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Abstract. Much research has been done to combine the fields of Data-
bases and Natural Language Processing. While many works focus on the
problem of deriving a structured query for a given natural language ques-
tion, the problem of query verbalization – translating a structured query
into natural language – is less explored. In this work we describe our
approach to verbalizing SPARQL queries in order to create natural lan-
guage expressions that are readable and understandable by the human
day-to-day user. These expressions are helpful when having search en-
gines that generate SPARQL queries for user-provided natural language
questions or keywords. Displaying verbalizations of generated queries to
a user enables the user to check whether the right question has been un-
derstood. While our approach enables verbalization of only a subset of
SPARQL 1.1, this subset applies to 90% of the 209 queries in our train-
ing set. These observations are based on a corpus of SPARQL queries
consisting of datasets from the QALD-1 challenge and the ILD2012 chal-
lenge.

Keywords: SPARQL, natural language generation, verbalization

1 Introduction

Much research has been done to combine the fields of Databases and Natural
Language Processing to provide natural language interfaces to database systems
[22]. While many works focus on the problem of deriving a structured query for a
given natural language question or a set of keywords [27, 10, 21, 30], the problem
of query verbalization – translating a structured query into natural language –
is less explored. In this work we describe our approach to verbalizing SPARQL
queries in order to create natural language expressions that are readable and
understandable by the human day-to-day user.

When a system generates SPARQL queries for a given natural language ques-
tion or a set of keywords, the verbalized form of the generated query is helpful
for users, since it allows them to understand whether the right question has been
asked to the queried knowledge base and, if the query is executed and results
are presented, how the results have been retrieved. Therefore, verbalization of
SPARQL queries may improve the experience of users of any such SPARQL
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query generating system such as natural language-based question answering sys-
tems or keyword-based search systems.

In this paper we describe the current state of our SPARTIQULATION sys-
tem,1 which allows verbalization of a subset of SPARQL 1.1 SELECT queries in
English.

The remainder of this paper is structured as follows. Section 2 gives an
overview of the query verbalization approach in terms of the system architecture
and the tasks that it performs. Section 3 presents the elements of our approach,
Section 4 revisits existing work, and in Section 5 conclusions are drawn and an
outlook is provided.

2 Query Verbalization Approach

2.1 Introduction

Our approach is inspired by the pipeline architecture for natural language gen-
eration (NLG) systems and the set of seven tasks performed by such systems
as introduced by Reiter and Dale [19]. The input to such a system can be de-
scribed by a four-tuple (k, c, u, d) – where k is a knowledge source (not to be
confused with the knowledge base a query is queried against), c the communica-
tive goal, u the user model, and d the discourse history. Since we neither perform
user-specific verbalization nor do we perform the verbalization in a dialog-based
environment, we omit both the user model and the discourse history. The com-
municative goal is to communicate the meaning of a given SPARQL query q.
However, there are multiple options. Three basic types of linguistic expressions
can be used: i) statements that describe the search results where this description
is based on the query only and not on the actual results returned by a SPARQL
endpoint (e.g. Bavarian entertainers and where they are born), ii) a question
can be formulated about the existence of knowledge of a specified or unspecified
agent (e.g. Which Bavarian entertainers are known and where are they born? ),
and iii) a query can be formulated as a command (e.g. Show me Bavarian enter-
tainers and where they are born). Thus, the communicative goal can be reached
in three modes: statement verbalization, question verbalization, or command ver-
balization. Since the only communicative goal is to communicate the meaning of
a query to a user, the various modes the system is built for and the omissions of
both the user model and the discourse history, the input to our system is a tuple
(k,m) where k is the SPARQL query and m ∈ {statement, question, command}
is a mode.

2.2 Components and Tasks

In this section we present our approach along the seven tasks involved in NLG
according to Reiter and Dale [19]. This work is the first step towards the verbal-
ization of SPARQL queries. So far we put a focus on document structuring, but

1 The name is derived from joining SPARQL and articulation. A demo is available at
http://km.aifb.kit.edu/projects/spartiqulator
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not on lexicalization, aggregation, referring expression generation, linguistic real-
isation, and structure realisation. Note that the modes in which a communicative
goal can be reached are regarded in the task linguistic realization only.

Document 
Planner 

Microplanner 

Surface Realizer 

Content determination 
Document structuring 

Lexicalization 
Referring expression generation 
Aggregation 

Linguistic realization 
Surface realization 

SPARQL 

Text 

DP 

TS 

Fig. 1. Pipeline architecture of our NLG system

The pipeline architecture is depicted in Figure 1. Within the Document Plan-
ner the content determination process creates messages and the document struc-
turing process combines them into a document plan (DP), which is the output
of this component and the input to the Microplanner component. Within the
Microplanner the processes lexicalization, referring expression generation and
aggregation take place, which results in a text specification (TS) that is made
up of phrase specifications. The Surface Realizer then uses this text specification
to create the output text.

Content determination is the task to decide which information to commu-
nicate in the text. In the current implementation we decided not to leave this
decision to the system. What is communicated is the meaning of the input query
without communicating which vocabularies are used to express the query. For
example if title occurs in the verbalization and is derived from the label of a
property, then it is hidden to the user whether this has been derived from http:

//purl.org/dc/elements/1.1/title or http://purl.org/rss/1.0/title.

Document structuring is the task to construct independently verbalizable
messages from the input query and to decide for their order and structure. These
messages are used for representing information, such as that a variable is selected,
the class to which the entities selected by the query belong to or the number to
which the result set is limited. The output of this task is a document plan. Our
approach to document structuring consists of the following elements:
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1. Query graph representation
2. Main entity identification
3. Query graph transformation
4. Message types
5. Document plan

These are the main contributions of this work. We continue this section with
an introduction of the remaining tasks. In Chapter 3, each of the elements of
our approach are presented in detail.

Lexicalization is the task of deciding which specific words to use for expressing
the content. For each entity we dereference its URI and in case that RDF data
is returned, we check if an English label is provided using one of the 36 labeling
properties defined in [6]. Otherwise, we derive a label from the URI’s local name.
In case of properties, the 7 patterns introduced by Hewlett et al. in [11] are used.
For example, Hewlett et al. provide the following pattern:

(is) VP P
- Examples: producedBy, isMadeFrom
- Expansions: X is produced by Y, X is made from Y

The local name producedBy of a property ex:producedBy is expanded to pro-
duced By and its constituents are part-of-speech tagged. The expansion rule
given for this pattern declares that a triple ex:X ex:producedBy ex:Y can be
verbalized as X is produced by Y.

The main entity2 is verbalized as things. If a constraint for the class of the
main entity such as ?m rdf:type yago:AfricanCountries is given, then it can
be verbalized as African countries.3 If the query is limited to a single result using
LIMIT 1 and no sort order is defined using ORDER BY, then it can be verbalized
as An African country. Otherwise, if a sort order is defined such as ORDER BY

DESC(?population), then it can be verbalized as The African country as in The
African country with the highest population. Other variables are also verbalized
as things unless a type is either explicitly given using rdfs:type or implic-
itly given using rdfs:domain or rdfs:range. For example, this information is
regarded when verbalizing the query SELECT ?states ?uri WHERE { ?states

dbo:capital ?uri .} as Populated places and their capitals. Here, the domain
of the property dbo:capital is defined as dbpedia-owl:PopulatedPlace.

Referring expression generation is the task of deciding how to refer to an
entity that is already introduced. Consider the following two example verbaliza-
tions:

1. Albums of things named Last Christmas and where available their labels.

2 The main entity is rendered as the subject of the verbalization.
3 African countries is the rdfs:label of yago:AfricanCountries.
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2. Albums of things named Last Christmas and where available the labels of
these albums.

In the beginning of the verbalizations the entities albums and things are
introduced. At the end labels are requested. In the first verbalization it is not
clear whether the labels of the albums or the labels of the things are requested,
whereas in the second verbalization it is clear that the labels of the albums are
requested.

