Social Networks, pp. 14–19. IEEE Computer Society, United States (2012)

    Google Scholar 

  14. Ozaki, K., Shimbo, M., Komachi, M., et al.: Using the Mutual k-Nearest Neighbor Graphs for Semi-supervised Classification of Natural Language Data. In: 15th Conference on Computational Natural Language Learning, pp. 154–162. Association for Computational Linguistics (ACL), United States (2011)

    Google Scholar 

  15. Carneiro, G., Jepson, A.D.: Flexible Spatial Configuration of Local Image Features. IEEE Trans. Pattern Anal. Mach. Intell. 29, 2089–2104 (2007)

    Article  Google Scholar 

  16. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  17. Shao, H., Svoboda, T., Van Gool, L.: Zubud-zurich buildings database for image based recognition. Technical Report 260, Computer Vision Laboratory, Swiss Federal Institute of Technology (2003)

    Google Scholar 

  18. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1615–1630 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Tt., Jiang, B., Tu, Zz., Luo, B., Tang, J. (2015). Image Matching Using Mutual k-Nearest Neighbor Graph. In: Wang, H., et al. Intelligent Computation in Big Data Era. ICYCSEE 2015. Communications in Computer and Information Science, vol 503. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46248-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46248-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46247-8

  • Online ISBN: 978-3-662-46248-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics