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Benedikt Kämpgen1(B), Seán O’Riain2, and Andreas Harth1

1 Institute AIFB, Karlsruhe Institute of Technology, Karlsruhe, Germany
{benedikt.kaempgen,harth}@kit.edu

2 Digital Enterprise Research Institute, National University of Ireland,
Galway, Ireland

sean.oriain@deri.org

Abstract. Online Analytical Processing (OLAP) promises an interface
to analyse Linked Data containing statistics going beyond other interac-
tion paradigms such as follow-your-nose browsers, faceted-search inter-
faces and query builders. Transforming statistical Linked Data into a
star schema to populate a relational database and applying a common
OLAP engine do not allow to optimise OLAP queries on RDF or to
directly propagate changes of Linked Data sources to clients. Therefore,
as a new way to interact with statistics published as Linked Data, we
investigate the problem of executing OLAP queries via SPARQL on an
RDF store. First, we define projection, slice, dice and roll-up operations
on single data cubes published as Linked Data reusing the RDF Data
Cube vocabulary and show how a nested set of operations lead to an
OLAP query. Second, we show how to transform an OLAP query to a
SPARQL query which generates all required tuples from the data cube. In
a small experiment, we show the applicability of our OLAP-to-SPARQL
mapping in answering a business question in the financial domain.
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1 Introduction

Linked Data provides easy access to large amounts of interesting statistics from
many organizations for information integration and decision support, including
financial information from institutions such as the UK government1 and the
U.S. Securities and Exchange Commission.2 However, interaction paradigms for
Linked Data such as follow-your-nose browsers, faceted-search interfaces, and
query builders [12,14] do not allow users to analyse large amounts of numerical
data in an exploratory fashion of “overview first, zoom and filter, then details-on-
demand” [22]. Online Analytical Processing (OLAP) operations on data cubes
for viewing statistics from different angles and granularities, filtering for spe-
cific features, and comparing aggregated measures fulfil this information seeking
1 http://data.gov.uk/resources/coins.
2 http://edgarwrap.ontologycentral.com/.
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mantra and provide interfaces for decision-support from statistics [2,5,19]. How-
ever, OLAP on statistical Linked Data imposes two main challenges:

– OLAP requires a model of data cubes, dimensions, and measures. Automat-
ically creating such a multidimensional schema from generic ontologies such
as described by Linked Data is difficult, and only semi-automatic methods
have proved applicable [18]. Although the RDF Data Cube vocabulary (QB)3

is a Linked Data vocabulary to model statistics in RDF and several publish-
ers have already used the vocabulary for statistical datasets, there is yet no
standard to publish multidimensional models as Linked Data.4

– OLAP queries are complex and require specialised data models, e.g., star
schemas in relational databases, to be executed efficiently [11]. The typical
architecture of an OLAP system consists of an ETL pipeline that extracts,
transforms and loads data from the data sources into a data warehouse,
e.g., a relational or multidimensional database. OLAP clients such as JPivot
allow users to built OLAP queries and display multidimensional results in
pivot tables. An OLAP engine, e.g., Mondrian, transforms OLAP queries into
queries to the data warehouse, and deploys mechanisms for fast data cube
computation and selection, under the additional complexity that data in the
data warehouse as well as the typical query workload may change dynamically
[10,17].

As a first effort to overcome these challenges, in previous work [13], we have
presented a proof-of-concept to automatically transform statistical Linked Data
that is reusing the RDF Data Cube vocabulary (QB) into a star schema and
to load the data into a relational database as a backend for a common OLAP
engine. OLAP queries are executed not on the RDF directly but by a traditional
OLAP engine after automatically populating a data warehouse which results
in drawbacks: (1) although the relational star schema we adopted is a quasi-
standard logical model for data warehouses, our approach requires an OLAP
engine to execute OLAP queries and does not allow to optimise OLAP queries
to RDF; (2) if statistical Linked Data is updated, e.g., if a single new statistic
is added, the entire ETL process has to be repeated, to have the changes prop-
agated; (3) integration of additional data sources for more expressive queries is
difficult, since multidimensional models have a fixed schema.