Aggregation is the task to decide how to map structures created within the
document planner onto linguistic structures such as sentences and paragraphs.
For example, without aggregation a query such as SELECT ?m WHERE {?m dbo:

starring res:Julia Roberts . ?m dbo:starring res:Richard Gere . }
would be verbalized as Things that are starring Julia Roberts and that are star-
ring Richard Gere. With aggregation the result is more concise: Things that are
starring Julia Roberts as well as Richard Gere.

Linguistic realization is the task of converting abstract representations of sen-
tences into real text. Thereby the modes statement, question, and command are
regarded. As introduced in the next chapter, chunks of content of a SPARQL
query are represented as messages given the list of message types (MT) from
Figure 5. For each of the message types (1)-(9) a rule is invoked that produces
a sentence fragment, for example for the MT MRVRlL – which is an instance
of the MT M(RV )∗RlL – the rule article(lex(prop1)) + lex(prop1) + L

produces for two triples ?uri dbpedia:producer ?producer and ?producer

rdfs:label "Hal Roach" the text a producer named "Hal Roach". The func-
tion article choses an appropriate article (a or an) depending on the lexical-
ization lex(prop1) of the property.

Structure realization is the task to add markup such as HTML code to the
generated text in order to be interpreted by the presentation system, such as
a web browser. Bontcheva [2] points out that hypertext usability studies [18]
have shown that formatting is important since it improves readability. Indenting
complex verbalizations, adding bullet points and changing the font size can help
to communicate the meaning of a query.

3 Document structuring

The elements our approach consists of can be summarized as follows. We trans-
form textual SPARQL SELECT queries into a graphical representation – the
query graph – which is suitable for performing traversal and transformational
actions. Within a query graph we identify the main entity which is a variable
that is rendered as subject of a verbalization. After a main entity is identified the
graph is transformed into a graph where the main entity is the root. Then the
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graph is split into independently verbalizable parts called messages. We define a
set of message types that allow to represent a query graph using messages. Mes-
sage types are classified due to their role within the verbalization. The document
plan is presented which orders the messages according to their classes and is the
output of the Document Planner – the first component in our NLG pipeline.

Some observations in this chapter, namely regarding the main entity iden-
tification in Section 3.2 and the message types in Section 3.4, are based on a
training set. This training set is derived from a corpus of SPARQL queries con-
sisting of datasets from the QALD-1 challenge4 and the ILD2012 challenge.5 The
full dataset contains 2636 SPARQL SELECT queries and associated manually
created questions. In order to derive a training set we used 80% of each dataset
as training data – in total 209 SELECT queries.7 Since in our approach we can-
not yet handle all features of the SPARQL 1.1 standard, we had to exclude some
queries. Within this training set of 209 queries we excluded the queries with the
UNION feature (20 queries) and those that were not parsable (1 query). This
means that this subset – 188 queries in total – covers 90% of the queries within
the training set.

3.1 Query graph representation

We parse a SPARQL query into a query graph since this allows for easier ma-
nipulation of the query compared to its textual representation. Thereby each
subject S and object O of a triple pattern < S,P,O > within the query is repre-
sented by a node in the query graph. The nodes are connected by edges labeled
with P . Since < S,P,O > is a triple pattern and not an RDF triple, this means
that each element can be a variable. Unless the subject or object is a variable, for
each subject or object an own node is created. Therefore multiple non-variable
nodes with the same label may exist. For every variable that appears within the
query in subject or object position only one node is created.

