HadoopSPARQL : A Hadoop-based Engine for
Multiple SPARQL Query Answering

Chang Liu! Jun Qu! Guilin Qi® Haofen Wang! Yong Yu!

!Shanghai Jiaotong University, China
{liuchang,qujun51319, whfcarter,yyu}@apex.sjtu.edu.cn
2Southeast University, China
gqi@seu.edu.cn

1 Introduction

An increasing amount of data represented using Resource Description Frame-
work (RDF) has appeared on the Semantic Web. By September 2011, datasets
from Linked Open Data [4] had grown to 31 billion RDF triples, interlinked by
around 504 million RDF links. As a consequence, it is extremely challenging to
deal with the scalability issue of handling such large amount of semantic data.

SPARQL [6] is a standard query language for RDF datasets. There has been
a lot of work [2,5] to handle SPARQL queries. However, most of them only
treat SPARQL as a transaction-based query language, and consider low laten-
cy query answering time as an important design requirement. Furthermore, the
query engine processes one query at a time and concentrates on single query op-
timization. Nevertheless, users can also use SPARQL in very different scenarios.
For example, from a publication ontology, two users may submit queries at the
same time. The first user wants to get a list containing all authors who publish
at least one proceeding and at least one article while the second user wants a
list containing all authors who publish at least one article but not necessarily
publish a proceeding. Then, Query 1 and Query 2 in Figure 1 are submitted at
the same time.

Query 1

SELECT DISTINCT ?person ?name

WHERE { ?article rdf:type bench:Article. Query 2

7article dc:creator ?person. SELECT DISTINCT ?person 7name

?inproc rdf:type bench:Inproceedings. WHERE { ?article rdf:type bench:Article.
?inproc dc:creator 7person. ?article dc:creator 7person.

?person foaf:name ?name. } ?person foaf:name ?name }

Fig. 1. Sample SPARQL queries

In this scenario, the system is highly desired to process these queries in paral-
lel. [3] discussed the multi-query optimization algorithm for SPARQL. However,
their method is based on revision from a set of basic graph queries into a new set
of queries which may include OPTIONAL restriction. Introducing OPTIONAL
restriction into queries, however, potentially increases the computational com-
plexity. We find that the essential optimization opportunity for multiple queries

NEE [Nl NN
1 24

110 1 33
1 11 3 61 1 37
2 40 4 92
Query 2 G G g
| =)) ()
D,S E\q Job3 ‘ ~ N -
[Reducer] reducer Jf reducer il reducer |
X X Job2 3
A / / . 1 10 24 33
i i ‘ Job1 1 10 24 37
. m - j L2 1 11 24 33
1 1 24 37
Fig. 2. An execution plan for Query 1 and
Query 2 Fig. 3. Execution of a join operator

lies in identifying common subqueries which may cause duplicate calculations.
The engine should avoid such redundant calculations. At last, since the datasets
are growing larger and larger, the scalability problem becomes more and more
severe. MapReduce [1] has proved as a scalable framework to handle high latency
and highly parallel tasks over large-size datasets. A nature idea is to leverage
MapReduce techniques to overcome the above challenges. We build a system,
called HadoopSPARQL, based on Hadoop!.

The major feature of HadoopSPARQL is that it allows the users to submit
multiple queries at the same time. To handle multiple queries, we propose an
algorithm to detect the common subqueries. To leverage the MapReduce frame-
work, we use multi-way join operator instead of the traditional two-way join
operator. Therefore we propose our new optimization algorithm to calculates
the best join order. Furthermore, HadoopSPARQL provides a Web interface to
allow accessing the underlying system using Web browsers.

2 Query Engine

The query engine consists of an optimizer to handle multiple SPARQL queries
simultaneously and a Hadoop-based evaluator. In this section, we shall explain
the key problems and design choices of the optimizer and the evaluator.

2.1 Operators

There are two kinds of operators, data-loading operator and join operator. Both
of these two operators will produce a binding set as result. A data-loading opera-
tor always corresponds to a triple pattern in the query. To evaluate a data-loading
operator, we only need to load the data from HDFS files. Thus a data-loading
operator has no input operator.

! http://hadoop.apache.org/

A join operator takes k > 2 inputs and produce a binding set. Formally
speaking, a join operator is defined by a set of binding sets By, Bs, ..., By
(k > 2) and a set of key variables K so that K = S(By) N S(Bz) N ...N S(By)
and (S(B;) — K)N(S(Bj) — K) =0 for every 1 <1i < j < k. Here we use S(B;)
to denote the schema of the binding set B;. We can see that the definition of our
join operator differs from the traditional multiple join operator which is widely
used in RDBMS in the following aspect: We do not allow the schemas of any
two input binding sets to share the same variable except the keys. For example,
we does not allow to join three binding sets with schemas {z,y, a}, {x,y,b} and
{z, ¢} on key x. This restriction will bring us two benefits: 1) the optimizer can
leverage this information to accelerate the enumeration of candidate plans; and
2) the evaluator can efficiently calculate this kind of join.

2.2 Optimizer

The optimizer will translate a batch of SPARQL queries into one execution
plan. An execution plan is a Directed Acyclic Graph (DAG) where each node
in the graph represents an operator. Those nodes with 0 indegree are data-
loading operators and those internal operators are join operators. The major
task of an optimizer is to find the optimal execution plan. Since our optimizer is
designed for multiple queries, it is composed of two parts: the first part detects
the common sub-queries, and the second part employs a cost-based algorithm
to generate the optimal execution plan.

The main task of the first part is to detect those duplicate sub-queries. Con-
sidering the example queries in Table 1, the following triple patterns appear in
both of the two queries.

Particle rdf:type Dbench:Article.

?article dc:creator ?person.

?person foaf:name 7name

Since the results of join operators will be stored in HDFS, we can reuse
these results. If the two queries listed in Table 1 are evaluated together, we
only need to calculate the result of the above sub-query once. By exploiting such
duplications, a lot of redundant operations can be saved so that the performance
can be improved.

Given a set of operators, one important problem is how to find the optimal
execution plan, e.g. the best join orders. Here we employ a cost-based optimiza-
tion algorithm to achieve this goal. We generate all potential execution plans,
and estimate the cost of the each plan. We choose the execution plan with min-
imal cost as our optimal plan and submit it to the query evaluator. However,
there are always too many potential execution plans so that enumeration of all
plans waste a large amount of time. Several pruning techniques are applied to
the optimizer to achieve an acceptable performance. In our use case study, the
optimal plan of each query can be found within one second.

Figure 2 illustrates the execution plan for the example queries in Table 1.
We use a, i, n and p to represent the variable 7article, ?inproc, 7name and
?person respectively. The bottom layer contains five data-loading operators cor-
responding to the five triple patterns. For example, a data-loading operator with
schema p, n corresponds to a triple pattern (?person, foaf : name, ?name.). All

nodes in the middle layer and top layer are join operators. We use blue and red
lines to illustrate the query execution path of Query 1 and Query 2 respectively.
We use green lines to illustrate the common sub-query. Notice the common sub-
query contains only two triple patterns (?article, rdf : type, bench : Article)
and (?article,dc : creator, ?person) instead of the three ones listed above.
The reason is that in such a way, the engine only executes three Hadoop jobs
instead of four, such that the execution time is reduced.

2.3 Evaluator

The evaluator will translate the execution plan (a DAG) into Hadoop jobs, and
submit to the Hadoop cluster for evaluation. The evaluator iteratively generates
the Hadoop jobs. In the first round, all nodes in DAG with 0 indegree will
be grouped into one job and removed from the DAG. Since all these nodes
correspond to data-loading operators, the first Hadoop job will load the data
from index files. Then in each iteration, all nodes with 0 indegree will be grouped
into one job and removed. Since all internal nodes in the original DAG correspond
to join operators, the second and later Hadoop jobs will perform joins.

