Skip to main content

Swarm Intelligence in Multiple and Many Objectives Optimization: A Survey and Topical Study on EEG Signal Analysis

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 592))

Abstract

This paper systematically presents the Swarm Intelligence (SI) methods for optimization of multiple and many objective problems. The fundamental difference of Multiple and Many Objective Optimization problems have been studied very rigorously. The three forefront swarm intelligence methods, i.e., Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Bee Colony Optimization (ABC) has been deeply studied to understand their ways of solving multiple and many objective problems distinctly. A pragmatic topical study on the behavior of real ants, bird flocks, and honey bees in solving EEG signal analysis completes the survey followed by discussion and extensive number of relevant references.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bonabeau, E., Dorigo, M., Thraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems, vol. 23. Oxford University Press, Oxford (1999)

    Google Scholar 

  2. Rafie, F.M., Manzari, S.M., Khashei, M.: Scheduling flight perturbations with ant colony optimization approach. Int. J. Comput. Sci. Artif. Intell. 2(2), 1–9 (2012)

    Article  Google Scholar 

  3. Sashikumar, G.N., Mahendra, A.K., Gouthaman, G.: Multi-objective shape optimization using ant colony coupled computational fluid dynamics solver. Comput. Fluids 46(1), 298–305 (2011)

    Google Scholar 

  4. Prasad, S., Zaheeruddin, Lobiyal, D.K.: Multi-objective multicast routing in wireless ad-hoc networks: an ANT colony approach. In: Proceedings of IEEE 3rd International Conference in Advance Computing, pp. 511–514 (2013)

    Google Scholar 

  5. Goa, S.: Solving weapon-target assignment problems by a new ANT colony algorithm. International Symposium on Computational Intelligence & Design, pp. 221–224. IEEE Press (2008)

    Google Scholar 

  6. Yang, X.S.: Nature-inspired metaheuristic algorithms. Luniver Press, Beckington, UK (2008)

    Google Scholar 

  7. Lim, C.P., Jain, L.C., Dehuri, S. (eds.): Innovations in Swarm Intelligence. Springer, Berlin (2009)

    Google Scholar 

  8. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: Proceedings of 2008 IEEE Congress on Evolutionary Computation, pp. 2424–2431. Hong Kong (2008)

    Google Scholar 

  9. Millonas, M.M.: Swarms, phase transition and collective intelligence. In: Langton, C.G. (ed.) Artificial Life III. Addison Wesley, Reading (1994)

    Google Scholar 

  10. Karaboga, D.: Artificial be colony algorithm. Scholarpedia 5(3), 6915 (2010)

    Google Scholar 

  11. Dehuri, S., Cho, S.-B., Ghosh, S. (eds.): Integration of Swarm Intelligence and Artificial Neural Networks. World Scientific Press, New Jersey (2011)

    Google Scholar 

  12. Dehuri, S., Cho, S.-B. (eds.): Knowledge Mining Using Intelligent Agents. Imperial College Press, London (2010)

    Google Scholar 

  13. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22(3), 52–67 (2002)

    Google Scholar 

  14. Mishra, B.S.P., Dehuri, S., Wang, G.-N.: A state-of-the-art review of artificial bee colony in the optimization of single and multi-criteria. Int. J. Appl. Metaheuristics Comput. 4(4), 23–45 (2013)

    Article  Google Scholar 

  15. Sato, H., Aguirre, H.E., Tanaka, K.: Controlling dominance area of solutions and its impact on the performance of MOEAs. Lecture Notes in Computer Science 4403: Evolutionary Multi-Criterion Optimization- EMO 2007. Springer, Berlin (2007)

    Google Scholar 

  16. Ikeda, K., Kita, H., Kobayashi, S.: Failure of pareto-based MOEAs: does non dominated really mean near to optimal? In: Proceedings of 2001 IEEE Congress on Evolutionary Computation, pp. 957–962. Seoul (2001)

    Google Scholar 

  17. Branke, J., Kauler, T., Schmeck, H.: Guidance in evolutionary multi-objective optimization. Adv. Eng. Softw. 32(6), 499–507 (2001)

    Article  MATH  Google Scholar 

  18. Branke, J., Deb, K.: Integrating user preferences into evolutionary multi-objective optimization. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 461–477. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Drechsler, N., Drechsler, R., Becker, B.: Multi-objective optimization based on relation. Lecture Notes in Computer Science 1993: Evolutionary Multi-Criterion Optimization - EMO 2001. pp. 154–166. Springer, Berlin (2001)

    Google Scholar 

  20. Slflow, A., Drechsler, N., Drechsler, R.: Robust multi-objective optimization in high dimensional spaces. Lecture Notes in Computer Science 4403: Evolutionary Multi-Criterion Optimization - EMO 2007, pp. 715–726. Springer, Berlin (2007)

    Google Scholar 

  21. Kppen, M., Yoshida, K.: Substitute distance assignments in NSGA-II for handling many-objective optimization problems. Lecture Notes in Computer Science 4403: Evolutionary Multi-Criterion Optimization - EMO 2007, pp.727–741. Springer, Berlin (2007)

    Google Scholar 

  22. Corne, D., Knowles, J.: Techniques for highly multi-objective optimization: some non-dominated points are better than others. In: Proceedings of 2007 Genetic and Evolutionary Computation Conference, pp. 773–780. London (2007)

    Google Scholar 

  23. Kukkonen, S., Lampinen, J.: Ranking-dominance and many objective optimization. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation, pp. 3983–3990. Singapore (2007)

    Google Scholar 

  24. Wagner, T., Beume, N., Naujoks, B.: Pareto, aggregation and indicator-based methods in many-objective optimization. Lecture Notes in Computer Science 4403: Evolutionary Multi-Criterion Optimization - EMO 2007, pp. 742–756. Springer, Berlin (2007)

    Google Scholar 

  25. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Iterative approach to indicator-based multi-objective optimization. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation, pp. 3697–3704. Singapore (2007)

    Google Scholar 

  26. Brockhoff, D., Zitzler, E.: Are all objectives necessary? on dimensionality reduction in evolutionary multiobjective optimization. Lecture Notes in Computer Science 4193: Parallel Problem Solving from Nature - PPSN IX, pp. 533–542. Springer, Berlin (2006)

    Google Scholar 

  27. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1998)

    Book  Google Scholar 

  28. Knowles, J.D., Corne, D.W.: On metrics for comparing non dominated sets. In: Proceedings of 2002 IEEE Congress on Evolutionary Computation, pp. 711–716. Honolulu (2002)

    Google Scholar 

  29. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multi-objective optimizers: ananalysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

  30. Okabe, T., Jin, Y., Sendhoff, B.: A Critical Survey of Performance Indices for Multi-objective Optimization. In: Proceedings of 2003 IEEE Congress on Evolutionary Computation, pp. 878–885. Canberra (2003)

    Google Scholar 

  31. Ishibuchi, H., Doi, T., Nojima, Y.: Incorporation of scalarizing fitness functions into evolutionary multi-objective optimization algorithms. Lecture Notes in Computer Science 4193: Parallel Problem Solving from Nature - PPSN IX, pp. 493–502. Springer, Berlin (2006)

    Google Scholar 

  32. Ishibuchi, H., Nojima, Y.: Optimization of scalarizing functions through evolutionary multi-objective optimization. Lecture Notes in Computer Science 4403: Evolutionary Multi-Criterion Optimization - EMO 2007, pp. 51–65. Springer, Berlin (2007)

    Google Scholar 

  33. Hughes, E.J.: MSOPS-II: a general-purpose many-objective optimizer. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation, pp. 3944–3951. Singapore, pp. 25–28 (2007)

    Google Scholar 

  34. Hughes, E.J.: Multiple single objective pareto sampling. In: Proceedings of 2003 IEEE Congress on Evolutionary Computation, pp. 2678–2684. Canberra (2003)

    Google Scholar 

  35. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. - Part C 28(3), 392–403 (1998)

    Article  Google Scholar 

  36. Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization. Eur. J. Oper. Res. 137(1), 50–71 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in Memetic algorithms for multi-objective permutation flowshop scheduling. IEEE Trans. Evol. Comput. 7(2), 204–223 (2003)

    Article  Google Scholar 

  38. Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-objective optimization: an engineering design perspective. Lecture Notes in Computer Science 3410: Evolutionary Multi-Criterion Optimization - EMO 2005, pp. 14–32. Springer, Berlin (2005)

    Google Scholar 

  39. Deb, K., Sundar, J.: Preference point based multi-objective optimization using evolutionary algorithms. In: Proceedings of 2006 Genetic and Evolutionary Computation Conference, pp. 635–642. Seattle (2006)

    Google Scholar 

  40. Thiele, L., Miettinen, K., Korhonen, P.J., Molina, J.: A Preference Based Interactive Evolutionary Algorithm for Multiobjective Optimization. Helsinki School of Economics, Helsinki (2007). Working Paper, W-412

    Google Scholar 

  41. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the design of pareto-compliant indicators via weighted integration. Lecture Notes in Computer Science 4403: Evolutionary Multi-Criterion Optimization - EMO 2007, pp. 862–876. Springer, Berlin (2007)

    Google Scholar 

  42. Fonseca, C.M., Fleming, P.J.: Multi-objective optimization and multiple constraint handling with evolutionary algorithms - Part I: a unified formulation. IEEE Trans. Syst. Man Cybern. - Part A 28(1), 38–47 (1998)

    Google Scholar 

  43. Coello, C.A.C.: Handling preferences in evolutionary multi-objective optimization: a survey. In: Proceedings of 2000 IEEE Congress on Evolutionary Computation, pp. 30–37. San Diego (2000)

    Google Scholar 

  44. Cvetkovic, D., Parmee, P.: Preferences and their application in evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 6(1), 42–57 (2002)

    Article  Google Scholar 

  45. Zitzler, E., Thiele, L.: Multi-objective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  46. Brockhoff, D., Wagner, T., Trautman, H.: On the properties of the R2 indicator. In: Proceedings of 2012 Genetic Evolutionary Computation Conference (GECCO2012), pp. 465–472. ACM Press, Philadelphia (2012)

    Google Scholar 

  47. Gomez, R.H., Coello, C.A.C.: MOMBI: A new Metaheuristics for many-objective optimization based on the R2 indicator. IEEE Congr. Evol. Comput. (CEC-2013) 1, 2488–2495 (2013)

    Google Scholar 

  48. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multi-objective selection based on dominated hypervolume. Eur. J. Oper. Res. 180(3), 1653–1669 (2007)

    Article  Google Scholar 

  49. Garca-Martnez, C., Cordon, O., Herrera, F.: Discrete optimization a taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. Eur. J. Oper. Res. 180, 116–148 (2007)

    Article  Google Scholar 

  50. Chaharsooghi, S.K., Kermani, A.H.M.: An effective Ant Colony Optimization Algorithm (ACO) for Multi-objective Resource Allocation Problem (MORAP). Appl. Math. Comput. 200(1), 167–177 (2008)

    Google Scholar 

  51. Mariano, C.E., Morales, E.: MOAQ: an ant-Q algorithm for multiple objective optimization problems. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Hnavar, V., Jakiela, M., Smith, R.E. (eds.) In: Proceedings of the Genetic and Evolutionary Computing Conference (GECCO 99), pp. 894–901. San Francisco (1999)