Therefore, in this work, we approach the following problem as illustrated in
Fig. 1: At the backend, given statistical Linked Data reusing QB, crawled into a
triple store, and accessible via a SPARQL endpoint. SPARQL is a standard query
language for issuing queries to Linked Data. On the frontend, given a common
OLAP client capable of running OLAP operations on data cubes, and capable of
communicating those OLAP operations as an OLAP query via a common OLAP
query language suchasMDX.TheMultidimensionalExpressionLanguage (MDX),
as far asweknow, is themostwidely usedOLAPquery language, adoptedbyOLAP
engines such as Microsoft SQL Server, the Open Java API for OLAP, XML for
3 http://www.w3.org/TR/2012/WD-vocab-data-cube-20120405/.
4 http://wiki.planet-data.eu/web/Datasets.
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Fig. 1. Data flow for OLAP queries on statistical Linked Data in a triple store

Analysis (XMLA), and Mondrian. The question is how an OLAP engine can map
MDX queries to SPARQL queries.

This paper presents a new way to interact with statistical Linked Data:

– We define common OLAP operations on data cubes published as Linked Data
reusing QB and show how a nested set of OLAP operations lead to an OLAP
query.

– We show how to transform an OLAP query to a SPARQL query which gen-
erates all required tuples from the data cube.

In the remainder of the paper, we first present a motivational scenario from
the financial domain in Sect. 2. As a prerequisite for our contribution, in Sect. 3,
we formally define a multidimensional model of data cubes based on QB. Then,
in Sect. 4, we introduce OLAP operations on data cubes and present a direct
mapping of OLAP to SPARQL queries. We apply this mapping in a small experi-
ment in Sect. 5 and discuss some lessons learned in Sect. 6. In Sect. 7, we describe
related work, after which, in Sect. 8, we conclude and describe future research.

2 Scenario: Analysing Financial Linked Data

In this section we describe a scenario of analysing Linked Data containing finan-
cial information. XBRL is an XML data format to publish financial informa-
tion.5 The U.S. Securities and Exchange Commission (SEC) requires companies
to provide financial statement information in the XBRL format. The Edgar
Linked Data Wrapper6 provides access to XBRL filings from the SEC as Linked
Data reusing QB. Those filings disclose balance sheets of a large number of US
organizations, for instance that RAYONIER INC had a sales revenue net of
377,515,000 USD from 2010-07-01 to 2010-09-30.7

Using LDSpider, we crawled Linked Data from the Edgar wrapper and stored a
data cube SecCubeGrossProfitMargin into an Open Virtuoso triple store. The data
cube contains single disclosures from financial companies such as RAYONIER
INC. Each disclosure either discloses cost of goods sold (CostOfGoodsSold) or
sales revenue net (Sales) as measures. The two measures have unit USD and an
5 http://www.xbrl.org/Specification/XBRL-RECOMMENDATION-2003-12-31+

Corrected-Errata-2008-07-02.htm.
6 http://edgarwrap.ontologycentral.com/.
7 http://edgarwrap.ontologycentral.com/archive/52827/0001193125-10-238973#ds.
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Fig. 2. Pivot table to be filled in our scenario

aggregation function that returns the number of disclosures, or – if only one –
the actual number. Any disclosure is fully dependent on the following dimensions:
the disclosing company (Issuer), the date a disclosure started (Dtstart) and ended
(Dtend) to be valid, and additional meta information (Segment).

In our scenario, a business analyst wants to compare the number of disclo-
sures of cost of goods sold for two companies. He requests a pivot table with
issuers RAYONIER INC and WEYERHAEUSER CO on the columns, and the
possible periods for which disclosures are valid on the rows, and in the cells
showing the number of disclosed cost of goods sold, or – if only one – the actual
number. Figure 2 shows the needed pivot table.

3 A Multidimensional Model Based on QB

In this section, as a precondition for OLAP queries on Linked Data, we formally
define the notion of data cubes in terms of QB. The definition is based on a com-
mon multidimensional model, e.g., used by Gómez et al. [9], Pedersen et al. [20]
and the Open Java API for OLAP.8 Also, we base our definition on an RDF rep-
resentation reusing QB, as well as other Linked Data vocabularies for publishing
statistics, e.g., SKOS9 and skosclass.10

Definition 1. (Linked Data store with RDF terms and triples). The set of RDF
terms in a triple store consists of the set of IRIs I, the set of blank nodes B and
the set of literals L. A triple (s, p, o) ∈ T = (I ∪ B) × I × (I ∪ B ∪ L) is called
an RDF triple, where s is the subject, p is the predicate and o is the object.