As an example regard the SPARQL query in textual representation in List-
ing 1 and the visual representation of the qurery graph in Figure 2. In this visual
representation,8 nodes are filled if they represent resources and not filled if they
represent variables. Nodes are labeled with the name of the resource, variable,
literal or blank node respectively. Labels of variables begin with a question mark.
Labels of variables that appear in the SELECT clause of a query are underlined.
Literal values are quoted. Edges are labeled with the name of the property and
point from subject to object. Filters are attached to their respective variable(s)

4 http://www.sc.cit-ec.uni-bielefeld.de/qald-1
5 http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/
6 For nine questions no SPARQL query is given since they are out of scope regarding

the datasets provided for the challenge. 28 queries are ASK queries.
7 37 queries from 2011-dbpedia-train, 36 queries from 2011-musicbrainz-train, 68

queries from 2012-dbpedia-train, and 68 queries from 2012-musicbrainz-train.
8 Note that this not a complete visual representation of SPARQL SELECT queries

and only solves for the purpose of visually representing the query graph examples.
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and parts of the graph that appear only within an OPTIONAL clause are marked
as such.

SELECT DISTINCT ?uri ?string WHERE {

?states rdf:type yago:AfricanCountries .

?states dbo:capital ?uri .

?uri dbp:population ?population .

FILTER ( ?population < 1000000 ) .

OPTIONAL {

?uri rdfs:label ?string.

FILTER (lang(? string) = ’en’)

}

}

Listing 1. Example SPARQL query

?uri 
?string ?states 

?population 

yago:AfricanCountries 

dbo:capital rdfs:label 

<1000000 

LANG=en 

optional 

Before transformation (without main entity) 

Fig. 2. Example query graph

3.2 Main entity identification

We perform a transformation of the query graph, since it reduces the number
of message types that are necessary to represent information contained in the
query graph thus simplifying the verbalization process. This transformation is
based on the observation that in most queries one variable can be identified that
is rendered as the subject of a sentence. For example, when querying for moun-
tains (bound to variable ?mountain) and their elevations (bound to variable
?elevation), then ?mountain is verbalized as the subject of the verbalization
mountains and their elevations. We refer to this variable as the main entity
of a query. However, for some queries no such element exists. Consider for exam-
ple the query SELECT * WHERE { ?a dbpedia:marriedTo ?b .}. Here a tuple
is selected and in a possible verbalization Tuples of married entities9 no single
variable appears represented as a subject. In order to identify the main entity
we define Algorithm 1 that applies the ordered list of rules shown in Figure 3.
These rules propose the exclusion of members from a candidate set. We derived

9 DBpedia provides no rdfs:domain and rdfs:range information, such as
foaf:Person for this property. Therefore here we give a generic verbalization to
demonstrate the effect of missing domain and range information.
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them by looking at queries within the training set having multiple candidates.
The candidate set C for a given query is initialized with variables that appear in
the SELECT clause10 and the algorithm eliminates candidates step by step. Q
denotes the set of triples within the WHERE clause of a query, Rt is the property
rdf:type and Rl is a labeling property from the set of 36 labeling properties
identified by [6]. The application of an exclusion rule Ri to a candidate set C,
denoted by Ri(C), results in the removal of the set E which is proposed by the
exclusion rule.

We identified the ordered list of exclusion rules shown in Figure 3. The num-
bers show how often a rule was successful in reducing the candidate set for the
188 queries within our training set. In some cases (61, 32.45%) no rule was ap-
plied since the candidate set contained only a single variable. In the case that
given the rules above the algorithm does not manage to reduce the candidate
set to a single variable (21, 11.17%), the first variable in lexicographic order is
selected.

Rule 1 E := {x ∈ C | ”x appears in OPTIONAL only”}
Rule 1 (71, 37.77%) proposes removing candidates that appear within the WHERE
clause only within OPTIONAL blocks. For example in a query SELECT ?a WHERE

{ ex:R1 ex:R2 ?a . OPTIONAL { ?a ex:R3 ?b . } } the variable b is removed
from the candidate set which contains a and b.