For example, considering the execution plan given in Figure 2, all the opera-
tors are grouped into three jobs which are illustrated by orange boxes. The Job
1 performs all the data-loading operators, while Job 2 and Job 3 do the joins.

The implementation of data-loading operators is straightforward, thus we
only discuss the implementation of join operators. A set of join operators is
translated into a Hadoop job. Each join will be assigned a unique ID. If there is
a join with ID id defined by input binding sets By, ..., By and variable key set K,
the mappers will scan all binding sets By, ..., B. When a mapper read a binding
b; € By, it will emit (id, b;(K)) as map output key, and (b;(S(B;) — K)) as map
output value. Therefore for each join id, every b; € B; with the same b; (K) will be
grouped into the same reducer. Since we restrict that (S(B;)—K)N(S(B;)—K) =
0 for every 1 < i < j < k, the join result By X Bs X ... X By equals to
Uey BL®Y X .. x B where BYY = {b: b € By Ab(K) = key} and x represents
the Cartesian product. Therefore, to calculate the join, we only need to calculate
the Cartesian product. Figure 3 gives an example to illustrate this calculation.

3 Demonstration Scenario

The goal of the demonstration is to illustrate how to use HadoopSPARQL to
execute SPARQL queries. HadoopSPARQL provides a Web interface which can
be used to submit queries and view the results. The dataset and queries will be
described in Section 3.1 while Section 3.2 will describe the functionalities of Web
interface.

3.1 Dataset and queries

The demonstration uses a synthesis dataset called SP?Bench which is designed
to test the performance of a SPARQL query engine. SP?Bench generates data
based on DBLP database which includes authors, articles, conferences, journals
and so on. One can use SP?Bench to generate the dataset by specifying the

HADQOP HADQOP
SPAROL SPAI%.

SELECT DISTINCT ?namel ?name2 WHERE {

Fig. 4. HadoopSPARQL Query Ul Fig. 5. HadoopSPARQL Result Ul

number of bytes or the number of triples. SP?Bench provides xx testing queries
which include the two queries in Table 1. Most of the benchmark queries are
BGP queries and only two containing union and optional constructions. We use
all queries as samples except the two unsupported by our system.

3.2 Web Interface

HadoopSPARQL provides a Web interface for users to submit queries through
Web browser. The interface is written by JavaScript. Figure 4 shows the query
Ul Users can add a new query by clicking the plus button, and remove a
query by clicking the minus button of it. All queries are listed in the left of
the screen. A submit button with tick symbol is used to submit these queries
to the HadoopSPARQL system for evaluation. On the side bar, several sample
queries from SP2Bench are listed. Users can click on each of them to add it to
their query set. Once the queries are submitted, the system will provide a link
which can be used to view the results.

Figure 5 shows the result page. Queries submitted by the user are listed in
the side bar. By clicking one of the queries, the content of the selected query
is showed in the top while the results are listed below. The number of results
usually exceeds one page’s limitation, so there is a list of buttons allowing the
user to view the whole result set.

References

1. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
In: Proc. of OSDI’ 04. pp. 137 — 147 (2004)

2. Huang, J., Abadi, D.J., Ren, K.: Scalable sparql querying of large rdf graphs. In:
Proc. of VLDB’ 11. pp. 1123-1134 (2011)

3. Le, W., Kementsietsidis, A., Duan, S., Li, F.: Scalable multi-query optimization for

sparql. In: Proc. of ICDE’ 12 (2012)

LOD: http://linkeddata.org/

Neumann, T., Weikum, G.: The rdf-3x engine for scalable management of rdf data.

The VLDB Journal 19(1) (Feburary 2010)

6. SPARQL: http://www.w3.org/TR/rdf-sparql-query/

o