Given a triple store with statistical Linked Data, we use basic SPARQL triple
patterns on the store to define elements of a multidimensional model. Given a
multidimensional element x, id(x) ∈ (I ∪ B ∪ L) returns its RDF identifier:

8 http://www.olap4j.org/.
9 http://www.w3.org/2004/02/skos/.

10 http://www.w3.org/2011/gld/wiki/ISO Extensions to SKOS.

http://www.olap4j.org/
http://www.w3.org/2004/02/skos/
http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS
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Member defines the set of members as Member = {?x ∈ (I ∪ B ∪ L)|?x a
skos:Concept ∨x ∈ L}. Let V = 2Member, V ∈ V, ROLLUPMEMBER ⊆
Member×Member, rollupmember(V ) = {(v1, v2) ∈ V ×V |(id(v1) skos:broa-
der id(v2) ∨ id(v2) skos:narrower id(v1))}. Note, in case of literal members
rollupmember(V ) is empty.

Level defines the set of levels as Level = {(?x, V, rollupmember(V )) ∈ (I ∪B)×
V ×ROLLUPMEMBER|(?x a skosclass:ClassificationLevel ∧∀v ∈ V (id(v)
skos:member ?x)}. Let L = 2Level, L ∈ L, ROLLUPLEV EL ⊆ Level ×
Level, rolluplevel(L) = {(l1, l2) ∈ L × L|(id(l1) skosclass:depth x) ∧ (id(l2)
skosclass:depth y) ∧ x ≤ y))}

Hierarchy defines the set of hierarchies as Hierarchy = {(?x,L, rolluplevel(L))
∈ (I ∪B)×L×ROLLUPLEV EL|(?x a skos:ConceptScheme )∧∀l ∈ L(id(l)
skos:inScheme ?x)}. Let H = 2Hierarchy.

Dimension defines the set of dimensions as Dimension = {(?x,H) ∈ (I ∪
B) × H|(?x a qb:DimensionProperty ) ∧ ∀h ∈ H(?x qb:codeList id(h))}. Let
D = 2Dimension.

Measure defines the set of measures as Measure = {(?x, aggr) ∈ (I ∪ B) ×
{UDF}|(?x a qb:MeasureProperty )} with UDF : 2L → L a default aggre-
gation function since QB so far does not provide a standard way to repre-
sent typical aggregation functions such as SUM, AVG and COUNT. If the
input set of literals only contains one literal, UDF returns the literal itself,
otherwise UDF returns a literal describing the number of values. UDF is
an algebraic aggregation function in that it can be computed by distribu-
tive functions COUNT and SUM [10]. Conceptually, measures are treated
as members of a dimension-hierarchy-level combination labelled “Measures”.
Let M = 2Measure.

DataCubeSchema defines the set of data cube schemas as {(?x,D,M) ∈ (I ∪
B) × D × M|(?x a qb:DataStructureDefinition ∧∀d ∈ D(?x qb:component
?comp∧?comp qb:dimension id(d)) ∧ ∀m ∈ M(?x qb:component ?comp∧?
comp qb:measure id(m)))}.

Fact defines the set of possible statistical facts as Fact = {(?x,C,E) ∈ (I∪B)×
2Dimension×Member × 2Measure×Literal|(?x a qb:Observation ) ∧ ∀(d1,m1),
(d2,m2) ∈ C, id(m1) 
= id(m2)(?xid(d1)id(m1)∧ id(d1) 
= id(d2))∧∀(m1, v1),
(m2, v2) ∈ E,id(v1) 
= id(v2)(?xid(m1)v1 ∧ id(m1) 
= id(m2)). Note that each
fact is restricted to have for each dimension and measure at maximum one
member and value, respectively. Let F = 2Fact.