    Google Scholar 

  52. Iredi, S., Merkle, D., Middendorf, M.: Bi-criterion optimization with multi colony ant algorithms. In: Proceedings First International Conference on Evolutionary Multi-criterion Optimization (EMO01). Lecture Notes in Computer Science 1993, pp. 359–372 (2001)

    Google Scholar 

  53. Doerner, K., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C.: Pareto ant colony optimization: a metaheuristics approach to multi-objective portfolio selection. Ann. Oper. Res. 131(1–4), 79–99 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  54. Gambardella, L., Taillard, E., Agazzi, G.: MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 73–76. McGraw-Hill (1999)

    Google Scholar 

  55. Doerner, K., Hartl, R.F., Teimann, M.: Are COMPETants more competent for problem solving? the case of full Truckload transportation. Cent. Eur. J. Oper. Res. 11(2), 115–141 (2003)

    MATH  MathSciNet  Google Scholar 

  56. Gravel, M., Price, W.L., Gagne, C.: Scheduling continuous casting of aluminium using a multiple objective ant colony optimization Metaheuristics. Eur. J. Oper. Res. 143(1), 218–229 (2002)

    Article  MATH  Google Scholar 

  57. Ali, A.-D., Belal, M.A., Al-Zoubi, M.B.: Load balancing of distributed systems based on multiple ant colonies optimization. Am. J. Appl. Sci. 7(3), 428–433 (2010)

    Article  Google Scholar 

  58. Lopez-Ibanez, M., Stutzle, T.: The automatic design of multiobjective ant colony optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)

    Google Scholar 

  59. Lopez-Ibanez, M., Stutzle, T.: Automatic configuration of multi-objective ant colony optimization algorithms. In: Dorigo, M., et al., (eds.) Ants. Lecture Notes in Computer Science, vol. 6234, pp. 95–106. Springer, Heidelberg (2010)

    Google Scholar 

  60. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948. Perth (1995)

    Google Scholar 

  61. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, pp. 1945–1950 (1999)

    Google Scholar 

  62. Bergh, F.V.D., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

    Article  Google Scholar 

  63. Coello, C.A.C., Lechuga, M.: MOPSO: A proposal for multi-objective particle swarm optimization. In: Proceedings of the 9th IEEE World Congress on Computational Intelligence, pp. 1051–1056. Honolulu (2002)

    Google Scholar 

  64. Fieldsend, J.E., Singh, S.: A multi-objective algorithm based upon particle swarm optimization, an efficient data structure and turbulence. In: Proceedings of the Workshop on Computational Intelligence, pp. 37–44. Brimingham (2002)

    Google Scholar 

  65. Laumanns, M., Zitzler, E., Thiele, L.: A unified model for multi-objective evolutionary algorithm with Elitism. In: Proceedings of the IEEE World Congress on Evolutionary Computation, pp. 46–53. Piscataway (2000)

    Google Scholar 

  66. Hu, X., Eberhart, R.C.: Multi-objective optimization using dynamic neighborhood particle swarm optimization. In: Proceedings of the IEEE World Congress on Evolutionary Computation, pp. 1677–1681. Honolulu (2002)

    Google Scholar 

  67. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method in multi-objective problem. In: Proceedings of the ACM, Symposium on Applied Computing, pp. 603–607. Madrid (2002)

    Google Scholar 

  68. Schaffer, J.D.: Multi-objective optimization with vector evaluated genetic algorithms. In: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100 (1985)

    Google Scholar 

  69. Mostaghim, S., Teich, J.: Strategies for finding good local guides in MultiObjective Particle Swarm Optimization (MOPSO). In: Proceedings of the IEEE Symposium onSwarm Intelligence, pp. 26–33 (2003)

    Google Scholar 

  70. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  71. Fieldsend, J.E.: Multi-objective particle swarm optimization methods, Technical Report No. 419. Department of Computer Science, University of Exeter (2004)

    Google Scholar 

  72. Ray, T., Liew, K.M.: A swarm metaphor for multi-objective design optimization. Eng. Optim. 34(2), 141–153 (2002)

    Article  Google Scholar 

  73. Pulido, G.T., C. A. C., Coello: Using clustering techniques to improve the performance of a particle swarm optimizer. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 225–237. Seattle (2004)

    Google Scholar 

  74. Mostaghim, S., Teich, J.: Particle swarm inspired evolutionary algorithm PSEA for multi-objective optimization problem. In: Proceedings of the IEEE World Congress on Evolutionary Computation, pp. 2292–2297. Canberra (2003)

    Google Scholar 

  75. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344, 243–278 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  76. Li, X.: A non-dominated sorting particle swarm optimizer for multi-objective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 37–38 (2003)

    Google Scholar 

  77. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and Elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  78. Sierra, M.R., Coella, C.A.C.: Improving PSO-based multi-objective optimization using crowding, mutation and dominance. In: Proceedings of the 3rd International Conference on Evolutionary Multi-criterion Optimization, pp. 505–519. Guanajuato (2005)

    Google Scholar 

  79. Ho, S.L., Shiyou, Y., Lo, E.W.C., Wong, H.C.: A particle swarm optimization b based method for multi-objective design optimization. IEEE Trans. Mag. 41(5), 1756–1759 (2005)

    Article  Google Scholar 

  80. Villalobos-Anias, M.A., Pulido, G.T., Coello, C.A.C.: A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer. In: Proceedings of IEEE Swarm Intelligence Symposium, pp. 22–29. Pasadena (2005)

    Google Scholar 

  81. Salazar-Lechuga, M., Rowe, J.: Particle swarm optimization problems. In: Proceedings of IEEE World Congress on Evolutionary Computation, pp. 1204–1211. Edinburgh (2005)