Rule 2 E := {z ∈ C | ¬∃(z,Rt, u) ∈ Q}
if ∃c1 ∈ C : ¬∃(c1, Rt, x) ∈ Q ∧ ∃c2 ∈ C : ¬∃(c2, Rt, y) ∈ Q
Rule 2 (10, 5.32%) proposes removing candidates that represent subjects that are
not constrained via rdf:type in the case that there are candidates that are con-
strained via rdf:type. For example in a query SELECT ?a ?b WHERE { ?a rdf:type

ex:R1 . ?b ex:R2 ex:R3 . } with ex:R2 6= rdf:type, the variable b is removed
from the candidate set which contains a and b.

Rule 3 E := {z ∈ C | ¬∃(z,Rl, u) ∈ Q}
if ∃c1 ∈ C : ¬∃(c1, Rl, x) ∈ Q ∧ ∃c2 ∈ C : ¬∃(c2, Rl, y) ∈ Q
Rule 3 (25, 13.3%) proposes removing candidates for which the existence of a
label is not constrained or requested in the case that there are candidates for
which the existence of a label is constrained or a label is requested. For example
in a query SELECT ?a ?b WHERE { ?a <Rl> ?l . ?b ex:R2 ex:R3 . } where Rl

is a labelling property, the variable b is removed from the candidate set which
contains a and b.

Fig. 3. Exclusion rules

As an example regard the SPARQL query in Listing 1 which is visually pre-
sented in Figure 2. The candidate set is initialized as {uri, string}. Rule 1 pro-
poses to remove the variable string since it appears only within an OPTIONAL
clause. Since the candidate set is reduced to {uri} containing a single entity, this
entity is the main entity.

10 In case of a SELECT * query, all variables within the WHERE clause are candidates.
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Algorithm 1 Applying exclusion rules to candidate set.

if |C| = 1 then
return C

while |C| > 1 do
for all Ri ∈ R do

if |Ri(C)| > 0 then
C ← Ri(C)
if |C| = 1 then

return C
return ∅

3.3 Query graph transformation

Algorithm 2 transforms a query graph into a graph for which the main entity
is the root and all edges point away from the root. Therefore, the algorithm
maintains three sets of edges: edges that are already processed (P ), edges that
need to be followed (F ), and edges that need to be transformed (T ) which means
reversed. An edge is reversed by exchanging subject and object and by marking
the property (p) as being reversed (pr).

Algorithm 2 Graph transformation

P ← ∅, F ← {(s, p, o) ∈ Q|s = m}, T ← {(s, p, o) ∈ Q|o = m} (init)
while F 6= ∅ or T 6= ∅ do

for all (si, pi, oi) ∈ F do
for all (sj , pj , oj) ∈ Q \ (P ∪ F ∪ T ) do

if oi = sj then
F ← F ∪ {(sj , pj , oj)}

else if oi = oj then
T ← T ∪ {(sj , pj , oj)}

Move (si, pi, oi) from F to P

for all (si, pi, oi) ∈ T do
for all (sj , pj , oj) ∈ Q \ (P ∪ F ∪ T ) do

if si = sj then
F ← F ∪ {(sj , pj , oj)}

else if si = oj then
T ← T ∪ {(sj , pj , oj)}

T ← T \ {(si, pi, oi)}
P ← P ∪ {(oi, pri , si)}

return P

The query graph shown in Figure 2 is transformed into the query graph shown
in Figure 4 where the main entity – the variable uri – is highlighted. Compared to
the graph before the transformation, the edge dbo:capital was reversed. Therefore
this edge now points away from the main entity and is marked as being reversed
by the minus in superscript.
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?uri 
?string ?states 

?population 

yago:AfricanCountries 

dbo:capital- rdfs:label 

<1000000 

LANG=en 

optional 

After transformation 

Fig. 4. Example query graph after transformation

3.4 Message types

We identified the set of 14 message types (MT), shown in Figure 5 that allow
us to represent the 209 queries from our training set. Here, M(RV )∗ denotes a
path beginning at the main entity via an arbitrary number of property-variable
pairs such as ?M <ex:R1> ?V1 . ?V1 <ex:R2> ?V2 . The first 9 MTs repre-
sent directed paths in the query graph which means that for each directed path
that begins at the main entity, we represent this path with a message. Rl de-
notes a labeling property and Rt the property rdf:type. The MTs ORDERBY ,
LIMIT , OFFSET and HAV ING represent the respective SPARQL features.