DataCube defines the set of data cubes as DataCube = {(cs, F ) ∈ DataCube-
Schema× F|cs = (?x,D,M) ∧ ∀(?obs1, C1, E1), (?obs2, C2, E2) ∈ F , ?obs1 
=
?obs2(?obs1 qb:dataSet ?ds∧?ds qb:structure ?x) ∧ C1 
= C2 ∧ {d : ∃(d,m) ∈
C1} = D ∧ ∀(d,m) ∈ C1(id(m) skos:member ?l.?l skos:inScheme ?h.id(d)
qb:codeList ?h∨?m skos:notation id(m).?m skos:member ?l.?l skos:inScheme
?h.id(d) qb:codeList ?h)} Note, the measure value is fully dependent on the
dimension members, thus, any two facts need to have a different member
on one of their dimensions. Also, any fact needs to have a member for each
dimension mentioned in the schema. As a last requirement, each member
needs to be contained in a level of a hierarchy of the dimension. A data
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cube may be sparse and not containing facts for each possible combination
of dimension members. If the member is a literal, there will be a concept
representing this member and linking to its literal value via skos:notation.
Similar to data in a fact table of a star schema, we assume that all facts of
the data cube are on the lowest granularity level, since then, all measures on
any higher aggregation level can be computed from these facts.

We distinguish metadata queries and OLAP queries on data cubes. Whereas
metadata queries return multidimensional objects such as the cube schema, the
dimensions, and the measures, OLAP queries on a certain data cube return tuples.
The number of tuples that possibly can be queried from a data cube is exponen-
tially growing with the number of dimensions, as the following definition shows:

Definition 2. (Data Cube Tuples). Adopting the concept of Gray et al. [10],
we can compute all tuples (c1, . . . , c|D|, t1, . . . , tj), j ≤ |M | with ci ∈ Member ∪
ALL and ti ∈ T with T a numeric domain including the special null value
in case of cube sparsity from a data cube represented in QB as follows: We
extract a relational table containing measures for each possible combination of
dimension members from the data cube (cs, F ) with data cube schema cs =
(?x,D,M), dimensions D = {D1, . . . , DN} and facts on the lowest granularity
level (?obs, C,E) ∈ F . We compute 2N aggregations of each measure value by
the measure’s aggregation function over all possible select lists of dimensions
sl ∈ 2D with a standard GROUP BY. Then, we merge all aggregation results
with a standard UNION, substituting the special ALL value for the aggregation
columns. If the number of possible members of a dimension is card(Di), then the
number of resulting facts in the materialised data cube is

∏
(card(Di) + 1). The

extra value for each dimension is ALL.

Subqueries and aggregation functions in SPARQL 1.1 make easily possible to
apply the relational concept of Gray et al. [10] to a data cube represented as
Linked Data reusing QB. However, such a SPARQL query would have an expo-
nential number of subqueries and would take a long time to execute. Also, the
query would fully materialise the data cube, i.e. compute all possible tuples,
although OLAP queries may require only a small subset. Therefore, in the next
section, we show how to evaluate OLAP queries directly without subqueries and
without fully materialising the cube.

4 Mapping OLAP Operations to SPARQL on QB

In this section we show how to issue OLAP queries on a multidimensional model.
We define common OLAP operations on single data cubes [19–21]. A nested set
of OLAP operations lead to an OLAP query. We describe how to evaluate such
an OLAP query using SPARQL on QB. Figure 3 illustrates the effect of common
OLAP operations, with inputs and outputs.

Note, this paper focuses on direct querying of single data cubes, the integra-
tion of several data cubes through Drill-Across or set-oriented operations such as
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Fig. 3. Illustration of common OLAP operations with inputs and outputs (adapted
from [21])

union, intersection, difference is out-of-scope. Multiple datasets can already be
queried together if they are described by the same qb:DataStructureDefinition.

Each OLAP operation has as input and output a data cube. Therefore, oper-
ations can be nested. A nested set of OLAP operations lead to an OLAP query.
For interpreting a set of OLAP operations as an OLAP query and evaluating the
query using SPARQL on QB, we use and slightly adapt the notion of subcube
queries [15].

Definition 3. (OLAP Query). We define an OLAP query on a certain cube
c = (cs, C), cs = (?x,D,M) as a subcube query Q = (c, q) with c ∈ DataCube
and q a subcube query tuple (q1, ..., q|D|,m1, ...,mj), j ≤ |M | [15]. The subcube
query tuple contains for each dimension a tuple element qi, Dimension(qi) =
Di ∈ D, Hierarchy(qi) = Hi ∈ Hierarchy, Level(qi) = Li ∈ Level with
dom(qi) = {?, ALL, x}. The element ? marks a dimension as inquired, the ALL
as aggregated, and x ∈ V fixes a dimension to a specific set of members. Also,
for any queried measure the subcube query tuple contains an mi ∈ M . For each
dimension a granularity in the form of a hierarchy and level is specified. Note,
for simplicity reasons we assume a fixed ordering of dimensions in the cube and
in the subcube query tuple. An OLAP query returns a set of tuples from a data
cube as defined by Definition 2.