    Google Scholar 

  82. Janson, S., Merkle, D.: A new multi-objective particle swarm optimization algorithms using clustering applied to automated docking. In: Hybrid Metaheuristics Second International Workshop, pp. 128–142. Barcelona (2005)

    Google Scholar 

  83. Lewis, A.: The effect of population density on the performance of a spatial social network algorithm for multi-objective optimization. In: Proceedings of IEEE International Symposium on Parallel & Ditributed Processing, pp. 1–6. Rome (2009)

    Google Scholar 

  84. Leong, W.F., Yen, G.G.: Impact of tuning parameters on dynamic swarms in PSO-based multi-objective optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1317–1324. Hong Kong (2008)

    Google Scholar 

  85. Lewis, A., Ireland, D.: Automated solution selection in multi-objective optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 2163–2169 (2008)

    Google Scholar 

  86. Cagnina, L., Esquivel, S., Coello, C.A.C.: A Particle Swarm Optimizer for Multi-objective Optimization. J. Comput. Sci. Technol. 5(4) (2005)

    Google Scholar 

  87. Laura, D., Mihai, O.: Evolving the structure of particle swarm optimization algorithm. Evolutionary Computation in Combinatorial Optimization, pp. 25–36. Springer, Berlin (2006)

    Google Scholar 

  88. Goldberg, E.F.G., de Souza, G.R., Goldberg, M.C.: Particle swarm optimization for the bi-objective degree constrained minimum spanning tree. IEEE Congress on Evolutionary Computation, pp. 16–21. Sheraton Vancouver Wall Centre Hotel, Vancouver (2006)

    Google Scholar 

  89. Ho, S., Ku, W., Jou, J., Hung, M., Ho, S.: Intelligent particle swarm optimization in multi-objective problems. PAKDD 2006. LNAI 3918, pp. 790–800. Springer, Berlin (2006)

    Google Scholar 

  90. Koppen, M., Veenhuis, C.: Multi-objective particle swarm optimization by fuzzy- Pareto-dominance meta-heuristic. Int. J. Hybrid Intell. Syst. 3, 179–186 (2006)

    Google Scholar 

  91. Chiu, S., Sun, T., Hsieh, S.: Cross-searching strategy for multi-objective particle swarm optimization. Expert Syst. Appl. 37(8), 5872–5886 (2010)

    Article  Google Scholar 

  92. Peng, W., Zhang, Q.: A decomposition-based multi-objective particle swarm optimization algorithm for continuous optimization problems. In: IEEE International Conference on Granular Computing, pp. 534–537. Hangzhou (2008)

    Google Scholar 

  93. Padhye, N., Branke, J., Mostaghim, S.: Empirical comparison of MOPSO methods guide selection and diversity preservation. In: IEEE Congress on Evolutionary Computation, CEC09, pp. 2516–2523. Trondheim (2009)

    Google Scholar 

  94. Cabrera, J.C.F., Coello, C.A.C.: Micro-MOPSO: a multi-objective particle swarm optimizer that uses a very small population size. In: Proceedings of Studies in Computational Intelligence, vol. 261, pp. 83–104. Springer, Berlin (2010)

    Google Scholar 

  95. Wang, Y., Yang, Y.: Particle swarm optimization with preference order ranking for multi-objective optimization. Inf. Sci. 179(12), 1944–1959 (2009)

    Article  Google Scholar 

  96. Goh, C.K., Tan, K.C.B., Liu, D.S.B., Chiamb, S.C.: A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. Eur. J. Oper. Res. 202, 42–52 (2009)

    Article  Google Scholar 

  97. Tsai, S., Sun, T., Liu, C., Hsieh, S., Wu, W., Chiu, S.: An improved multi-objective particle swarm optimizer for multi-objective problems. Expert Syst. Appl. 37(8), 5872–5886 (2010)

    Google Scholar 

  98. Zheng, X., Liu, H.: A hybrid vertical mutation and self-adaptation based MOPSO. Comput. Math. Appl. 57, 2030–2038 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  99. Wang, Y., Yang, Y.: Particle swarm optimization with preference order ranking for multi-objective optimization. Inf. Sci. 179(12), 1944–1959 (2009)

    Article  Google Scholar 

  100. Tereshko, V., Loengarov, A.: Collective Decision-Making in Honey Bee Foraging Dynamics. Computing and Information Systems 9(3), 1–7. University of the West of Scotland, UK (2005)

    Google Scholar 

  101. Chauhan, N.C., Kartikeyan, M.V., Mittal, A.: Design of RF window using multi-objective particle swarm optimization. In: Proceedings of International Conference on Recent Advances in Microwave Theory and Applications, pp. 34–37. Jaipur (2008)

    Google Scholar 

  102. Falcon, R., DePaire, B., Vanhoof, K., Abraham, A.: Towards a suitable reconciliation of the findings in collaborative fuzzy clustering. In: Proceedings of Eighth International Conference on Intelligent Systems Design and Applications, vol. 3, pp. 652–657. IEEE, USA (2008)

    Google Scholar 

  103. de Carvalho, A.B., Pozo, A., Vergilio, S., Lenz, A.: Predicting fault proneness of classes through a multi-objective particle swarm optimization algorithm. In: Proceedings of 20th IEEE International Conference on Tools with Artificial Intelligence, vol. 2, pp. 387–394 (2008)

    Google Scholar 

  104. Martin, J.E., Pantoja, M.F., Bretones, A.R., Garcia, S.G., de Jong Van Coevorden, C.M., Martin, R.G.: Exploration of multi-objective particle swarm optimization on the design of UWB antennas. In: Proceedings of 3rd European Conference on Antennas and Propagation, pp. 561–565. IEEE, Berlin (2009)