As an example the SPARQL query in Listing 1 is represented using the 7
messages shown in Figure 6. Note that due to the graph transformation the
property dbo:capital is reversed which is denoted by REV: 1 in message 2.
This query can be verbalized as: English names of African countries having
capitals which have a population of less than 1000000 and the English names of
these capitals. Note that the plural form capitals instead of capital is used per
default since no information is available that a country has exactly one capital.
The filter for English labels is stored within message 6 representing the variable
string as lang: en.

While this set of message types is sufficient for the given training set, which
means that all queries can be represented using these message types, we extended
this list with 711 more types in order to be prepared for queries such as SELECT
?s ?p ?o WHERE { ?s ?p ?o. } and SELECT ?p WHERE { ?s ?p ?o. } where
instead of generating text, canned text is used, such as All triples in the database
and Properties used in the database.

3.5 Document plan

The document plan (DP), which is the output of the Document Planner and
input to the Microplanner, contains the set of messages and defines their order.
The verbalization consists of two parts. In the first part the main entity and its
constraints are described, followed by a description of the requests (the variables
besides the main entity that appear in the select clause) and their constraints.
In a second part, if available and not already communicated in the first part, the

11 Given that all three variables can either be selected or not selected and at least one
variable needs to be selected, this results in 7 combinations.
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(1) M(RV )∗RR Messages of this type represent (RV)*-paths in the query that end
with a resource in property position and a resource in object position, for example
the path ?main ex:starring ex:Richard Gere.

(2) M(RV )∗RL Example (RV)*-path:
?main ex:date "1960-12-29"^^xsd:dateTime.

(3) M(RV )∗RV Example (RV)*-path: ?main ex:duration ?d.
(4) M(RV )∗RlR While a query such as SELECT * WHERE { ?m rdfs:label ex:R .

} is syntactically correct, semantically it is not valid since the range of the property
rdfs:label is rdfs:Literal and not rdfs:Resource. We introduce this message type since
we cannot assume that every query processed by our verbalizer is semantically
correct.

(5) M(RV )∗RlV Example (RV)*-path: ?main ex:label ?l.
(6) M(RV )∗RlL Example (RV)*-path: ?main ex:label "John Cage"@en.
(7) M(RV )∗RtR Example (RV)*-path: ?main rdf:type ex:SoloMusicArtist.
(8) M(RV )∗RtV Example (RV)*-path: ?main rdf:type ?t.
(9) M(RV )∗RtL Similarly to message type 4, a query such as SELECT * WHERE {

?m rdf:type "L" . } is semantically not valid since the range of the property
rdf:type is rdfs:Class and not rdfs:Literal.

(10) V AR A message of this type stores the name of the variable, whether it appears
within the select clause, whether it is the main entity, whether it appears only
within optional clauses, whether it is counted as in SELECT COUNT(DISTINCT ?m),
and the list of filters based on this variable.

(11) ORDERBY A message of this type stores the order of the solution sequence
as specified by the ORDER BY clause, such as ODER BY DESC(?main).

(12) LIMIT If a limit is specified using LIMIT 10 then this integer value is stored.
(13) OFFSET If an offset is specified, for example using OFFSET 10, then this

integer value is stored.
(14) HAV ING A message of this type stores the order of the solution sequence as

specified by the HAVING clause, such as in GROUP BY ?x HAVING(AVG(?size) >

10).