As examples, we describe three distinguishable subcube queries:

Full-Cube Query (?, ?, ?, ...,m1, ...,m|M |) returns the tuples on the highest
granularity, i.e., the lowest level of each dimension, inside a data cube. //re-
turns the tuples resulting from an aggregation over all dimensions. It con-
tains all tuples described by the facts inside a data cube, plus any tuples not
explicitly contained in the cube due to sparsity.
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Point Query (a1, a1, ..., a|D|,m1, ...,m|M |) with ai ∈ V, |ai| = 1,Dimension(ai)
= Di returns one specific tuple from a data cube.

Fully-Aggregated Query (ALL,ALL, . . . , ALL,m1, . . . ,m|M |) returns one
single fact with measures aggregated over an empty select list.

In the following we describe how to evaluate each OLAP operation in terms of
this query model and how a nested set of OLAP operations results in one specific
OLAP subcube query. Given a data cube as input to an OLAP operation, the
tuples from the cube are given as a full-cube query tuple (?, ?, ?, ...,m1, ...,m|M |).

Projection is defined as Projection : DataCube×Measure → DataCube and
removes a measure from the input cube and allows to query only for specific
measures. We evaluate Projection by removing a measure from the subcube
query tuple.

Slice is defined as Slice : DataCube×Dimension → DataCube and removes a
dimension from the input cube, i.e., removes this dimension from all selection
lists over which to aggregate. We evaluate Slice by setting the tuple element
of the dimension to ALL.

Dice is defined as Dice : DataCube×Dimension×V → DataCube and allows to
filter for and aggregate over certain dimension members. We evaluate Dice by
setting the tuple element of that dimension to this particular set of members
and aggregate over the set. Note, we regard dice not as a selection operation
but a combined filter and slice operation.

Roll-Up is defined as Roll − Up : DataCube × Dimension → DataCube and
allows to create a cube that contains instance data on a higher aggregation
level. We evaluate Roll − Up on a dimension by specifying the next higher
level of the specified hierarchy. Note, Drill−Down can be seen as an inverse
operation to Roll − Up.

As an example, consider an OLAP query on our SecCubeGrossProfitMar-
gin cube for the cost of goods sold (edgar:CostOfGoodsSold) for each issuer
(edgar:issuer) and each date until when each disclosure is valid (edgar:dtend),
filtering by disclosures from two specific segments (edgar:segment). A nested set
of OLAP operations that queries the requested facts can be composed as follows.
In all our queries, we use prefixes to make URIs more readable:

S l i c e (
Dice (

Pro j e c t i on (
edgar : SecCubeGrossProfitMargin ,
edgar : CostOfGoodsSold ) ,

edgar : segment ,
{ edgar : segmentAHealthCareInsuranceCompany ,
edgar : segmentARes ident ia lRea lEstateDeve loper }) ,

edgar : d t s t a r t )

This query can then be represented as a subcube query with dimensions
Issuer, Dtstart, Dtend, Segment:
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( ? , ALL, ? , { edgar : segmentAHealthCareInsuranceCompany ,
edgar : segmentARes ident ia lRea lEstateDeve loper } , edgar :

CostOfGoodsSold )

Next, we describe how to evaluate such an OLAP query using a SPARQL
query on QB. Since QB does not yet fully specify how to represent OLAP hier-
archies, and since dimensions in our scenario were flat, in this paper, we simplify
the problem of translating a subcube query to SPARQL and assume a queried
data cube with only one hierarchy and level per dimension. A Roll − Up has a
similar effect to a Slice operation and can be added to our concept by a group-
by not on the members of the lowest level of a dimension but on members of
a higher level, specified via their ROLLUPMEMBER and ROLLUPLEV EL
relations. An OLAP query Q = (c, q) with c ∈ DataCube and query tuple
q = (q1, . . . , q|D|,m1, ...,mj), j ≤ |M | can be translated into a SPARQL query
using the following steps:

1. We initialise the SPARQL query using the URI of the data cube. We query
for all instance data from the data cube, i.e., observations linking to datasets
which link to the data structure definition.