    Google Scholar 

  105. Pang, H., Chen, F.: An Optimization Approach for Intersection Signal Timing Based on Multi-Objective Particle Swarm Optimization. In: Proceeding of IEEE Conference on Cybernetics and Intelligent Systems. IEEE, Chengdu (2008)

    Google Scholar 

  106. Hazra, J., Sinha, A.K.: Congestion management using multi-objective particle swarm optimization. IEEE Trans. Power Syst. 22(4), 1726–1734 (2007)

    Google Scholar 

  107. Qasem, S.N., Shamsuddin, S.M.: Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis. Appl. Soft Comput. 11(1), 1427–1438 (2011)

    Article  Google Scholar 

  108. Pindoriya, M.N., Singh, S.N., Singh, S.K.: Multi-objective mean-variance skewness model for generation portfolio allocation in electricity markets. Electr. Power Syst. Res. 80(10), 1314–1321 (2010)

    Article  Google Scholar 

  109. Sha, D.Y., Lin, H.: A multi-objective PSO for job-shop scheduling problems. Expert Syst. Appl. 37(2), 1065–1070 (2010)

    Article  Google Scholar 

  110. Wang, L., Singh, C.: Stochastic combined heat and power dispatch based on multi-objective particle swarm optimization. Int. J. Electr. Power Energy Syst. 30(3), 226–234 (2008)

    Article  Google Scholar 

  111. Montalvo, I., Izquierdo, J., Schwarze, S., Prez-Garca, R.: Multi-objective particle swarm optimization applied to water distribution systems design: an approach with human interaction. Math. Comput. Model. (2010)

    Google Scholar 

  112. Liu, Y.: Automatic calibration of a rainfall-runoff model using a fast and Elitist multi-objective particle swarm algorithm. Expert Syst. Appl. 36(5), 9533–9538 (2009)

    Article  Google Scholar 

  113. Zhang, W., Liu, Y.: Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm. Int. J. Electr. Power Energy Syst. 30(9), 525–532 (2008)

    Google Scholar 

  114. Cai, J., Ma, X., Li, Q., Li, L., Peng, H.: A multi-objective chaotic particle swarm optimization for environmental/economic dispatch. Energy Convers. Manag. 50(5), 1235–1318 (2009)

    Google Scholar 

  115. Ganguly, S., Sahoo, N.C., Das, D.: Multi-objective particle swarm optimization based on fuzzy-pareto-dominance for possibilistic planning of electrical distribution systems incorporating distributed generation. Fuzzy Sets Syst. 213, 47–73 (2013)

    Article  MathSciNet  Google Scholar 

  116. Sankaran, A., Manne, J.R.: Probabilistic multi-objective optimal design of composite channels using particle swarm optimization. J. Hydraul. Res. 51(4) (2013)

    Google Scholar 

  117. Karaboga, D.: An idea based on honey bee swarm for numerical optimization, Technical Report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  118. Teodorovic, D., Dell, M.O.: Bee colony optimization - a cooperative learning approach to complex transportation problems. In: Proceedings of 10th EWGT Meeting and 16th Mini EURO Conference, pp. 51–60 (2005)

    Google Scholar 

  119. Wedde, H., Farooq, M.: The wisdom of the hive applied to mobile ad-hoc networks. In: Proceedings of the Swarm Intelligence Symposium 2005, pp. 341–348. Pasadena (2005)

    Google Scholar 

  120. Drias, H.S.S., Yahi, S.: Cooperative bees swarm for solving the maximum weighted satisfiability problem. Computational Intelligence and Bioinspired Systems. LNCS, vol. 3512, pp. 318–325. Springer, Berlin (2005)

    Google Scholar 

  121. Chong, C.S., Sivakumar, A.I., Malcolm Low, Y.H., Gay, K.L.: A bee colony optimization algorithm to job shop scheduling. In: Proceedings of the 38th conference on Winter simulation WSC ’06, pp. 1954–1961. California (2006)

    Google Scholar 

  122. Quijano, N., Passino, K.: Honey bee social foraging algorithms for resource allocation, Part-I: algorithm and theory. In: Proceedings of American Control Conference, ACC ’07, pp. 3383–3388. IEEE, New York (2007)

    Google Scholar 

  123. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  124. Karaboga, D., Ozturk, C.: Neural networks training by artificial bee colony algorithm on pattern classification, pp. 279–292. Neural Network World, Institute of Computer Science AS CR v. v. i, Czech Republic (2009)

    Google Scholar 

  125. Karaboga, N.: A new design method based on artificial bee colony algorithm for digital IIR filters. J. Franklin Institute, 346(4), 328–348 Elsevier, Netherlands (2009)

    Google Scholar 

  126. Karaboga, D., Ozturk, C.: A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Appl. Soft Comput. 11(1), 652–657 (2011)

    Article  Google Scholar 

  127. Xu, C., Duan, H.: Artificial Bee Colony (ABC) optimized Edge Potential Function (EPF) approach to target recognition for low-altitude aircraft. Pattern Recognit. Lett. 31(13), 1759–1772 (2010)

    Google Scholar 

  128. Yu, W.-J., Zhang, J., Chen, W.-N.: Adaptive artificial bee colony optimization, GECCO13. In: Proceedings of the Fifteenth Annual Conference on Evolutionary Computation Conference, pp. 153–158 (2013)

    Google Scholar 

  129. Omkar, S., Senthilnath, N., Khandelwal, J.R., Naik, G.N., Gopalakrishnan, S.: Artificial Bee Colony (ABC) for multi-objective design optimization of composite structures. J. Appl. Soft Comput. 11(1), 489–499 (2011)