Fig. 5. Message types
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type: M(RV)*RlV 

MID: M1 

R: rdfs:label 

V: string 

REV: 0 

RV: [] 

type: VAR 

MID: M7 

main: 1 

name: uri 

 

 

type: M(RV)*RtR 

MID: M2 

R: yago:AfricanCountries 

RV: [ 

  1: [ 

    R: dbo:capital 

    V: states 

    REV: 1 

  ] 

] 

type: M(RV)*RV 

MID: M3 

RV: [ 

  1: [ 

    R: dbo:population 

    V: population 

    REV: 0 

  ] 

] 

type: VAR 

MID: M6 

main: 0 

name: string 

optional: 1 

select: 1 

lang: en 

 

type: VAR 

MID: M5 

main: 0 

name: states 

optional: 0 

select: 0 

 

type: VAR 

MID: M4 

main: 0 

name: population 

optional: 0 

select: 0 

filter: [ 

  datatype: xsd:integer 

  rel: < 

  val: 1000000 

]  

 

Fig. 6. Messages representing the SPARQL query in Listing 1.

selection modifiers are verbalized. According to these 3 categories – abbreviated
with cons, req, and mod – we classify the message types (MT) as follows. The
MTs (1), (2), (4), (6), (7), and (9) from Figure 5 belong to the class cons, the
MTs (3), (5), and (8) belong to the class req. MTs (1), (2), (4), (6), (7) and (9)
may also belong to class req if they contain a variable besides the main entity
that appears in the select clause. MTs (11)− (14) belong to the class mod. The
VAR message is not classified since its only purpose is to store information about
variables and variables are verbalized when verbalizing other messages. For the
example query in Listing 1, which is represented using the messages shown in
Figure 6, the messages M1, M2, and M3 are classified as cons, the message M1
is classified as req and no message is classified as mod.

4 Related Work

While to the best of our knowledge no work is published on the verbalization
of SPARQL queries, related work comes from three areas: verbalization of RDF
data [25, 15, 5, 24, 29], verbalization of OWL ontologies [1, 28, 23, 3, 11, 12, 8, 20, 7,
11, 4, 26, 9, 14], and verbalization of SQL queries [16, 17, 13]. Although the first
two fields provide techniques that we can apply to improve the lexicalization
and aggregation tasks, such as the template-based approach presented in [5], the
document structuring task, on which we focus here, is rarely explored. Compared
to the SQL verbalization work by Minock [16, 17], where they focus on tuple
relational queries, our problem of verbalizing SPARQL queries is different in
the sense that we strive for having a generic approach that can be applied to
any datasource without being tied to any schema. Patterns need to be manually
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created to cover all possible combinations for each relation in the schema whereas
in our work we defined a set of message types that are schema-agnostic. Koutrika
et al. [13] annotate query graphs with template labels and explore multiple graph
traversal strategies. Moreover, they identify a main entity (the query subject),
perform graph traversal starting from that entity, and distinguish between cons
(subject qualifications) and req (information).

5 Conclusions and Outlook

For the task of verbalizing SPARQL queries we focused on a subset of the
SPARQL 1.1 standard which covers 90% of the queries in a corpus of 209
SPARQL SELECT queries. Evaluation will have to show the representativeness
of this corpus compared to real-life queries and the qualities of the verbaliza-
tions generated using our SPARTIQULATION system. While in our architec-
ture 6 tasks are needed to generate verbalizations, our main focus has been the
task of document structuring which we described in this work. In order to re-
alize the full verbalization pipeline, 5 other tasks need to be explored in future
work. Since the current approach is mostly schema-agnostic – only terms from
the vocabularies RDFa and RDFS as well as a list of labeling properties from
various vocabularies are regarded – we believe that this approach is generic in
terms of being applicable to queries for RDF datasources using any vocabularies.
However, in the future the tasks of lexicalization can be improved by regarding
schemas such as FOAF and OWL. FOAF is interesting since if an entity is a
foaf:Person, it can be treated differently. For example the person’s gender can be
regarded. OWL is interesting since if it is known that a property is functional,
then the singular form can be used instead of, as per default, the plural form.12

Having message types designed for specific vocabularies allows to tailor the ver-
balization to a specific use case and may lead to more concise verbalizations.
In the current implementation, message types are hard-coded thus limiting the
flexibility of the approach. Having the possibility to load a set of message types
into the system would add the possibility to integrate automatically learned or
application-specific message types.
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