2. For each selected measure, we incorporate it in the SPARQL query by select-
ing additional variables for each measure and by aggregating them using the
aggregation function of that measure, using OPTIONAL patterns for cases
of cube sparsity.

3. For each inquired dimension, we add query patterns and selections for all the
instances of skos:Concept in the specified level and hierarchy of the dimen-
sion. We query for the observations showing property-value pairs for each of
these variables, either directly using concepts or using literals linked from the
concepts via skos:notation. We use OPTIONAL patterns for cases of cube
sparsity. To display inquired dimensions in the result and correctly aggregat-
ing the measures, we GROUP BY each inquired dimension variable.

4. For each fixed dimension, we filter for those observations that exhibit for each
dimension one of the listed members.

We transform our example from above to the following SPARQL query. Note,
UDF represents the standard aggregation function from our scenario:

select ?dimMem0 ?dimMem1 UDF(? measureValues0 ) where {
? obs qb : dataSet ?ds .
? ds qb : s t r u c tu r e edgar : SecCubeGrossProf itMargin .
?dimMem0 skos : member edgar : i s sue rRootLeve l .

OPTIONAL {? obs edgar : i s s u e r ?dimMem0 . }
? concept1 skos : member edgar : dtendRootLevel .
? concept1 skos : notat ion ?dimMem1 .

OPTIONAL {? obs edgar : dtend ?dimMem1 . }

? obs edgar : segment ? sl icerMem0 .
F i l t e r (? sl icerMem0 = edgar :

segmentAHealthCareInsuranceCompany
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OR ? sl icerMem0 = edgar :
segmentARes ident ia lRea lEstateDeve loper )

OPTIONAL {? obs egar : CostOfGoodsSold ?measureValue0 . }
} group by ?dimMem0 ?dimMem1

5 Experiment: Evaluating an OLAP Query
on Financial Linked Data

In this section, we demonstrate in a small experiment the applicability of our
OLAP-to-SPARQL mapping to our scenario from the financial domain. In this
experiment, we have a triple store with around 148,426 triples. The triple store
describes a data cube edgar:SecCubeGrossProfitMargin that contains 17,448 dis-
closures that either disclose cost of goods sold or sales revenue net. The values of
the measures fully depend on one of 625 different issuers (dimension edgar:issuer),
the date a disclosure started (27 members of dimension edgar:dtstart) and ended
(20 members of edgar:dtend) to be valid, and additional information (21,227 mem-
bers of edgar:segment). The two measures (edgar:CostOfGoodsSold and edgar:
Sales) have the unit USD and an aggregation function that returns the number
of disclosures, or – if only one – the actual number. If fully materialised according
to Definition 2, the cube contains 626 · 28 · 21 · 21, 228 = 7, 813, 772, 064 facts. To
compute all of its facts, 24 = 16 SPARQL subqueries would be needed.

In order to answer the OLAP question of our scenario, we use an OLAP
client such as Saiku to compose OLAP operations to an OLAP query in MDX:

SELECT
{ edgar : c ik1417907idConcept , edgar : c ik106535idConcept } ON

COLUMNS,
CrossJo in ( edgar : dt s ta r tRootLeve l . Members , edgar :

dtendRootLevel . Members ) ONROWS
FROM [ edgar : SecCubeGrossProf itMargin ]
WHERE { edgar : CostOfGoodsSold}

The MDX query is sent to the OLAP engine, the resulting tuples will be visu-
alised using a pivot table, a compact format to display multidimensional data [6].
Multidimensional elements are described in the MDX query using their unique
URIs.11 For an introduction to MDX, see its website.12 A more detailed description
of how to transform an MDX query into an OLAP query due to space constraints
we leave for future work when we evaluate our OLAP-to-SPARQL mapping more
thoroughly.

Now, we show that an MDX query can be transformed into an OLAP subcube
query according to Definition 3 and evaluate the subcube query using SPARQL.
11 Note, URIs need to be translated to an MDX-compliant format that does not use

reserved MDX-specific characters, which is why we use the prefixed notation of URIs.
12 http://msdn.microsoft.com/en-us/library/aa216770.

http://msdn.microsoft.com/en-us/library/aa216770
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The result is a subset of all possible tuples from a data cube. The pivot table
determines what dimensions to display on its columns and rows.