    Google Scholar 

  130. Zou, W., Zhu, Y., Chen, H., Zhang, B.: Solving multi-objective optimization problems using artificial bee colony algorithm. Dyn. Nat. Soc. (569784), 37. Hindawi Publishing Corporation (2011). doi:10.1155/2011/569784

  131. Qu, B.Y., Suganthan, P.N.: Multi-objective evolutionary programming without non-domination sorting is up to twenty times faster. In: Proceedings of Congress on Evolutionary Computation, CEC09, pp. 2934–2939 (2009)

    Google Scholar 

  132. Li, H., Zhang, Q.: Multi-objective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  133. Akbari, R., Ziarati, R.H.K., Hassanizadeh, B.: A multi-objective artificial bee colony algorithm. Swarm Evol. Comput. 2, 39–52 (2012)

    Article  Google Scholar 

  134. Akbari, R., Mohammadi, A., Ziarati, K.: A novel bee swarm optimization algorithm for numerical function optimization, communications. Nonlinear Sci. Numer. Simul. 15(9), 3142–3155 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  135. Xinyi, L., Zunchao1, L., Liqiang, L.: An Artificial Bee Colony Algorithm for Multi-objective Optimization. In: IEEE Second International Conference on Intelligent System Design and Engineering Application, pp. 153–156 (2012)

    Google Scholar 

  136. Zhou, G., Wang, L., Xu, Y., Wang, S.: An effective artificial bee colony algorithm for multi-objective flexible job shop scheduling problem. In: Huang, D.-S., et al. (eds.) ICIC, pp. 1–8 (2012)

    Google Scholar 

  137. Wang, L., Zhou, G., Xu, Y., Liu, M.: An enhanced pareto-based artificial bee colony algorithm for the multi-objective flexible job-shop scheduling. Int. J. Adv. Manuf. Technol. 60, 1111–1123 (2012)

    Article  Google Scholar 

  138. Akay, B.: Synchronous and asynchronous pareto-based multi-objective artificial bee colony algorithms. J. Glob. Optim. 57, 415–445 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  139. Zhou, X., Shen, J., Li, Y.: Immune based chaotic artificial bee colony multiobjective optimization algorithm. In: Tan, Y., Shi, Y., Mo, H. (eds.) ICSI 2013, Part I. LNCS 7928, pp. 387–395 (2013)

    Google Scholar 

  140. Drechsler, N., Drechsler, R., Becker, B.: Multi-objective Optimization Based on Relation Favour. Lecture Notes in Computer Science. 1993: Evolutionary Multi-Criterion Optimization - EMO 2001, pp. 154–166. Springer, Berlin (2001)

    Google Scholar 

  141. Zitzler, E., Thiele, L.: Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  142. Ishibuchi, H., Nojima, Y.: Optimization of scalarizing functions through evolutionary multi-objective optimization. Lecture Notes in Computer Science 4403, 51–67 (2007)

    Article  Google Scholar 

  143. Julee, T., Park, S.M., Sim, K.B.: Electro encephalography signal grouping and feature classification using harmony Sarch for BCI. J. Appl. Math. 2013(154539), 1–9 (2013)

    Google Scholar 

  144. Stastny, J., Covaka, P., Stancak, A.: EEG signal classification introduction to the problem. Radio Eng. 12(3), 51–55 (2003)

    Google Scholar 

  145. Gonzalez, A.R.: EEG signal processing for BCI application: human computer system interaction background and applications. J. Adv. Intell. Soft Comput. 98(1) (2012)

    Google Scholar 

  146. Teplan, M.: Fundamentals of EEG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  147. Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H.: Comparison of linear, non linear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2) (2003)

    Google Scholar 

  148. Ahirwala, M.K., Kumar, A., Singh, G.K.: Adaptive Filtering of EEG/ERP Through Bounded Range Artificial Bee Colony (BR-ABC) algorithm. Journal of Digital Signal Processing 25, 164–172 (2013)

    Article  Google Scholar 

  149. Dries, J.E., Peterson, L.G.: Scaling ant colony optimization with hierarchical reinforcement learning partitioning. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO ’08, pp. 25–32 (2008)

    Google Scholar 

  150. Bursa, M., Lhotska, L.: Modified ant colony clustering method in long term electrocardiogram processing. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2007 (EMBS- 2007), pp. 3249–3252 (2007)

    Google Scholar 

  151. Khushaba, R.N., Alsukker, A., Al-Ani, A., Al-jumaily, A.: Intelligent artificial ants based feature extraction from wavelet packet co-efficient for bio-medical signal classification. ISCCSP. Malta (2008)

    Google Scholar 

  152. Khushaba, R.N., Alsukker, A., Al-Ani, A., Al-jumaily, A.: A combined ant colony and differential evolution feature selection algorithm. In: Darigo, M., et al. (eds.) ANTS 2008. LNCS- 5217, pp. 1–12 (2008)

    Google Scholar 

  153. Bursa, M., Lhotska, L.: Ant colony cooperative strategy in electrocardiogram and electroencephalogram data clustering. Stud. Comput. Intell. (SCI) 129, 323–333 (2008)

    Article  Google Scholar 

  154. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 4101–4108. IEEE Press, New York (1997)

    Google Scholar 

  155. Qiu, L., Li, Y., Yao, D.: A Feasibility Study of EEG Dipole Source Localization Using Particle Swarm Optimization. IEEE Congress on Evolutionary Computation, vol. 1, pp. 720–726 (2005)

    Google Scholar 

  156. Pulraj, M.P., Hema, C.R., Nagrajan, R., Yaacob, S., Adom, A.H.: EEG classification using radial basis PSO neural network for brain machine interfaces. In: The 5th Student Conference on Research and Development -SCOReD 2007. Malaysia (2007)