A nested set of OLAP operations to compose our OLAP query is as follows:

S l i c e ( Pro j e c t i on (
edgar : SecCubeGrossProfitMargin ,
edgar : CostOfGoodsSold ) ,

edgar : segment )

This query can then be represented as a subcube query with dimensions
Issuer, Dtstart, Dtend, Segment: (?, ?, ?, ALL,CostOfGoodsSold). The resulting
SPARQL query is as follows:

select ?dimMem0 ?dimMem1 ?dimMem2 count ( xsd : decimal (?
measureValue0 ) ) sum( xsd : decimal (? measureValue0 ) )

where {
? obs qb : dataSet ?ds .
? ds qb : s t r u c tu r e edgar : SecCubeGrossProf itMargin .

?dimMem0 skos : member edgar : i s sue rRootLeve l .
OPTIONAL {? obs edgar : i s s u e r ?dimMem0 . }

? va lues1 skos : member edgar : dt s tar tRootLeve l .
? va lues1 skos : notat ion ?dimMem1 .

OPTIONAL {? obs edgar : d t s t a r t ?dimMem1 . }

? va lues2 skos : member edgar : dtendRootLevel .
? va lues2 skos : notat ion ?dimMem2 .

OPTIONAL {? obs edgar : dtend ?dimMem2 . }

OPTIONAL {? obs edgar : CostOfGoodsSold ?measureValue0 . }
} group by ?dimMem0 ?dimMem1 ?dimMem2

UDF, our default aggregation function is algebraic, therefore, we had to com-
pute the SUM and COUNT for the measure. We run the query after a reboot
of the triple store. The query took 18sec and returned 58 tuples to be filled into
the requested pivot table. The number of 7, 813, 772, 064 potential tuples in the
cube does not have a strong influence on the query since the cube is very sparse,
for instance, the triple store contains observations only for a fraction of segment
members.

6 Discussion

In our experiment, we show the applicability of our mapping between OLAP and
SPARQL queries. We correctly aggregate data on one specific granularity, defined
by the mentioned inquired and fixed dimensions. Dimensions that are not men-
tioned will be automatically handled as having an ALL value [10], representing all
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possible values of the dimension. The aggregation results in correct calculations,
since we assume that a QB data cube only contains facts on the lowest granular-
ity level. Only an aggregation of observations from different granularities would
result in incorrect numbers, e.g., a SUM over gender male, female, and total.

The SPARQL query created by our approach shows sufficiently fast in our small
experiment but may not scale for larger datasets for the following reasons: First,
data fromthedata cube is queriedondemand, andnomaterialisation is done.Every
OLAP query is evaluated using a SPARQL query without caching and reusing of
previous results. Second, a Dice operation currently always includes a Slice oper-
ation; thus, all member combinations of inquired dimensions are calculated, even
thoughonly specific combinationsmightbe required, as in the caseof the two issuers
in the OLAP query of our scenario. Third, OLAP clients and pivot tables require
multidimensional data, i.e., data cubes containing facts linking to specificmembers
of dimensions, but our SPARQL query returns relational tuples. Using the unique
identifiers of dimensions, members, and measures, query result tuples need to be
joined with the multidimensional data points as required by the OLAP client for
filling the pivot table. Another possibility would be to use SPARQLCONSTRUCT
queries to first materialise data cubes resulting from OLAP operations as RDF [8].
Populating thepivot table could thenbedoneby simple SPARQLSELECT queries
on this resulting multidimensional view. However, the applicability and perfor-
mance of this approach to answer OLAP queries still needs to be evaluated.

In summary, though our OLAP algebra to SPARQL mapping may not result
in the most efficient way to answer an business question and require additional
efforts for usage in OLAP clients, it correctly computes all required tuples from
the data cube with one SPARQL query, without the need for explicitly intro-
ducing the non-relational ALL member or using sub-queries [10].

7 Related Work

Kobilarov and Dickinson [14] have combined browsing, faceted-search, and query-
building capabilities for more powerful Linked Data exploration, similar to OLAP,
but not focusing on statistical data. Though years have passed since then, cur-
rent literature on Linked Data interaction paradigms does not seem to expand on
analysing large amounts of statistics.