    Google Scholar 

  157. Nakamura, T., Tomita, Y., Ito, S., Mitsukura, Y.: A method of obtaining sense of touch by using EEG. 19th IEEE International Symposium on Robot and Human Interactive Communication Principe di Piemonte - Viareggio. Italy, Sept. 12–15 (2010)

    Google Scholar 

  158. Alp, Y., Arikan, O., Karakas, S.: Dipole source reconstruction of brain signals by using particle swarm optimization. In: IEEE 17th Conference on Signal Processing and Communication Applications, Antalya, pp. 9–12 (2009)

    Google Scholar 

  159. Satti, A.R., Coyle, D., Prasad, G.: Spatio-spectral & temporal parameter searching using class correlation analysis and particle swarm optimization for a brain computer interface. In: Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics. San Antonio (2009)

    Google Scholar 

  160. Lin, C.-J., Hsieh, M.-H.: Classification of mental task from EEG data using neural networks based on particle swarm optimization. J. Neurocomput. Elsevier (2009)

    Google Scholar 

  161. Ba-Karait, N.O.S., Shamsuddin, S.M., Sudirman, R.: Swarm negative selection algorithm for electroencephalogram signals classification. J. Comput. Sci. 5(12), 995–1002 (2009)

    Article  Google Scholar 

  162. Wei, Q., Wang, Y.: Binary multi-objective particle swarm optimization for channel selection in motor imagery based brain-computer interfaces. In: IEEE 4th International Conference on Biomedical Engineering and Informatics (BME I) (2011)

    Google Scholar 

  163. zbeyaz, A., Grsoy, M., oban, R.: Regularization and Kernel parameters optimization based on PSO algorithm in EEG signals classification with SVM. In: 2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU 2011) (2011)

    Google Scholar 

  164. Kim, J.-Y., Park, S.-M., Ko, K.-E., Sim, K.-B.: A binary PSO-based optimal EEG channel selection method for a motor imagery based BCI system, ICHIT. Springer, Berlin (2012)

    Google Scholar 

  165. Sem a Arslan, Gulay T ezel, Ha kan Islk: EEG signals classification using a hybrid structure of ANN and PSO. Int. J. Future Comput. Commun. 1(2) (2012)

    Google Scholar 

  166. Atyabi, A., Luerssen, M., Fitzgibbon, S.P., Powers, D.M.W.: Adapting subject-independent task-specific EEG feature masks using PSO. In: 2012 IEEE World Congress on Computational Intelligence (CEC), pp. 1–7. Brisbane (2012)

    Google Scholar 

  167. Shirvany, Y., Edelvik, F., Jakobsson, S., Hedstrm, A., Persson, M.: Application of particle swarm optimization in Epileptic spike EEG source localization. J. Appl. Soft Comput. 13(5), 2515–2525 (2013)

    Article  Google Scholar 

  168. Rakshit, P., Bhattacharyya, S., Konar, A., Khasnobish, A., Tibarewala, D.N., Janarthanan, R.: Artificial bee colony based feature selection for motor imagery EEG data. In: Bansal, J.C., et al. (eds.) Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), pp. 127–138 (2013)

    Google Scholar 

  169. Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Bat algorithm for constrained optimization tasks. Neural Comput. Appl. 22(6), 1239–1255 (2013)

    Article  Google Scholar 

  170. Dehuri, S., Cho, S.-B. (eds.): Knowledge Mining Using Intelligent Agents, Imperial College Press (2011)

    Google Scholar 

  171. Knowles, J., Corne, D.: Quantifying the effects of objective space dimension in evolutionary multi-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) Proceedings of Evolutionary Multi-Criterion Optimization, ( EMO 2007). Lecture Notes in Computer Science, vol. 4403, pp. 757–771. Springer, Matshushima (2007)

    Google Scholar 

  172. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. Piscataway, pp. 1942–1948 (1995)

    Google Scholar 

  173. Zitzler, E., Thiele, L.: Multi-objective optimization using evolutionary algorithms - a comparative case study. Parallel Problem Solving from Nature - PPSNV. Lecture Notes in Computer Science 1498, pp. 292–301. Springer, Berlin (1998)

    Google Scholar 

  174. Knowles, J.D., Corne, D.W., Fleischer, M.: Bounded archiving using the Lebesgue measure, In: Proceedings of 2003 Congress on Evolutionary Computation, pp. 2490–2497. Canberra (2003)

    Google Scholar 

  175. Zitzler, E., Knzli, S.: Indicator-based selection in multi-objective search. Parallel Problem Solving from Nature - PPSN VIII. Lecture Notes in Computer Science 3242, pp. 832–842. Springer, Berlin (2004)

    Google Scholar 

  176. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. Evolutionary Multi-Criterion Optimization -EMO 2005. Lecture Notes in Computer Science 3410, pp. 62–76. Springer, Berlin (2005)

    Google Scholar 

  177. Ibanez M.L., Stutzle, T.: The automatic design of multi-objective ant colony optimization algorithms. IEEE Trans. Evol. Comput. 16(6) (2012)

    Google Scholar 

  178. Mariano, C.E., Morales, E.: A Multiple Objective Ant-Q Algorithm for the Design of Water Distribution Irrigation Networks, Technical Report HC-9904. Institute Mexicano de Tecnologa del Agua, Mexico (1999)

    Google Scholar 

  179. Stutzle, T.: MAXMIN Ant System for Quadratic Assignment Problems, Technical Report AIDA-97-04. FG Intellektik, FB Informatik, TU Darmstadt, Germany (1997)