OLAP query processing generally distinguishes three levels [4]: On the con-
ceptual level, algebras of OLAP operations over data cubes are defined that
are independent from a logical representation [1,3,9,19,21]. On the logical level,
query processing mainly depends on the type of data structure on which to per-
form the computations and in which to store the results. Data structures can
roughly be grouped into ROLAP, using relational tables and star or snowflake
schemas, and MOLAP, using multidimensional arrays for directly storing and
querying of data cubes [2,10,15,23]. The physical level is concerned with effi-
cient execution of low-level executions such as index lookup or sorting over the
data stored given a specific hardware and software.

The execution of OLAP operations mainly is concerned with the computation
of the data cube and with storing parts of the results of that computation to
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efficiently return the results, to require few disk or memory space, and to remain
easy to update if data sources change [15,17].

In this work we use the graph-based RDF data model and the QB vocabulary
for querying and storing of multidimensional data. Both schema information and
actual data is accessed using the Linked Data principles and managed using
SPARQL on a triple store.

Other authors recognise the reduced initial processing and update costs of
using triple stores and other dedicated query engines for query processing [18],
but do not present approaches for executing OLAP queries directly over such
Semantic Data Warehouses.

Etcheverry and Vaisman [8] present an algorithm to translate OLAP opera-
tions such as Roll-Up and Slice to SPARQL CONSTRUCT queries. Since results
are cubes, one can nest operations. Different from our work, OLAP operations
are executed for preprocessing of cubes from the Web that are then exported
to a data warehouse for query processing.

Although there may be more efficient querying approaches such as special
indexing and caching, to the best of our knowledge, this is the first work on
executing OLAP queries on data cubes represented as RDF using SPARQL.

Several authors [20,24] motivate the integrating of data from the Web in
OLAP systems. Yin and Pedersen [24] present a federated approach to “deco-
rate” Data Cubes with virtual dimensions built from external data, which means
that XML data can also be used in filter operations. For instance, Members of
a level “Nation” in a Data Cube are linked to nations in an XML document
providing additional information such the population which then can be used
to filter for certain nations. Different from this approach, we directly execute
multidimensional queries using SPARQL over RDF.

Diamantini and Potena [7] enrich a data cubes with a domain ontology rep-
resented using OWL as well as a mathematical ontology represented in XML
standards for mathemtical descriptions such as MathML. Their goal is to pro-
vide analysts with useful background information and to possibly allow novel
types of analyses, e.g., drill-down into single compound measures.

Mazón et al. [16] also motivate the use of external data to enhance Data
Cubes; they propose the use of semantic relations such as hypernymy (“is-
a-kind-of”, generalization, e.g., cake is kind of baked goods) and meronymy
(‘‘is-a-part-of”, aggregation, e.g., wheel is a part of car) between concepts pro-
vided by WordNet to enrich Dimension Hierarchies.

Although we so far only translate the common analytical operations, our
approach could be extended with operations allowing filtering over decorations
described in RDF. Also, OLAP client interfaces can be extended to display addi-
tional information related to analysed data cubes.

8 Conclusions and Future Work

We have presented an approach to interact with statistical Linked Data using
Online Analytical Processing operations of “overview first, zoom and filter, then
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details-on-demand”. For that, we define projection, slice, dice and roll-up opera-
tions on single data cubes in RDF reusing the RDF Data Cube vocabulary, map
nested sets of OLAP operations to OLAP subcube queries, and evaluate those
OLAP queries using SPARQL. Both metadata and OLAP queries are directly
issued to a triple store; therefore, if the RDF is modified or updated, changes are
propagated directly to OLAP clients. Though, our OLAP-to-SPARQL mapping
may not result in the most efficient SPARQL query and require additional efforts
in populating requested pivot tables, we correctly calculate required tuples from a
data cube without inefficient full materialisation and without the need for explic-
itly introducing the non-relational ALL member or for using subqueries.

Future work may be conducted in three areas: 1) extending our current app-
roach with OLAP hierarchies and OLAP operations over multiple cubes, e.g.,
drill-across; 2) implementing an OLAP engine to more thoroughly evaluate our
current OLAP-to-SPARQL mapping and to investigate more efficient OLAP
query execution plans, e.g., using RDF views; 3) investigating more Linked-
Data-specific OLAP clients that allow external information to be used in queries
and displayed.
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