    Google Scholar 

  180. Stutzle, T., Hoos, H.H.: MAXMIN ant system. Future Gener. Comput. Syst. J. 16(8), 889–914 (2000)

    Article  Google Scholar 

  181. Baran, B., Schaerer, M.: A multi-objective ant colony system for vehicle routing problem with time windows. In: Proceedings of the 21st IASTED International Conference, pp. 97–102 (2003)

    Google Scholar 

  182. Liao, C.J., Tseng, C.T., Luarn, P.: A discrete version of particle swarm optimization for flowshop scheduling problems. J. Comput. Oper. Res. 34, 3099–3111 (2005)

    Article  Google Scholar 

  183. Correa, E.S., Freitas, A.A., Johnson, C.G.: A new discrete particle swarm algorithm applied to attribute selection in a bioinformatics data set. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 35–42 (2006)

    Google Scholar 

  184. Wang, J.: A novel discrete particle swarm optimization based on estimation of distribution. In: International Proceedings on Intelligent Computing, pp. 791–802 (2007)

    Google Scholar 

  185. Jarboui, B., Damak, N., Siarry, P., Rebai, A.: A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. J. Appl. Math. Comput. 195, 299–308 (2007)

    Google Scholar 

  186. Zhen, Z., Wang, L., Huang, Z.: Probability-based binary particle swarm optimization algorithm and its application to WFGD control. Proceedings International Conference on Computer Science and Software Engineering 1, 443–446 (2008)

    Google Scholar 

  187. Carlisle, A., Dozier, G.: Adapting particle swarm optimization to dynamic environments. In: Proceedings of International Conference on Artificial Intelligence, pp. 1958–1962 (2000)

    Google Scholar 

  188. Zhang, W., Liu, Y.: Adaptive particle swarm optimization for reactive power and voltage control in power systems. In: Proceedings of International Conference in Natural Computation. LNCS 3612, pp. 449–452 (2005)

    Google Scholar 

  189. Zhen, Z., Wang, Z., Liu, Y.: An adaptive particle swarm optimization for global optimization. In: Proceedings of Third International Conference on Natural Computation 4, 8–12 (2007)

    Google Scholar 

  190. Chunxia, F., Youhong, W.: An adaptive simple particle swarm optimization algorithm. In: Proceedings of Chinese Control and Decision Conference International Conference on Computer Science and Software Engineering, pp. 3067–3072 (2008)

    Google Scholar 

  191. Zhan, Z.H., Zhang, J., Li, Y., Chung, H.S.H.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. 39(6), 1362–1381 (2009)

    Article  Google Scholar 

  192. Hongwu, L.: An adaptive chaotic particle swarm optimization. In: Proceedings of International Colloquium on Computing, Communication, Control, and Management 2, 254–257 (2009)

    Google Scholar 

  193. Jian, L., Zhiming, L., Peng, C.: Solving constrained optimization via dual particle swarm optimization with stochastic ranking. In: Proceedings of International Conference on Computer Science and Software Engineering 1, 1215–1218 (2008)

    Google Scholar 

  194. Li, J., Xiao, X.: Multi-swarm and multi-best particle swarm optimization algorithm. In: Proceedings of 7th World Congress on Intelligent Control and Automation, pp. 6281–6286 (2008)

    Google Scholar 

  195. Ling, C.A., Gen-ke, Y., Zhi-ming, W.: Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. J. Zhejiang Univ. 7(4), 607–614 (2005)

    Google Scholar 

  196. Pan, G., Duo, Q., Liu, X.: Performance of two improved particle swarm optimization in dynamic optimization environments. In: Proceedings of Sixth International Conference on Intelligent Systems Design and Applications, vol. 2, pp. 1024–1028 (2006)

    Google Scholar 

  197. Meissner, M., Schmuker, M., Schneider, G.: Optimized Particle Swarm Optimization (OPSP) and its Application to Artificial Neural Network Training. J. BMC Bioinform. 7 (2006)

    Google Scholar 

  198. Tian, D.P., Li, N.Q.: Fuzzy particle swarm optimization algorithm. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 263–267 (2009)

    Google Scholar 

  199. Lung, R. I., Dumitrescu, D.: Evolutionary swarm cooperative optimization in dynamic environments. Nat. Comput. (2009)

    Google Scholar 

  200. Mousa, A.A., El-Shorbagy, M.A., Abed-El-Wahed, W.F.: Local search based hybrid particle swarm optimization algorithm for multi-objective optimization. Swarm Evol. Comput. 3, 1–14 (2012)

    Google Scholar 

  201. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system : an autocatalytic optimizing process, Technical Report TR91-016, Politecnicodi Milano (1991)

    Google Scholar 

  202. Colorni, A., Dorigo, M., Maniezzo, V.: An investigation of some properties of an ant algorithm. In: Proceedings of the Parallel Problem Solving from Nature Conference (PPSN 92), pp. 509–520. Elsevier, Belgium (1992)

    Google Scholar 

  203. Bullnheimer, B., Hartl, R.F., Straub, C.: A new rank based version of the ant system-A computational study. Cent. Eur. J. Oper. Res. Econ. 7, 25–38 (1997)

    Google Scholar 

  204. Cordon, O., Viana, I.F., Herrera, F., Moreno, L.: A new ACO model interesting evolutionary computation concepts : the best-worst ant system. In: Proceedings of ANTS 2000, pp. 22–29. IRIDIA (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. P. Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mishra, B.S.P., Dehuri, S., Cho, SB. (2015). Swarm Intelligence in Multiple and Many Objectives Optimization: A Survey and Topical Study on EEG Signal Analysis. In: Dehuri, S., Jagadev, A., Panda, M. (eds) Multi-objective Swarm Intelligence. Studies in Computational Intelligence, vol 592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46309-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46309-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46308-6

  • Online ISBN: 978-3-662-46309-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics