
ar
X

iv
:1

50
4.

06
60

2v
1

 [
cs

.C
C

]
 2

4
A

pr
 2

01
5

The Range of Topological Effects on Communication

Arkadev Chattopadhyay ∗ Atri Rudra†

July 22, 2018

Abstract

We continue the study of communication cost of computing functions when inputs are distributed among

k processors, each of which is located at one vertex of a network/graph called a terminal. Every other node of

the network also has a processor, with no input. The communication is point-to-point and the cost is the total

number of bits exchanged by the protocol, in the worst case, on all edges.

Chattopadhyay, Radhakrishnan and Rudra (FOCS’14) recently initiated a study of the effect of topology of

the network on the total communication cost using tools from L1 embeddings. Their techniques provided tight

bounds for simple functions like Element-Distinctness (ED), which depend on the 1-median of the graph. This

work addresses two other kinds of natural functions. We show that for a large class of natural functions like Set-

Disjointness the communication cost is essentially n times the cost of the optimal Steiner tree connecting the

terminals. Further, we show for natural composed functions like ED ◦XOR and XOR ◦ED, the naive protocols

suggested by their definition is optimal for general networks. Interestingly, the bounds for these functions depend

on more involved topological parameters that are a combination of Steiner tree and 1-median costs.

To obtain our results, we use some new tools in addition to ones used in Chattopadhyay et. al. These include (i)

viewing the communication constraints via a linear program; (ii) using tools from the theory of tree embeddings to

prove topology sensitive direct sum results that handle the case of composed functions and (iii) representing the

communication constraints of certain problems as a family of collection of multiway cuts, where each multiway

cut simulates the hardness of computing the function on the star topology.

∗School of Technology and Computer Science, Tata Institute of Fundamental Research, email: arkadev.c@tifr.res.in. Research partially sup-

ported by a Ramanujan Fellowship of the DST.
†Department of Computer Science and Engineering, University at Buffalo, SUNY, email: atri@buffalo.edu. Research supported in part by

NSF grant CCF-0844796.

http://arxiv.org/abs/1504.06602v1

1 Introduction

We consider the following distributed computation problem p ≡ (f ,G,K ,Σ): there is a set K of k processors that

have to jointly compute a function f : ΣK → {0,1}. Each of the k inputs to f is held by a distinct processor. Each

processor is located on some node of a network (graph) G ≡ (V ,E). These nodes in V with an input are called

terminals and the set of such nodes is denoted by K . The other nodes in V have no input but have processors

that also participate in the computation of f via the following communication process: there is some fixed a-

priori protocol according to which, in each round of communication, nodes of the network send messages to

their neighbors. The behavior of a node in any round is just a (randomized) function of inputs held by it and the

sequence of bits it has received from its neighbors in the past. All communication is point-to-point in the sense that

each edge of G is a private communication channel between its endpoints. In any round, if one of the endpoints

of an edge is in a state where it expects to receive some communication from the other side, then silence from

the other side is not allowed in a legal protocol. At the end of communication process, some pre-designated node

of the network outputs the value of f on the input instance held by processors in K . We assume that protocols

are randomized, using public coins that are accessible to all nodes of the network, and err with small probability.

The cost of a protocol on an input is the expected total number of bits communicated on all edges of the network.

The main question we study in this work is how the cost of the best protocol on the worst input depends on the

function f , the network G and the set of terminals K . This cost is denoted by Rǫ

(

p
)

(and we use R(p) to denote

R1/3(p)). It is not difficult to see that this cost is lower bounded by the expected cost (of the best protocol) under

any distribution µ over the inputs to nodes in K . This latter quantity is denoted by Rǫ,µ

(

p
)

and turns out to be

easier to lower bound under a conveniently chosen µ.

This communication model seems to be a natural abstraction of many distributed problems and was recently

studied in its full generality by Chattopadhyay, Radhakrishnan and Rudra [11].1 A noteworthy special case is when

G is just a pair of nodes connected by an edge. This corresponds to the classical model of 2-party communication

introduced by Yao [45] more than three decades ago. The study of the classical model has blossomed into the

vibrant and rich field of communication complexity, which has deep connections to theoretical computer science

in general and computational complexity in particular.

This point-to-point model had received early attention in the works of Tiwari [39], Dolev and Feder [15] and

Duris and Rolim [17]. These early works seem to have entirely focused on deterministic and non-deterministic

complexities. In particular, Tiwari [39] showed several interesting topology-sensitive bounds on the cost of de-

terministic protocols for simple functions. However, these bounds were for specific graphs like trees, grids, rings

etc. More recently, there has been a resurgence of interest in the randomized complexity of functions in the point-

to-point model. These have several motivations: BSP model of Valiant [40], models for MapReduce [24], par-

allel models to compute conjunctive queries [7], distributed models for learning [4], distributed streaming and

functional monitoring [13], sensor networks [26] etc. Interestingly, in a very recent work Drucker, Kuhn and Osh-

man [16] showed that some outstanding questions in this model (where one is interested in bounding the num-

ber of rounds of communication as opposed to bounding the total communication) have connections to well

known hard problems on constant-depth circuits. Motivated by such diverse applications, a flurry of recent

works [35, 42, 43, 44, 9, 22, 29, 10] have proved strong lower bounds, developing very interesting techniques. All of

these works, however, focus on the star topology with k leaves, each having a terminal and a central non-terminal

node. Note that every function on the star can be computed using O(kn) bits of communication, by making the

leaves simultaneously send each of their n-bit inputs to the center that outputs the answer. The aforementioned

recent works show that this is an optimal protocol for various natural functions.

In contrast, on a general graph not all functions seem to admit O(kn)-bit protocols. Consider the naive protocol

that makes all terminals send their inputs to a special node u. The speciality of u is the following: let the status

of a node v in network G w.r.t. K , denoted by σK (v), be given by
∑

w∈K dG (v, w), where dG (x, y) is the length of

a shortest path in G between nodes x and y . Node u is special and called the median as it has a minimal status

among all nodes, which we denote by σK (G). Thus, the cost of the naive protocol is σK (G) ·n. For the star, the

center is the median with status k. On the other hand, for the line, ring and grid, each having k nodes all of which

are terminals, σK (G) is Θ(k2), Θ(k2) and Θ(k3/2) respectively.

1Related but different problems have been considered in distributed computing. Please see Appendix A for more details.

1

The work in [11] appears to be the first one to address the issue of randomized protocols over arbitrary G. It

shows simple natural functions like Element-Distinctness2 , have Θ(σK (G)) as the cost (up to a poly-log(k) factor)

of the optimal randomized protocol computing them. While these are essentially the strongest possible lower

bounds3, not all functions of interest have that high complexity. Consider the function Equality that outputs 1

precisely when all input strings at the nodes in K are the same. There is a randomized protocol of cost much less

than σK (G) for computing it: consider a minimal cost Steiner-tree with nodes in K as the terminals. Let the cost of

this tree be denoted by ST(G,K). Root this tree at an arbitrary node. Each leaf node sends a hash (it turns out O(1)

bits of random hash suffices for our purposes4) of its string to its parent. Each internal node u collects all hashes

that it receives from nodes in the sub-tree rooted at u, verifies if they are all equal to some string s. If so, it sends s

to its parent and otherwise, it sends a special symbol to its parent indicating inequality. Thus, in cost O (ST(G,K)),

one can compute Equality with small error probability.5

For many scenarios in a distributed setting, the task to be performed is naturally layered in the following way.

The set of terminal nodes is divided into t groups K1, . . . ,Kt . Within a group of m terminals, the input needs to

be pre-processed in a specified manner, expressed as a function g :
(

{0,1}n
)m → {0,1}n . Finally the results of the

computation of the groups need to be combined in a different way, given by another function f :
(

{0,1}n
)t → {0,1}.

More precisely, we want to compute the composed function f ◦ g . The canonical protocol will first compute in

parallel all instances of the task g in groups using the optimal protocol for g and then use the optimal protocol for f

on the outputs of g in each of Ki . However, this is not the optimal protocol for all f , g and network G. For example,

consider the case when f is Equality and g is the bit-wise XOR function. As we show later, the optimal protocol

for computing XOR has cost Θ (ST(G,K) ·n). Hence, the naive protocol for EQ◦XOR will have cost Ω
((

ST
(

G,K ′)) +
∑r

i=1 (ST(G,Ki) ·n)
)

. However, it is not hard to see that there is a protocol of cost O
(

t · (ST(G,K)). This cost can be

much lower than the naive cost depending on the network.

2 Our Results

The first part of our work attempts to understand when the naive protocol cannot be improved upon for composed

functions. Function composition is a widely used technique in computational complexity for building new func-

tions out of more primitive ones [36, 19, 20, 6, 23]. Proving that the naive way of solving f ◦g is essentially optimal,

in many models remain open. In particular, even in the 2-party model of communication where the network is just

an edge, this problem still remains unsolved (see [6]).To describe our results on composition, we need the follow-

ing terminology: The cost of solving a problem
(

f ,G,K , {0,1}n
)

will have a dependence on both n and the topology

of G. We will deal with two kinds of dependence on n. If the cost depends linearly on n, we say f is of linear type.

Otherwise, there is no dependence on n. (We typically ignore poly-log factors in this paper.) Call f a 1-median

type function if its topology-sensitive complexity is σK (G). We say f is of Steiner tree type, if its topology-sensitive

complexity is ST(G,K). The protocol for a Steiner tree type problem f seems to move information around in a

fundamentally different way from the one for a 1-median type problem g . It seems tempting to expect that there

composition cannot be solved by any cheaper protocol than the naive ones. However, we are only able to prove

this intuition for few natural instances in this work.

Consider the following composition: the first function is element distinctness function, denoted by ED, which

was shown by [11] to be of 1-median type. The second is the bit-wise xor function (which we denote by XORn),

which is shown to be of linear Steiner-tree type later in Appendix B. In particular, given a graph G = (V ,E) and

t subsets K1, . . . ,Kt ⊆ V , we define the composed function ED ◦XORn as follows. Given ki
de f
= |Ki | n-bit vectors

X i
1 , . . . , X i

ki
∈ {0,1}n for every i ∈ [t], define ED◦XORn

(

X 1
1 , . . . , X 1

k1
, . . . , X t

1 , . . . , X t
kt

)

= ED
(

XORn

(

X 1
1 , . . . , X 1

k1

)

, . . . ,XORn

(

X t
1 , . . . , Xkt

)

)

.

2Given inputs X i ∈ Σ for every i ∈ K , the function ED : ΣK → {0,1} is defined as follows: ED
(

(X i)i∈K

)

= 1 if and only if X i 6= X j for every i 6=
j ∈K .

3Strictly speaking, the strongest lower bound is Ω(σK (G) ·n). Several functions, called linear 1-median type later, are shown to achieve this

bound in [11].
4Observe that if two strings held at two terminals are not equal, each hash will detect inequality with probability 2/3.
5In fact, we observe in Theorem 9 that any function f : ΣK → {0,1} that depends on all of its input symbols needs Ω(ST(G,K)) amounts of

communication (even for randomized protocols), which implies that the randomized protocol above for Equality is essentially optimal.

2

The naive algorithm mentioned earlier specializes for ED◦XORn as follows: compute the inner bit-wise XOR’s first6

and then compute the ED on the intermediate values. This immediately leads to an upper bound of

O

(

σK1 ,...,Kt (G) · logk +
t

∑

i=1

ST(G,Ki) · logk

)

, (1)

where σK1,...,Kt (G) is the minimum of σK (G) for every choice of K that has exactly one terminal from Ki for every

i ∈ [t]. One of our results, stated below, shows that this upper bound is tight to within a poly-log factor:

Theorem 1.

R(ED ◦XORn ,G,K , {0,1}n) ≥Ω

(

σK1,...,Kt (G)

log t
+

∑t
i=1

ST(G,Ki)

log |V | loglog |V |

)

.

We prove the above result (and other similar results) by essentially proving a topology sensitive direct sum

theorem (see Section 3.1 for more).

To get a feel for how (1) behaves between the two extremes consider the case when G is a
p

k ×
p

k grid and

the set of k terminals (i.e. all nodes are terminals) is divided into t sets of size k/t , where each Ki for i ∈ [t] is a
√

k
t
×

√

k
t

sub-grid. It can be verified that in this case (1) is (up to an O(logk) factor) t
p

k +k. In Section E.3.3,

we further show that changing the order of composition to XOR◦ED also does not allow any cost savings over the

naive protocol:

Theorem 2. For every choice of ui ∈ Ki :

R(XOR1 ◦ED,G,K , {0,1}n) ≥Ω

(

ST(G, {u1, . . . ,ut })+
∑t

i=1
σKi

(G)

logk

)

.

The results discussed so far follow by appropriately reducing the problem on a general graph to a bunch of

two-party lower bounds, one across each cut in the graph. This was the general idea in [11] as well but the re-

ductions in this paper need to use different tools. However, the idea of two-party reduction seems to fail for the

Set-Disjointness function, which is one of the centrally studied function in communication complexity. In our set-

ting, the natural definition of Set-Disjointness (denoted by DISJ) is as follows: each of the k terminals in K have an

n-bit string and the function tests if there is an index i ∈ [n] such that all k strings have their i th bit set to 1. It is easy

to check that this function can be computed with O(ST(G,K) ·n) bits of communication (in fact one can compute

the bit-wise AND function with this much communication by successively computing the partial bit-wise AND as

we go up the Steiner tree). Before our work, only a tight bound was known for the special case of G being a k-star

(i.e. a lower bound of Ω(kn)), due to the recent work of Braverman et al. [9]. In this work, we present a fairly general

technique that ports a tight lower bound on a k-star to an almost tight lower bound for the general graph case. For

the complexity of Set-Disjointness, this technique yields the following bound:

Theorem 3.

R(DISJ,G,K , {0,1}n) ≥Ω

(

ST(G,K) ·n
log2 k

)

.

Next, we present our key technical results and an overview of their proofs. We would like to point out that

our proofs use many tools used in algorithm-design like (sub)tree embeddings, Boru̇vka’s algorithm to compute

an MST for a graph and integrality gaps of some well-known LPs, besides using L1-embeddings of graph that was

also used in [11]. We hope this work encourages further investigation of other algorithmic techniques to prove

message-passing lower bounds.

6In fact, we just need to compute the XOR of the hashes of the input, which with a linear hash is just the bit-wise XOR of O(logk)-bits of

hashes.

3

3 Key Technical Results and Our Techniques

In Appendix B we present a simple formulation of communication lower bounds in terms of a linear program (LP),

whose constraints correspond to two-party communication complexity lower bounds induced across various cuts

in the graph G. In particular, we prove our earlier claimed lower bound of Ω(ST(G,K) ·n) for the XORn problem.

Further, this connection can also be used to recover theΩ(σK (G)/ logk) lower bound for the ED function from [11]–

see Theorem 11. While LPs have been used to prove communication complexity lower bounds in the standard 2-

party setting (see e.g. [37, 38]), our use of LPs above seem to be novel for proving communication lower bounds. In

the remainder of the section, we present two general results that we will use to prove our lower bounds for specific

functions including those in Theorems 1, 2 and 3. (See Appendix E for the details.)

3.1 A Result on Two LPs

We now present a result that relates the objective values of two similar LPs. Both the LPs will involve the same

underlying topology graph G = (V ,E).

We begin with the first LP, which we dub LPL(G):

min
∑

e∈E

xe

subject to

∑

e crosses C

xe ≥
ℓ
∑

i=1

bi (C) for every cut C

xe ≥ 0 for every e ∈E .

In our results, we will use xe to denote the expected communication of an arbitrary protocol for a problem p over a

distribution over the input. The constraint for each cut C will correspond to a two-party lower bound of
∑ℓ

i=1
bi (C).

Then the objective value of the above LP, which by abuse of notation we will also denote by LPL(G), will be a valid

lower bound on R(p).

Next we consider the second LP, which we dub LPU (G):

min
ℓ

∑

i=1

∑

e∈E

xi ,e

subject to

∑

e crosses C

xi ,e ≥ bi (C) for every cut C and i ∈ [ℓ]

xi ,e ≥ 0 for every e ∈E and i ∈ [ℓ].

In our results, we will connect the objective value of the above LP (which again with abuse of notation we will

denote by LPU (G)) to the total communication of a trivial algorithm that solves problem p.

Our main aim is to show that for certain settings, the lower bound we get from LPL(G) is essentially the same

as the upper bound we get from LPU (G).

Before we state our main technical result, we need to define the property we need on the values bi (C). In

particular, let δ(C) denote the set of crossing edges for a cut C . We say that the values bi (C) satisfy the sub-additive

property if for any three cuts C1,C2 and C3 such that C1 ∪C2 =C3,7 we have that for every i ∈ [ℓ]: bi (C3) ≤ bi (C1)+
bi (C2). We remark that the two main families of functions that we consider in this paper lead to LPs that do satisfy

the sub-additive property (see Appendix D). We are now ready to state our first main technical result:

7This means that one side of the cut C3 is the union of one side each of C1 and C2 .

4

Theorem 4. For any graph G = (V ,E) (and values bi (C) for any i ∈ [ℓ] and cut C with the sub-additive property), we

have

LPU (G) ≥ LPL(G) ≥Ω

(

1

log |V | loglog |V |

)

·LPU (G).

Theorem 4 is the main ingredient in proving the lower bound for a 1-median function composed with a Steiner

tree function as given in Theorem 1 (see Appendix E.3.1). We can also use Theorem 4 to prove nearly tight lower

bound for composing a Steiner tree type function XOR with a linear 1-median function IP as well as another 1-

median function ED. However, it turns out for these functions, we can prove a better bound than Theorem 4. In

particular, using techniques developed in [11], we can prove lower bounds given in Theorem 2 and the one stated

below (see Appendix E.3.2 for details):

Corollary 1. For every choice of ui ∈ Ki :

R(XOR◦ IPn ,G,K , {0,1}n) ≥Ω

(

ST(G, {u1, . . . ,ut })+
∑t

i=1
σKi

(G) ·n
logk

)

.

3.1.1 Proof Overview

We give an overview of our proof of Theorem 4 (specialized to the proof of Theorem 1). While the LP based lower

bound argument for XORn in Appendix B is fairly straightforward things get more interesting when we consider

ED◦XORn . It turns out that just embedding the hard distribution for ED from [11], one can prove a lower bound of

just Ω
(

σK1,...,Kt (G)

log t

)

(see Lemma E.2). The more interesting part is proving a lower bound of Ω̃
(
∑t

i=1
ST(G,Ki)

)

. It is

not too hard to connect the upper bound of Õ
(
∑t

i=1
ST(G,Ki)

)

to the following LP, which we dub LPU
ST

(G,K) (and is

a specialization of LPU (G)):

min
t

∑

i=1

∑

e∈E

xi ,e

subject to

∑

e crosses C

xi ,e ≥ 1 for every cut C that separates K and i ∈ [t]

xi ,e ≥ 0 for every e ∈ E and i ∈ [t].

Indeed the above LP is basically solving the sum of t independent linear programs: call them LPST(G,Ki) for each

i ∈ [t]. Hence, one can independently optimize each of these LPST(G,Ki) and then just put them together to get an

optimal solution for LPU
ST

(G,K). This matches the claimed upper bounds since it is well-known that the objective

value of LPST(G,Ki) is Θ(ST(G,Ki)) [41].

On the other hand, if one tries the approach we used to prove the lower bound for XORn , then one picks an

appropriate hard distribution µ and shows that for every cut C the induced two-party problem has a high enough

lower bound. In this case, it turns out (see Section E.3.1) that the corresponding two-party lower bound (ignoring

constant factors) is the number of sets Ki separated by the cut. Then proceeding as in the argument for XORn if

one sets ye to be the expected (under µ) communication for any fixed protocol over any e ∈ E , then (ye)e∈E is a

feasible solution for the following LP, which we dub LP L
ST

(G,K) (and is a specialization of LPL(G)):

min
∑

e∈E

xe

subject to

∑

e crosses C

xe ≥ v(C ,K) for every cut C

xe ≥ 0 for every e ∈E ,

where v(C ,K) is the number of subsets Ki that are separated by C . If we denote the objective value of the above LP

by LP L
ST

(G,K), then we have an overall lower bound of Ω(LP L
ST

(G,K)). Thus, we would be done if we can show that

5

LP L
ST

(G,K) and LPU
ST

(G,K) are close. It is fairly easy to see that LP L
ST

(G,K) ≤ LPU
ST

(G,K). However, to prove a tight

lower bound, we need an approximate inequality in the other direction. We show this is true by the following two

step process:

1. First we observe that if G is a tree T then LP L
ST

(T,K)= LPU
ST

(T,K).

2. Then we use results from embedding graphs into sub-trees to show that there exists a subtree T of G such

that LP L
ST(G,K) ≈ LP L

ST(T,K) and LPU
ST

(G,K)≈ LPU
ST

(T,K), which with the first step completes our proof.

We would like to remark on three things. First, our proof can handle more general constraints than those imposed

by the Steiner tree LP. In particular, we generalize the argument above to prove Theorem 4. Second, to the best

of our knowledge this result relating the objective values of these two similar LPs seems to be new. However, we

would like to point out that our proof follows (with minor modifications) a similar structure that has been used to

prove other algorithmic results via tree embeddings (e.g. in [3]). Third, we find it interesting to observe that the

upper bound on the gap between the two LP’s is the key step in accomplishing a distributed direct-sum like result.

3.2 From Star to Steiner Trees

We define a multicut C of K to be a collection of non-empty pair-wise disjoint subsets C1, . . . ,Cr of K . Each such

subset is called an explicit set of C and the (maybe empty) set K \∪r
i=1

Ci is called its implicit set. We will call

f : ΣK → {0,1} to be h-maximally hard on the star graph if the following holds for any multicut C . There exists a

distribution µ
f

C
such that the expected cost (under µ

f

C
) of any protocol that correctly computes f on the following

star graph is Ω(|C | ·h(|Σ|)): each leaf of the star has all terminals from an explicit set from C , no two leaves have

terminals from the same explicit set and the center contains terminals from the implicit set. The following is our

second main technical result:

Theorem 5. Let f be h-maximally hard on the star graph. Then

R(f ,G,K ,Σ) ≥Ω

(

ST(G,K) ·h(|Σ|)
log2 k

)

.

The above result easily implies the lower bound (see Section E.2) in Theorem 3. Theorem 5 can also be used

to prove a lower bound similar to Theorem 3 above for the Tribes function using the lower bound for Tribes on the

star topology from [10]. We defer the proof of this claim to the full version of the paper.

3.2.1 Proof Overview

In all of the arguments so far, we reduce the lower bound problem on (G,K) to a bunch of two party lower bounds

induced by cuts. However, we are not aware of any hard distribution such that one can prove a tight lower bound

that reduces the set disjointness problem to a bunch of two-party lower bounds. In fact, the only non-trivial lower

bound for set disjointness, in the point-to-point model, that we are aware of is the Ω(kn) lower bound for the k-

star by Braverman et al. [9]. In particular, their proof does not seem to work by reducing the problem to two-party

lower bounds. In this work, we are able to extend the set disjointness lower bound of [9] to Theorem 3.

We prove Theorem 3 by modifying the argument in [11] as follows. Essentially the idea in [11] is to construct a

collection of cuts such that essentially every edge participates in O(logk) cuts and one can prove the appropriate

two-party lower bound across each of the cuts in the collection so that when one sums up the contribution from

each cut one gets the appropriate Ω(σK (G)/ logk) overall lower bound. (These collection of cuts were obtained via

Bourgain’s L1 embedding [8, 32]. As mentioned earlier, this trick does not seem to work for set disjointness and it

is very much geared towards 1-median type functions). We modify this idea as follows: we construct a collection

of multi-cuts such that (i) every edge in G appears in at most one multi-cut and (ii) one can use lower bounds on

star graph to compute lower bounds for the induced function on each multi-cut, which can then be added up.

The main challenge in the above is to construct an appropriate collection of multi-cuts that satisfy properties (i)

and (ii) above. The main idea is natural: we start with balls of radius 0 centered at each of the k terminals and then

one grows all the balls at the same rate. When two balls intersect, we combine the two balls and grows the larger ball

6

appropriately. The multi-cut at any point of time is defined by the vertices in various balls. To argue the required

properties, we observe that the algorithm above essentially simulates Boru̇vka’s algorithm [33] on the metric closure

of K with respect to the shortest path distances in G. In other words, we show that the sum of the contributions

of the lower bounds from each multi-cut is related to the MST on the metric closure of K with respect to G, which

is well-known to be closely related to ST(G,K) (see e.g. [41, Chap. 2]). It turns out that for set disjointness, one

has to define O(logk) different hard distributions (that depend on the structure of the multi-cuts above) and this

is the reason why we lose a O(logk) factor in our lower bound. (We lose another O(logk) factor since we use lower

bounds on the star topology.) To the best of our knowledge this is the first instance where the hard distribution

actually depends on the graph structure– most of our results as well as those preceding ours use hard distributions

that are independent of the graph structure. This argument generalizes easily to prove Theorem 5.

4 Open Questions

We conclude by pointing out two of the many open questions that arise from our work:

1. Our two main technical tools are complementary. Theorem 4 works for the case when the set of terminals

K is divided into sets K1, . . . ,Kt and one applies some inner functions on these Ki ’s. Theorem 4 allows us

to prove a sort of direct sum result in this case. However, this technique reduces the problem on (G,K) to a

bunch of two-party lower bounds. On the other hand, Theorem 5 transforms the problem on (G,K) to lower

bounds on star graphs. However, this cannot prove a direct sum type lower bound (and also only handles

Steiner tree type constraints). A natural question to ask is if one can get the best of both worlds, i.e. can we

show a direct sum type lower bound of the kind Ω(
∑t

i=1
ST(G,Ki)) by reducing the problem to a bunch of

lower bounds on the star topology?

2. In this paper we only present results for specific f ◦ g . It would be nice to prove our conjecture from the

introduction: if the inner function is a (linear) Steiner tree type and the outer function is a (linear) 1-median

type function, then the trivial two-stage algorithm is optimal for f ◦ g . There are several avenues to pursue

this. One such is to extend the XOR lemma (which corresponds to proving that the naive protocol is optimal

for XOR◦g) of Barak et al. [6] from the two-party communication setting to ours (as long as g is of 1-median

type).

References

[1] Ittai Abraham, Yair Bartal, and Ofer Neiman. Nearly tight low stretch spanning trees. In 49th Annual IEEE

Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA,

pages 781–790, 2008.

[2] Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch spanning tree. In Pro-

ceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19

- 22, 2012, pages 395–406, 2012.

[3] Baruch Awerbuch and Yossi Azar. Buy-at-bulk network design. In 38th Annual Symposium on Foundations of

Computer Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, pages 542–547, 1997.

[4] Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay Mansour. Distributed learning, communication

complexity and privacy. In COLT, pages 26.1–26.22, 2012.

[5] Z. Bar-Yossef, T.S. Jayram, R. Kumar, and D. Sivakumar. An information statistics approach to data stream and

communication complexity. J. Compt. Syst. Sci., 68(4):702–732, 2004.

[6] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive communication. SIAM J.

Comput., 42(3):1327–1363, 2013.

7

[7] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query processing. In PODS,

pages 273–284, 2013.

[8] Jean Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel J. Math., 52(1-2):46–52,

1995.

[9] Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntanathan. A tight bound for

set disjointness in the message-passing model. In 54th Annual IEEE Symposium on Foundations of Computer

Science (FOCS), pages 668–677, 2013.

[10] A. Chattopadhyay and S. Mukhopadhyay. Tribes is hard in the message-passing model. In 32nd Symposium

on Theoretical Aspects of Computer Science (STACS), 2015.

[11] Arkadev Chattopadhyay, Jaikumar Radhakrishnan, and Atri Rudra. Topology matters in communication. In

55th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2014.

[12] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication

complexity. SIAM J. Comput., 17(2):230–261, 1988.

[13] Graham Cormode. The continuous distributed monitoring model. SIGMOD Rec., 42(1):5–14, May 2013.

[14] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D. Peleg, and R. Wattenhofer.

Distributed verification and hardness of distributed approximation. SIAM Journal on Computing, 41(5):1235–

1265, 2012.

[15] D. Dolev and T. Feder. Multiparty communication complexity. In FOCS, pages 428–433, 1989.

[16] A. Drucker, F. Kuhn, and R. Oshman. On the power of the congested clique model. In PODC, pages 367–376,

2014.

[17] P. Duris and J.D.P. Rolim. Lower bounds on the multiparty communication complexity. J.Comput.Syst.Sci.,

56(1):90–95, 1998.

[18] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics by

tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[19] O. Goldreich. Three XOR lemmas - an exposition, chapter Studies in complexity and cryptography, pages

248–272. Springer, 2011.

[20] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR lemma, chapter Studies in complexity and cryptog-

raphy, pages 273–301. Springer, 2011.

[21] Nicholas J Harvey, Robert D Kleinberg, and April Rasala Lehman. Comparing network coding with multicom-

modity flow for the k-pairs communication problem. MIT LCS Tech report MIT-LCS-TR-964, 2004.

[22] Z. Huang, B. Radunovic, M. Vojnovic, and Q. Zhang. Communication complexity of approximate maximum

matching in distributed graph data. In 32nd Symposium on Theoretical Aspects of Computer Science (STACS),

2015.

[23] M. Karchmer, R. Raz, and A. Wigderson. Super-logarithmic depth lower bounds via the direct sum in com-

munication complexity. Computational Complexity, 5(3/4):191–204, 1995.

[24] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for mapreduce. In SODA,

pages 938–948, 2010.

[25] Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson. The distributed complexity

of large-scale graph processing. CoRR, abs/1311.6209, 2013. To appear in SODA 15.

8

[26] H. Kowshik and P.R. Kumar. Optimal function computation in directed and undirected graphs. IEEE Transca-

tions on Information Theory, 58(6):3407–3418, 2012.

[27] F. Kuhn and R. Oshman. Dynamic networks: models and algorithms. SIGACT News, 42(1):82–96, 2011.

[28] Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In ACM Symposium

on Principles of Distributed Computing, PODC ’13, Montreal, QC, Canada, July 22-24, 2013, pages 42–50, 2013.

[29] Yi Li, Xiaoming Sun, Chengu Wang, and David P. Woodruff. On the communication complexity of linear

algebraic problems in the message passing model. In Distributed Computing - 28th International Symposium,

DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, pages 499–513, 2014.

[30] Zongpeng Li and Baochun Li. Network coding in undirected networks. In CISS, 2004.

[31] Zongpeng Li and Baochun Li. Network coding: The case of multiple unicast sessions. In Allerton Conference

on Communications, volume 16, 2004.

[32] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic appli-

cations. Combinatorica, 15(2):215–245, 1995.

[33] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar Boru̇vka on minimum spanning tree problem

translation of both the 1926 papers, comments, history. Discrete Mathematics, 233(1âĂŞ3):3 – 36, 2001. Czech

and Slovak 2.

[34] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathe-

matics, 2000.

[35] Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty communication

complexity, made easy. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-

rithms (SODA), pages 486–501, 2012.

[36] R. Raz and P. McKenzie. Separation of the monotone NC hierarchy. Combinatorica, 19(3):403–435, 1999.

[37] A. Sherstov. Separating AC0 from depth-2 majority circuits. SIAM J. Comput., 38(6):2113–2129, 2009.

[38] Y. Shi and Y. Zhu. Quantum communication complexity of block-composed functions. Qunatum computa-

tion and information, 9(5):444–460, 2009.

[39] Prasoon Tiwari. Lower bounds on communication complexity in distributed computer networks. J. ACM,

34(4):921–938, 1987.

[40] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111, 1990.

[41] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., New York, NY, USA, 2001.

[42] D. Woodruff and Q. Zhang. Tight bounds for distributed functional monitoring. In STOC, pages 941–960,

2012.

[43] D. Woodruff and Q. Zhang. When distributed computation is communication expensive. In DISC, pages

16–30, 2013.

[44] D. Woodruff and Q. Zhang. An optimal lower bound for distinct elements in the message passing model. In

SODA, pages 718–733, 2014.

[45] A. C. C. Yao. Some complexity questions related to distributed computing. In 11th ACM Symposium on Theory

of Computing (STOC), pages 209–213, 1979.

9

Acknowledgments

Thanks to Jaikumar Radhakrishnan for pointing out that cost of minimum Steiner tree can bound the commu-

nication complexity of a class of functions. Many thanks to Anupam Gupta for answering our questions on tree

embeddings and related discussions.

We would like to thank the organizers of the 2014 Dagstuhl seminar on Algebra in Computational Complexity

for inviting us to Dagstuhl, where some of the results in this paper were obtained.

AC is supported by a Ramanujan Fellowship of the DST and AR is supported in part by NSF grant CCF-0844796.

Notes on the Appendix

Further, some of our results hold for the case when more than one input is assigned to the same terminal, i.e. we

have a multi-set of terminals. In the appendix, we will use K to denote the case of the set of terminals being a

multi-set and K to denote the case that the set of terminals is a proper set.

A Related Work in Distributed Computing

Not surprisingly, the role of topology in computation has been studied extensively in distributed computing [34].

There are three main differences between works in this literature and ours. First, the main objective in distributed

computation is to minimize the end to end delay of the computation, which in communication complexity termi-

nology corresponds to the number of rounds need to compute a given function. By contrast, we mostly consider

the related but different measure of the total amount of communication. Second, the effect of network topology on

the cost of communication has been analyzed to quite an extent when the networks are dynamic (see for example

the recent survey of Kuhn and Oshman [27]). By contrast, in this paper we are concerned with static networks of

arbitrary topology. Finally, there has also been work on proving lower bounds for distributed computing on static

networks, see e.g. the recent work of Das Sarma et al. [14]. This line of work differs from ours in at least two ways.

First, their aim is to prove lower bounds on the number of rounds needed to compute, especially when the edges

of the graph are capacitated. This paper, on the other hand, focuses on the total communication needed with-

out placing any restriction on the capacities of the edges or the number of rounds involved. Second, the kinds of

functions considered in the distributed computing community (for recent papers see e.g. [14, 28, 16]) are generally

of a different nature than the kinds of functions that we consider in this paper (which are more influenced by the

functions typically considered in the communication complexity literature). For many functions in distributed

computing, the function f itself depends on G (e.g. computing the diameter of G, the cost of the MST of G etc.)

while all the functions we consider are independent of G– indeed we want to keep the function f the same and

see how its communication complexity changes as we change G. Further, even for the case when f is independent

of G (e.g. sorting) typically one has k = n and V = K while in our case we have arbitrary K and |V | and n are

independent parameters. (There is a very recent exception in [25].)

B Communcation Complexity Lower Bounds via LPs

A basic idea in our technique, is to understand the topological constraints placed on the communication demands

of the problem by considering cuts of a graph. The general idea of using cuts for this purpose has appeared in many

places before like network coding (ex: [30, 31, 21] and function computation in sensor networks (ex: [26]). But the

idea of using several cuts rather than a single cut that we describe next is primarily borrowed from [11] (similar

though slightly less general arguments were also made in [39, 35]). The original problem
(

f , {0,1}n ,G,K
)

naturally

gives rise to a classical 2-party problem across a cut C = (V A ,V B), where V A ,V B partition the set of vertices V (G).

In the 2-party problem, Alice gets the inputs of the terminals in K A ≡ K ∩V A and Bob gets the inputs of terminals in

K B ≡ K ∩V B . Alice and Bob compute f C , the induced problem on the cut. A protocol Π solving f induces protocol

Π
′ for Alice and Bob as follows: let δ(C) be the set of cut-edges. As long as Π does not send any bits across any

edge in δ(C), Alice and Bob simulate Π internally with no communication to each other. If Π communicates bits

10

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=14391

through edges in δ(C), Alice sends exactly those bits to Bob that were sent in Π from vertices in V A to vertices in V B

via some pre-determined encoding in Π
′. Bob then sends to Alice the bits sent in the other direction in Π. Thus,

the 2-party problem gets solved in essentially the same cost as the total number of bits sent over edges of δ(C) by

Π. However, the simple thing to note is that if f C is known to have large 2-party communication complexity of

b(C), then that places a communication demand of b(C) across the cut C .

We would like to say that we understand the communication bottlenecks in the graph, as is often done in

analyzing network flows, by specifying this demand b(C) from our understanding of 2-party communication com-

plexity. An obvious problem is the following: usually randomized 2-party communication complexity specifies

“worst-case” complexity. The worst-case cost locally across each cut C may not correspond to a globally consis-

tent input. It was observed in [11] that there is a simple fix to this. We define a global input distribution µ such

that the “expected” communication cost of the 2-party problem across cut C w.r.t the induced distribution µC is

b(C). Then, the use of linearity of expectation helps us analyze the expected communication cost of the original

problem. This idea was used in [11] by using a special family of cuts obtained from L1 embeddings of graphs. This

worked well to give 1-median type lower bounds, where the demand function b(C) was of a specific type. In this

work, we want to deal with more varied demand functions. It turns out to be more convenient and (in hindsight)

more natural for us to write these two-party communication constraints as a linear program (LP). This helps us

not only to recover the bounds for the 1-median type functions but also to obtain tight bounds for other types of

functions.

We illustrate the use of an LP in our setting by considering the bit-wise xor function: given inputs X i = (X i
1 , . . . , X i

n)∈

{0,1}n for every i ∈K , the function XORn : ({0,1}n)K → {0,1}n is defined as follows: XORn

(

(X i)i∈K

)

=
(

(

⊕

i∈K X i
j

)n

j=1

)

,

where ⊕ denote the boolean xor function. It is easy to see that we can compute this function by successively com-

puting the bit-wise xor values of inputs along the Minimum Steiner tree for K , which implies an upper bound of

O(ST(G,K) ·n). We now show how one can prove an Ω(ST(G,K) ·n) lower bound for XORn . Let µ be the hard dis-

tribution that assign an independent and uniformly random vector from {0,1}n to each of the k terminals. Now fix

any protocol Π that correctly solves the XORn function on (G,K) on all inputs. Now consider a cut C of G that sep-

arates the terminal set K . If one now considers the induced two party problem, it is not too hard to see that if Alice

gets the vectors on one side of C and Bob gets the rest of the input then Alice and Bob are trying to solve the two-

party bit-wise XOR function. In particular, Alice and Bob have two vectors8 A,B ∈ {0,1}n and they want to compute

XORn(A,B). Π thus induces a bounded error randomized protocol for Alice and Bob where they communicate only

bits that Π communicates on cut-edges. Further, the induced distribution µC on (A,B) is the uniform distribution

on {0,1}n × {0,1}n . It is not difficult to use an entropy argument and conclude that the two-party problem has an

expected (under µC) communication complexity lower bound of at least α ·n for some absolute constant α > 0.

Now for every e ∈ E , define xe to be expected total communication through edge e by Π under µ. Then the argu-

ment above and linearity of expectation implies that the expected total communication complexity of Π (scaled

down by a factor of α ·n) is lower bounded by the objective value of the following linear program, which we will

dub LPST(G,K):

min
∑

e∈E

xe

subject to

∑

e crosses C

xe ≥ 1 for every cut C that separates K

xe ≥ 0 for every e ∈ E .

By abuse of notation let LPST(G,K) also denote the objective value of the above LP. It is well-known that LPST(G,K)

is Θ(ST(G,K)) (see Theorem 6), which with the above discussion implies the desired lower bound of Ω(ST(G,K) ·α ·
n) =Ω(ST(G,K) ·n) for the XORn problem.

8 A is the bit-wise xor of all the inputs on Alice’s side and B is the bit-wise XOR of all the input on Bob’s side.

11

C More Details on Graph Parameters

It is well-known that ST(G,K) is closely related to LPST(G,K) (see e.g. [41]):

Theorem 6.

LPST(G,K) ≤ ST(G,K) ≤ 2 ·LPST(G,K).

The quantity σk (G) is closely related to the following LP, which we will dub LPMDN(G,K):

min
∑

e∈E

xe

subject to

∑

e crosses C

xe ≥ min(|C |, |K \C |) for every cut C (2)

xe ≥ 0 for every e ∈ E .

By abuse of notation let LPMDN(G,K) also denote the objective value of the above LP. The following result was

implicitly argued in [11]. For the sake of completeness we present a proof in Appendix C.

Theorem 7.

LPMDN(G,K) ≥Ω

(

σK (G)

logk

)

.

Proof. Let C be the collection of cuts in G guaranteed by Bourgain’s embedding [8, 32] that has the following two

guarantees: (i) Every edge is cut by β = O(logk) cuts in C and (ii) for every u 6= v ∈ V , the pair is separated by at

least dG (u, v) cuts in C .

Using the constraint (2) over all cuts in C , we get that for the optimal solution (xe)e∈E for LPMDN(G,K) (we use

property (ii) of C in the third inequality)

∑

C∈C

∑

e∈δ(C)

xe ≥
∑

C∈C

min(|C |, |K \C |)

≥
∑

C∈C

|C | · |K \C |
k

=
∑

C∈C

∣

∣{(u, v)|u 6= v ∈K ,C separates (u, v)}
∣

∣

k

=
1

k
·

∑

u 6=v∈K

∣

∣{C ∈C |C separates (u, v)}
∣

∣

≥
1

k
·

∑

u 6=v∈K

dG (u, v)

=
1

k

∑

u∈K

∑

v∈K ,v 6=u

dG (u, v)

=
1

k

∑

u∈K

σK (u)

≥σK (G).

Finally by property (i) of C we have that
∑

C∈C

∑

e∈δ(C) xe ≤β·
∑

e∈E xe , which with the above inequality implies that
∑

e∈E xe ≥σK (G)/β, as desired.

[11] also considered another graph parameter. Given the graph G = (V ,E), the subset of even number of termi-

nals K and a partition M of K into sets of size exactly two, define d(G, M) =
∑

(u,v)∈M dG (u, v). The quantity d(G, M)

is related to the following LP, which we will dub LPMTCH(G,K , M):

min
∑

e∈E

xe

12

subject to

∑

e crosses C

xe ≥ m(C , M) for every cut C (3)

xe ≥ 0 for every e ∈E ,

where m(C , M) is the number of pairs in M separated by C . By abuse of notation let LPMTCH(G,K , M) also denote

the objective value of the above LP. The following result was implicitly argued in [11]. For the sake of completeness

we present a proof.

Theorem 8.

LPMTCH(G,K , M) ≥Ω

(

d(G, M)

logk

)

.

Proof. Let C be the collection of cuts in G guaranteed by Bourgain’s embedding [8, 32] that has the following two

guarantees: (i) Every edge is cut by β = O(logk) cuts in C and (ii) for every u 6= v ∈ V , the pair is separated by at

least dG (u, v) cuts in C .

Using the constraint (3) over all cuts in C , we get that for the optimal solution (xe)e∈E for LPMTCH(G,K , M) (we

use property (ii) of C in the last inequality)

∑

C∈C

∑

e∈δ(C)

xe ≥
∑

C∈C

∣

∣{(u, v) ∈ M |C separates (u, v)}
∣

∣

=
∑

(u,v)∈M

∣

∣{C ∈C |C separates (u, v)}
∣

∣

≥
∑

(u,v)∈M

dG (u, v)

= d(G, M).

Finally by property (i) of C we have that
∑

C∈C

∑

e∈δ(C) xe ≤β·
∑

e∈E xe , which with the above inequality implies that
∑

e∈E xe ≥ d(G, M)/β, as desired.

Finally, the quantities σK (G) and the worst-case d(G, M) are within a factor of 2 of each other:

Lemma C.1 ([11]). Let K be a set of even number of terminals and let M (K) denote the set of all disjoint pairings in

K . Then
1

2
·σK (G) ≤ max

M∈M (K)
d(G, M) ≤σK (G).

D Sub-additivity Property

We briefly argue that the two main families of functions that we consider in this paper lead to LPs that do satisfy

the sub-additive property:

• Steiner Tree constraints. There are sets of terminals Ti ⊆V (for i ∈ [ℓ]) and bi (C) = 1 if C separates Ti and 0

otherwise. Note that with these constraints LPL(G) and LPU (G) are the same as LP L
ST

(G,K) and LP L
ST

(G,K)

that we saw in the introduction.

• Multi-commodity flow constraints. We have a set of demands Di (for i ∈ [ℓ]) and bi (C) is the number of

demand pairs in Di that are separated by C . Note that with these constraints LPU (G) is essentially the sum

of LPMDN(G,Ki) where Di consists of all pairs in Ki .

E Applications

In this section, we apply the general techniques we have developed so far to obtain lower bounds for specific

functions. However, we begin with our lower bound for all functions.

13

E.1 Lower Bound For Every Function

We prove here that every function needs Ω(ST(K ,G)) bits to be computed by any protocol.

Theorem 9. Let f : Σk → {0,1} be any function that depends on all of its input symbols. Then,

R
(

f ,G,K ,Σ
)

≥Ω(ST(G,K)) .

Proof. Let Π be any protocol in which the node u in V (G) computes the output of f . Take any cut C of G that

partitions V (G) into V A , V B and separates the set K of terminals into K A and K B , each of which is non-empty. We

argue that at least one bit is communicated in total across the edges of δ(C). This will be sufficient to establish our

theorem, using Lemma F.5 and Theorem 6.

WLOG, assume u ∈V A is the designated terminal that needs to know the final output bit. As f depends on all

its input symbols, there is an assignment a ∈ Σ
K A

to terminals in K A such that f is determined by the assignment

to terminals in K B , i.e. there exists b,b′ ∈ Σ
K B

such that f (a,b) 6= f (a,b′). Hence, when a is the assignment to

K A , there is at least 1 bit of communication across δ(C) from V B to V A for u to output the answer correctly on all

inputs with probability greater than 1/2. Otherwise, if no communication is expected by nodes in V A , then the

answer they give is independent of inputs to nodes in K B . In this case, at least for one of the assignments ab and

ab′, protocol Π errs with probability at least 1/2.

For every other assignment to K A , as long as there is no communication from V A to V B , there is no way for

processors in V B to know that the assignment to K A is not a. Hence, if they do not communicate in this case, they

will also not communicate when K A is assigned a, which we argued is not possible. Thus, in every case, at least 1

bit of communication occurs on δ(C).

We note that we only use the property of a valid protocol that it cannot have a deadlock (i.e. if one end point of

an edge is expecting to receive some communication then the other end point has to communicate something) in

the proof above. The rest of our proofs do not use this property explicitly.

Theorem 9 also has the following interesting consequence. Recall that in our model there is one designated

terminal that needs to know the output bit. However, since the output bit can be transmitted to all the terminals

with ST(G,K) amounts of additional communication, our model is equivalent (up to constant factors) to a related

model where all the terminals need to know the output bit at the termination of the protocol.

E.2 Bounds for DISJ

We next prove bounds for one of the most well-studied functions in classical communication complexity: the set

disjointness function (DISJ).

We first note that for a given set of terminals K , where each terminal gets a subset of [n] (as a vector in {0,1}n),

one can compute their intersection by computing the running intersection from the leaves of the minimum Steiner

tree on K in G to its root. Each edge only carries at most n bits, which leads to the following result:

Proposition 1.

R(DISJ,G,K , {0,1}n) ≤O(ST(G,K) ·n).

Next, we argue that the bound above is nearly tight. Towards this end, we claim that

Lemma E.1. Let h be the function h(M) = ⌈log M⌉. Then DISJ is h-maximally hard on the star graph.

Proof. Let νs be the hard distribution for DISJ on an s-star from Braverman et al. [9]. Using standard tools of

information theory, it follows from that work that for such hard distribution the set disjointness problem needs

Ω(sn) expected communication over an s-star.

Now consider any multicut C of K with |C | = s. Now define µDISJ
C

as follows: let (X1, . . . , Xs) be a sample from µs .

Then the terminals in the i th explicit set in C all get Xi . Finally, all the terminals in the implicit set get the all ones

vector. It is easy to check that µDISJ
C

has the required property.

The above lemma along with Theorem 5 immediately proves Theorem 3.

14

E.3 Composed Functions

Finally we prove bounds for some composed functions.

E.3.1 Bounds for ED◦XORn

In this section, we consider the composed function ED◦XORn . For the sake of completenes, we recall its definition.

Let G = (V ,E) be the graph and given t subsets K1, . . . ,Kt ⊆ V (which need not all be disjoint or distinct), we have

K = {K1, . . . ,Kt }. Given ki
de f
= |Ki | n-bit vectors X i

1 , . . . , X i
ki

∈ {0,1}n for every i ∈ [t], define:

ED◦XORn

(

X 1
1 , . . . , X 1

k1
, . . . , X t

1 , . . . , X t
kt

)

= ED
(

XORn

(

X 1
1 , . . . , X 1

k1

)

, . . . ,XORn

(

X t
1 , . . . , Xkt

)

)

.

We now state the obvious upper bound for solving the ED◦XORn function. For notational convenience, define

σK1,...,Kt (G) to be the minimum of σK (G) for every choice of K that has exactly one terminal from Ki for every i ∈ [t].

Then we have the following upper bound.

Proposition 2. Let k =
∑t

i=1
ki . Then

R(ED ◦XORn ,G,K , {0,1}n) ≤O

(

σK1,...,Kt (G) · logk +
t

∑

i=1

ST(G,Ki) · log k

)

.

Proof. Note that with O(ST(G,Ki) · logk) amounts of communication, every terminal in Ki will know the hash9 of

XORn(X i
1 , . . . , X i

ki
). Doing this for every i ∈ [t] gives the second term in the claimed bound.

Let u1, . . . ,ut be such that ui ∈ Ki for every i ∈ [t] and σK1 ,...,Kt (G) = σ{u1,...,ut }(G). Then run the upper bound

protocol for ED using the hashes at the terminals in the set {u1, . . . ,ut }. This latter part accounts for the first term

in the claimed bound. This completes the proof.

We will now prove Theorem 1, which is an almost matching lower bound to the upper bound in Proposition 2.

We will do so by proving two lower bounds separately: one each for the two terms in the upper bound. Note that

this immediately implies a lower bound that is the sum of the two terms (up to a factor of 1/2) as desired.

The first term follows immediately from existing results [11]:

Lemma E.2.

R(ED◦XORn ,G,K , {0,1}n) ≥Ω

(

σK1 ,...,Kt (G)

log t

)

.

Proof. Let ui ∈ Ki for every i ∈ [t] be such that σK1,...,Kt (G) =σ{u1,...,ut }(G). Let µt be the hard distribution from [11]

for ED on t terminals. Assign the t inputs from µt to each ui and all the other terminals in ∪t
i=1

Ki get inputs that

are distinct from each other and have a support disjoint from the support in µt . Then the lower bound for µt

from [11] implies the claimed bound.

Remark 1. We note that the proof can also be extended to replace σK1,...,Kt (G) by the maximum σK ′(G), where K ′

contains exactly one terminal from K1, . . . ,Kt . However, this does not lead to any contradiction since it is easy to

check that σK ′ (G) ≤ σK1,...,Kt (G)+
∑t

i=1 ST(G,Ki) and hence even if we use the stronger bound for above, the total

lower bound does not exceed the upper bound.

Next, we will prove a lower bound matching the second term in the upper bound in Proposition 2 up to poly-log

factors. Before that we consider a specific problem that will be useful in the proof of our lower bound.

Lemma E.3. Alice and Bob get t inputs A1, . . . , At ∈ {0,1}n and B1, . . . ,Bt ∈ {0,1}n . They want to compute ED(XORn (A1,B1), . . . ,XORn(At ,Bt)).

Consider the distribution νt where each Ai and B j are picked uniformly and independently at random. Then for

n ≥ 3log t and any protocol with bounded error that computes ED(XORn(A1,B1), . . . ,XORn(At ,Bt)) correctly on all

inputs has expected cost (under νt) of Ω(t).

9In particular, here the hash is the inner product of O(logk) random vectors with the input. The random vectors are generated using public

randomness.

15

Proof. We will use the fact that the set disjointness problem where Alice and Bob get two sets of size t where each

set is picked by picking t uniformly random elements (with replacement) from {0,1}n has expected communication

complexity lower bound of Ω(t): see e.g. [11].10 Let us call his hard distribution µt .

Now for the sake of contradiction assume that there exists a protocolΠ that computes ED(XORn(A1,B1), . . . ,XORn(At ,Bt))

correctly on all inputs with expected cost (under νt) o(t). We will use this to obtain a protocol that solves the set

disjointness problem above for sets of size t/2 with expected cost o(t) under µt/2, which will lead to a contradic-

tion. Let us assume that Alice gets {X1, . . . , Xt/2} and Bob gets {Y1, . . . ,Yt/2} from the distribution µt/2. Alice and

Bob construct the sets {A1, . . . , At } and {B1, . . . ,Bt } as follows. Using shared randomness Alice and Bob both pick

uniformly random elements Z1, . . . , Zt ∈ {0,1}n and compute their sets as follows:

Ai =
{

XORn(Xi , Zi) if i ≤ t/2

Zi otherwise

and

Bi =
{

Zi if i ≤ t/2

XORn(Yi−t/2, Zi) otherwise
.

Note that the induced distribution on {A1, . . . , At } and {B1, . . . ,Bt } is exactly the same as νt . Further, we have

ED(XORn(A1,B1), . . . ,XORn(At ,Bt)) = 1 if and only if {X1, . . . , Xt/2} and {Y1, . . . ,Yt/2} are disjoint. Thus, if Alice and

Bob run Π on the inputs A1, . . . , At and B1, . . . ,Bt as above, then they can solve the disjointness problem on inputs

under the distribution µt/2 with o(t) expected cost, as desired.

We are now ready to prove a matching lower bound for the second term in the upper bound in Proposition 2.

Lemma E.4.

R(ED◦XORn ,G,K , {0,1}n) ≥Ω

(
∑t

i=1 ST(G,Ki)

log |V | loglog |V |

)

.

Proof. Consider the hard distributionµ, where each of the inputs in∪t
i=1

Ki is chosen uniformly and independently

at random from {0,1}n . Now consider any cut C in the graph G. Let ED ◦XORn(C) denote the induced two-party

problem. We claim that this problems needs Ω(t ′) amounts of expected communication where t ′ is the number

of sets Ki that are separated by C . Assuming this claim, note that by Corollary 2 the effective lower bound for the

entire problem is Ω(LPL(G)) where ℓ= t and b j (C) = 1 if K j is cut by C and 0 otherwise (for any j ∈ [t]). Further,

note that the values b j (C) are sub-additive. By Theorem 4, we have a lower bound of

Ω

(

LPU (G)

log |V | loglog |V |

)

.

To get the claimed lower bound, observe that the objective of LPU (G) is just the sum of LPST(G,Ki) for i ∈ [t].

Finally, since we can minimize the objective of LPU (G) by separately minimizing each instance of the Steiner tree

LP, Theorem 6 implies that we have LPU (G)≥Ω
(
∑t

i=1
ST(G,Ki)

)

, which implies the claimed lower bound.

We complete the proof by arguing the claimed lower bound on the two party function ED◦XORn(C) for any cut

C . WLOG assume that C separates the sets K1, . . . ,Kt ′ . Then note that if Alice gets the inputs from one side of the

cut C and Bob gets the inputs from the other side then they are trying to solve ED(XORn(A1,B1), . . . ,XORn(At ′ ,Bt ′))

where Ai is the bit-wise XORn of all inputs in Ki that Alice gets and Bi is the XORn of the inputs from Ki that

Bob gets. Further, note that the distribution on A1, . . . , At ′ and B1, . . . ,Bt ′ is the same as the hard distribution in

Lemma E.3. Thus, Lemma E.3 implies the claimed lower bound of Ω(t ′).

10Technically in [11] the hard distribution for set disjointness, the elements in the sets for Alice and Bob are chosen without replacement.

However, the probability that either Alice or Bob have a set of size strictly less than t or have an intersection is at most

(2t
2

)

2n , which by our lower

bound on n is negligible.

16

E.3.2 Bounds for XOR◦ IP

There are multiple definitions of XOR◦ IP that make sense. In this subsection we will consider the version, which

we dub XOR◦ IPn , that gives the cleanest bounds. Given the set of terminals K divided into t subsets of terminals

K1, . . . ,Kt , let Mi be a set of disjoint pairings of Ki such that d(G, Mi) =Θ(σKi
(G)) (by Lemma C.1 such an Mi exists).

Given ki
de f= |Ki | n-bit vectors X i

1 , . . . , X i
ki

∈ {0,1}n for every i ∈ [t], define:

XOR◦ IPn

(

X 1
1 , . . . , X 1

k1
, . . . , X t

1 , . . . , X t
kt

)

= XOR1

(

IPM1

(

X 1
1 , . . . , X 1

k1

)

, . . . , IPMt

(

X t
1 , . . . , Xkt

)

)

,

where XOR1 denotes the function that first applied XORn on the t vectors and then takes the xor of the resulting n

bits and we consider the following version of the inner product function. Given a set of disjoint pairings M of K ,

define IPM : ({0,1}n)K → {0,1}n as follows. Given inputs X i = (X i
1 , . . . , X i

n) ∈ {0,1}n for every i ∈ K , IPM

(

(X i)i∈K

)

=
(

(
⊕

(u,v)∈M

(

X i
u

∧

X i
v

))n

j=1

)

.

Now consider the obvious protocol to solve the XOR◦IPn : first compute all the IPMi

(

X i
1 , . . . , X i

ki

)

using the trivial

σKi
(G) ·n protocol and then store the xor of the resulting n bits at say ui ∈Ki . At this point with O

(
∑t

i=1
σKi

(G) ·n
)

bits of communication we have t bits at ui ∈Ki . Then we compute the final desired output bits by using the Steiner

tree on {u1, . . . ,ut }. This implies an overall upper bound of

Proposition 3. Let k =
∑t

i=1 ki . Then

R(XOR◦ IPn ,G,K , {0,1}n) ≤O

(

ST(G, {u1, . . . ,ut })+
t

∑

i=1

σKi
(G) ·n

)

.

Recall that Corollary 1 shows a nearly matching lower bound. One can easily show a matching lower bound for

the first term in the sum above (e.g. by the argument for XORn for n = 1 from the introduction). We can also prove

a nearly matching lower bound for the second term:

Lemma E.5.

R(XOR◦ IPn ,G,K , {0,1}n) ≥Ω

(

∑t
i=1

σKi
(G) ·n

logk

)

.

To prove this we will need the following result (the proof appears in Appendix F.2):

Lemma E.6. Let K1, . . . ,Kℓ and M1, . . . , Mℓ be defined as above. For any j ∈ [ℓ] define b j (C) is defined to be the

number of pairs in M j separated by the cut C. Then for k =
∑ℓ

i=1
|Ki |,

Ω

(
∑ℓ

i=1
σKi

(G)

logk

)

≤ LPL(G) ≤ LPU (G) ≤O

(

ℓ
∑

i=1

σKi
(G)

)

.

of Lemma E.5. Let µ be the distribution where the k =
∑t

i=1
ki vectors are picked uniformly and independently

at random from {0,1}n . Let C be an arbitrary cut of G and let k ′
i

be the number of pairs in Mi that are cut by C .

Then note that the induced two-party problem is essentially trying to solve the two-party inner product function

on (
∑t

i=1
k ′

i
)·n bits. Further, conditioned on all valid fixings of inputs corresponding to pairs that are not separated

by C , the remaining inner product problem mentioned above corresponds to Alice (who receives all the vectors

on one side of C) receiving a uniform vector with (
∑t

i=1
k ′

i
) ·n uniform bits. Similarly for Bob. It is well-known

[12] that for this induced distribution the two party lower bound on the expected cost is Ω
(

(
∑t

i=1
k ′

i
) ·n

)

bits of

communication.

Note that by Corollary 2 the effective lower bound for the entire problem is Ω(LPL(G)) where ℓ= t and b j (C) =
k ′

j
·n. Lemma E.6 completes the proof.

17

E.3.3 Bounds for XOR◦ED

In this section, we consider in some sense the “reverse” of the ED ◦XORn function. The function XOR1 ◦ ED :

({0,1}n)K → {0,1} is defined as follows. Let the set of terminals K be divided into t subsets of terminals K1, . . . ,Kt .

Given ki
de f
= |Ki | n-bit vectors X i

1 , . . . , X i
ki

∈ {0,1}n for every i ∈ [t], define:

XOR1 ◦ED
(

X 1
1 , . . . , X 1

k1
, . . . , X t

1 , . . . , X t
kt

)

=
t

⊕

i=1

ED
(

X i
1 , . . . , X i

ki

)

.

Now consider the trivial two-step protocol that results in the following upper bound:

Lemma E.7. Choose t terminals ui ∈ Ki for every i ∈ [t]. Then

R(XOR1 ◦ED,G,K , {0,1}n) ≤O

(

ST(G, {u1, . . . ,ut })+
t

∑

i=1

σKi
(G) · log k

)

.

Proof. Using the argument in proof of Proposition 2, with O
(
∑t

i=1 σKi
(G) · logk

)

bits of communication, every ui

knows the value of ED
(

X i
1 , . . . , X i

ki

)

. Then the resulting XOR1 can be computed with O(ST(G, {u1, . . . ,ut }) bits of

communication by progressively computing the XOR1 along the corresponding Steiner tree.

Recall that Theorem 2 shows a nearly matching lower bound. We can have matching lower bound term for

the first term in the sum above from Theorem 9.11 The more interesting part is to prove matching lower bound

for the second term. Towards that end, we will need a result on classical 2-party Set-Disjointness: let UDISJn the

unique-set disjointness problem on 2n bits that has the following promise. Alice and Bob get n-bit strings such

that they have at most one occurrence of an all-one column in their inputs, i.e. their sets have at most one element

in common. They want to find out if their sets intersect. Pair the input bits of Alice and Bob as (X1,Y1), . . . , (Xn ,Yn).

Each pair (Xi ,Yi) is sampled independently from a distribution µ that we describe next. To draw a sample (U ,V)

from µ, we first throw a uniformly random coin D. If D = 0, U is fixed to 0 and V is drawn uniformly at random

from {0,1}. If D = 1, the roles of U and V are reversed. The following result was observed by [11], using the seminal

work of Bar-Yossef et al. [5]:

Theorem 10. Let Π be any 2-party randomized protocol solving UDISJn with bounded error ǫ < 1/2. Then, its ex-

pected communication cost w.r.t. input distribution µn is at least
(

1−2
p
ǫ
)

(n/4).

We are now ready to prove a nearly tight lower bound for the second term in Lemma E.7:

Lemma E.8. For n ≥ log k +2,

R(XOR1 ◦ED,G,K , {0,1}n) ≥Ω

(
∑t

i=1
σKi

(G)

logk

)

.

Proof. We assume for convenience that each |Ki | is even. Consider pairing Mi of nodes in Ki , for each i such that

d(G, Mi)≥ (1/2)·σKi

(

G
)

(such an Mi exists thanks to Lemma C.1). Let M be the multi-set union ∪ℓ
i=1

Mi , with |M | =
k/2 ≡ m. Now for ease of description, we notate the inputs at the pairs of terminals in M as (X1,Y1), . . . , (Xm ,Ym).

We fix the first logk bits of each of the pair of terminals X j ,Y j to a string a j ∈ {0,1}log k such that a j 6= ai for i 6= j .

We call a j the prefix string of its pair. In the ensuing discussion we look at only restricted inputs, where the first

logk bits of the inputs of each terminal are fixed to its respective prefix string. To keep notation simple, we still

notate the unfixed bits of the i th pair in M as (Xi ,Yi).

We now describe the remaining input distribution: Let {s0
x , s0

y , s1} be three distinct strings in {0,1}n′
where

n′ = n − logk. Such three strings exist because of our assumed bound on n. Define auxiliary random variables

D1, . . . ,Dm that are i.i.d and each takes value in {0,1} uniformly at random. Then if Di = 0, set Xi = s0
x and Yi

11Technically, we get a lower bound of Ω(ST(G,K)), which of course implies a lower bound of Ω(ST(G, {u1, . . . ,ut })).

18

takes uniformly at random a value in {s0
y , s1}. If Di = 1, then Yi = s0

y and Xi at random takes value in {s0
x , s1}. This

completes the description of our input distribution that we denote by D.

We will show that we can invoke Lemma E.6 using distribution D. To do so, we analyze the expected commu-

nication cost of any protocol Π solving XOR1 ◦ED on G, across a cut C . Let number of pairs of Mi cut by C be m′
i

and m′ ≡ m′
1 +·· ·+m′

ℓ
. Let KC denote the set of terminals whose mate in M is separated by C . Let KC ≡K \KC .

Consider any assignment α to the terminals in KC that is supported by D and let the induced protocol be denoted

by Πα. We claim that we can solve unique (2-party) set-disjointness over m′ bits using Πα as follows: Alice and

Bob associate each of their co-ordinates with a separated pair in MC . Alice and Bob both replace their 1’s by the

string s1. Alice replaces her 0’s by s0
x and Bob replaces his by s0

y . Then they simulate Πα and communicate to each

other whenever and whatever Πα communicates across C . It is simple to verify that this way Alice and Bob can

solve unique Set-Disjointness: if there is no all-1 column in their input, Πα outputs r mod 2 w.h.p, where r is the

number of Mi ’s that are separated by C . If they do have a (unique) all-1 column, Πα outputs (r −1) mod 2 w.h.p.

Further, the distribution induced on inputs of terminals in KC , when Alice and Bob’s input distribution is sampled

from µm′
(recall definition of µ from Theorem 10), is precisely the distribution D induces on KC , conditioned on

α assigned to inputs in KC .

Thus, by Theorem 10, the expected communication of Πα over the cut edges of C is Ω(m′), for any α. Hence,

expected communication of Π over C is Ω(m′). Corollary 2 and Lemma E.6 complete the proof.

F Omitted Proofs from Section 3.1

F.1 Proof of Theorem 4

We first state a simple property of sub-additive values:

Lemma F.1. Let G = (V ,E) be a tree and let bi (C) for i ∈ [ℓ] be the constraint values for LPU (G) that satisfy the sub-

additive property. For any edge e ∈ E, let Ce denote the cut formed by removing e from G. Then for any cut of G we

have
∑

e∈δ(C)

bi (Ce) ≥ bi (C).

Proof. This follows from the fact that C =∪e∈δ(C)Ce (since G is a tree) and the definition of the sub-additive prop-

erty.

In the rest of this subsection, we will prove Theorem 4. We begin with the upper bound in Theorem 4, which is

trivial.

Lemma F.2. For any graph G,

LPL(G)≤ LPU (G).

Proof. Consider any feasible solution {xi }ℓ
i=1

for LPU (G), where xi = (xi ,e)e∈E . Then note that the vector x = (xe)e∈E

defined as

xe =
ℓ

∑

i=1

xi ,e

is also a feasible solution for LPL(G).

To complete the proof, we now focus on proving the lower bound in Theorem 4. We first begin by observing

that the two LPs are essentially the same when G is a tree:

Lemma F.3. For any tree T = (V ,E) (and values bi (C) for any i ∈ [ℓ] and cut C with the sub-additive property), we

have

LPL(T) = LPU (T).

19

Proof. The proof basically follows by noting that for a tree T , we only need to consider some special cuts. In

particular, for every edge e ∈ E , let Ce denote the cut that only cuts the edge e (In other words, the two sides of the

cut are formed by the two subgraphs obtained by removing e from T).

We first claim that

LPL(T) ≥
∑

e∈E

ℓ
∑

i=1

bi (Ce).

To see this consider any feasible solution x ∈R
E for LPL(T). We have from the constraint on Ce for every e ∈ E that

xe ≥
ℓ

∑

i=1

bi (Ce).

Summing the above over all e ∈ E completes the claim.

Finally, we argue that

LPU (T) ≤
∑

e∈E

ℓ
∑

i=1

bi (Ce),

which with Lemma F.2 will complete the proof. Consider the specific vector {xi }i∈[ℓ] such that for every i ∈ [ℓ] and

e ∈ E , we have

xi ,e = bi (Ce).

Note that the proof will be complete if we can show that the above vector is a feasible solution for LPU (T). Notice

that by the fact that T is a tree the above vector indeed does satisfy all the constraints corresponding to the cuts Ce

for every e ∈ E . Now consider an arbitrary cut C . Indeed we have for every i ∈ [ℓ]:

∑

e∈δ(C)

xi ,e =
∑

e∈δ(C)

bi (Ce) ≥ bi (C),

where the inequality follows from Lemma F.1.

Thus, we are done for the case when G is a tree. For the more general case of a connected graph G, we will just

embed G into one of its sub-tree with a low distortion. This basically follows a similar trick used in [3]. We say a

graph G embeds with a distortion α on to (a distribution D on) its subtrees such that for every (u, v) ∈V , we have

α ·dG (u, v) ≥ ET←D [dT (u, v)]. (Note that for every sub-tree T of G, we have dT (u, v) ≥ dG (u, v).)

We will now prove the following result:

Lemma F.4. Let G = (V ,E) embed into its subtrees under distribution D with distortion α. Then we have

LPL(G) ≥
1

α
·LPU (G).

Proof. Using the embedding trick of [3], we will show that there exists a subtree T of G such that

LPL(T) ≤α ·LPL(G) and LPU (G) ≤ LPU (T).

Note that the above along with Lemma F.3 completes the proof. Further, note that the second inequality in the

above just follows from the fact that T is a sub-tree of G. Hence, to complete the proof we only need to prove the

first inequality.

A word of clarification. When we talk about the constraints in LPL(T) and LPL(G), we have the same bi (C)

value for each cut. However, note that the set δ(C) could be different for G and T .

Towards this end, consider an optimal solution x ∈ R
E for LPL(G). From this, we will construct a feasible solu-

tion x′ ∈R
E for LPL(T) whose expected cost is bounded, i.e.

ET←D

[

∑

e∈E (T)

x′
e

]

≤α ·
∑

e∈E (G)

xe . (4)

Markov’s inequality will then complete the proof.

Finally, we define the solution x′ for LPL(T). Consider the following algorithm (for any given T):

20

1. Initialize x′
e ← 0 for every e ∈ E .

2. For every e = (u, v) ∈E such that xe > 0 do the following

(a) For the unique path Pu,v that connects u and v in T do the following

• For every e ′ ∈ Pu,v , do x′
e′ ← x′

e′ + xe .

We first argue that the vector x′ computed by the algorithm above is a feasible solution to LPL(T). Consider an

arbitrary cut C in G and consider any e = (u, v) ∈ δ(C) such that xe > 0. Now consider the same cut C in T . Note

that in this case there has to be at least one edge e ′ ∈ Pu,v such that e ′ ∈ δ(C) in T . Thus, we have

∑

e′∈δT (C)

x′
e ≥

∑

e∈δG (C):xe>0

xe ≥
ℓ
∑

i=1

bi (C),

where the last inequality follows since x is a feasible solution for LPL(G). Thus, we have shown that x′ is a feasible

solution.

Finally, we prove (4). Note that by the algorithm above, we have

∑

e∈E (T)

x′
e =

∑

e=(u,v)∈E (G)

dT (u, v) ·xe .

Now (4) follows from the above, linearity of expectation and the fact that G embeds with a distortion of α under

D.

It is known that any graph G = (V ,E) can be embedded into a distribution of its subtrees with distortion

O
(

log |V | loglog |V |
)

(see e.g.[2, 1]), which in turn proves Theorem 4.12

Remark 2. It is natural to wonder if one can use embedding of a graph into a distribution of trees (instead of sub-

trees as we do) and not lose the extra log log |V | factor (since for trees one can get a distortion of O(log |V |) [18]). We

do not see how to use this result: in particular, in our proof of Lemma F.4 we do not see how to guarantee that the

vector (x′
e)e∈E (T) satisfies the corresponding LPL(T) constraint. In short, this is because the edges in T for the result

in [18] have weights (say we for every e ∈ E (T)) so we can no longer prove the (stronger) inequality
∑

e′∈δT (C) we ·x′
e ≥

∑

e∈δG (C):xe>0 xe .

F.2 Proof of Lemma E.6

Proof of Lemma E.6. The inequality LPL(G) ≤ LPU (G) follows from Lemma F.2.

We begin with the last inequality. Towards this end we present a feasible solution for LPU (G). Fix an i ∈ [ℓ].

Now consider the following algorithm to compute xi ,e for e ∈E :

• xi ,e ← 0 for every e ∈ E .

• For every (u, v) ∈ Mi , let Pu,v be a shortest path from u to v in G. For every e ∈ Pu,v , do xi ,e ← xi ,e +1.

It is easy to check that the vector computed above satisfies
∑

e∈E xi ,e = d(G, Mi) ≤O(σKi
(G)) (where the inequality

follows from our choice of Mi). Now consider any cut C . For every pair (u, v) ∈ Mi that is cut by C , the chosen path

Pu,v will cross C at least once. This implies that the vector (xi ,e) satisfies all the relevant constraints. This implies

the claimed upper bound of LPU (G)≤O
(
∑ℓ

i=1 σKi
(G)

)

.

We finally, argue the first inequality. We first note that LPL(G) is exactly the same as LPMTCH(G,K , M) (where

M is the (multi-set) union of M1, . . . , Mℓ). Thus, we have

LPL(G) = LPMTCH(G,K , M) ≥Ω

(

d(G, M)

log k

)

=Ω

(
∑ℓ

i=1 d(G, Mi)

logk

)

≥Ω

(
∑ℓ

i=1 σKi
(G)

logk

)

,

12The result in [2] is not stated as distribution over sub-trees but rather the paper presents a deterministic algorithm to compute a tree T that

has low weighted average stretch. In our application, this means that the algorithm can compute a tree T such that given weight xe for e ∈ E(G),

it is true that
∑

e=(u,v)∈E (G) dT (u,v)xe ≤α ·
∑

e∈E (G) xe , which is enough for the rest of our proof to go through.

21

where the first inequality follows from Lemma 8 (and noting that its proof also works for the case when M is a multi-

set), the second equality follows from the fact that M is the multi-set union of M1, . . . , Mt and the last inequality

follows from our choices of Mi . This completes the proof.

F.3 Relating Communication Complexity Lower Bounds to LPL(G)

We now make the straightforward connection between two party lower bounds and LPL(G). In what follows con-

sider a problem p = (f ,G,K ,Σ). Further for any cut C in graph G, we will denote by fC the two-party problem

induced by the cut: i.e. Alice gets all the inputs from terminals in K that are on one side of the cut and Bob gets

the rest of the inputs. Finally, for a distribution µ over ΣK let µC be the induced distribution on the inputs on two

sides of the cut.

Lemma F.5. Let p = (f ,G,K ,Σ) be a problem and µ be a distribution on Σ
K such that the following holds for every

cut C in G

D1/3,µC (fC) ≥
ℓ

∑

i=1

bi (C), 13 (5)

then the following lower bound holds

R(p) ≥ LPL(G).

Proof. Let Π be an arbitrary protocol that correctly solves the problem p = (f ,G,K ,Σ) with error at most ǫ = 1/3.

For a given input Y ∈Σ
K , let ce (Y ,Π) denote the total amount of bits communicated over the edge e ∈ E (G) for the

input Y . For every e ∈E (G), define

xe = EY ←µ [ce (Y ,Π)] .

Note that by linearity of expectation
∑

e∈E (G) xe denotes the expected cost of Π on p. Further, if we can show that

the vector x = (xe)e∈E (G) as defined above is a feasible solution for LPL(G), then the expected communication cost

of Π will be lower bounded by LPL(G). The claim then follows since we chose Π arbitrarily.

To complete the proof, we need to show that x satisfies all the constraints. It follows from definition that xe ≥ 0

for every e ∈ E (G). Thus, to complete the proof we need to show that for every cut C

∑

e∈δ(C)

xe ≥
ℓ
∑

i=1

bi (C). (6)

Towards this end fix an arbitrary cut C and consider the following protocol ΠC for the induced two-party function

fC . Alice runs Π by herself as long as Π only uses messages on edges on Alice’s side of the cut C . If Π needs to send

a message over δ(C), then Alice sends the corresponding message to Bob. Bob then takes over and does the same.

ΠC terminates when Π terminates. It is easy to check that ΠC is a correct protocol for fC and errs with probability

at most ǫ. Further, the total communication for ΠC for an input Y ∈Σ
K is exactly

∑

e∈δ(C)

ce (Y ,Π).

Thus, by linearity of expectation, the expected cost of ΠC under µC is
∑

e∈δ(C) xe . This along with (5) proves (6), as

desired.

The above immediately implies the following corollary:

Corollary 2. Let p = (f ,G,K ,Σ) be a problem and µ be a distribution on Σ
K such that the following holds for every

cut C in G

D1/3,µC (fC) ≥α ·
(

ℓ
∑

i=1

bi (C)

)

,

for some value α> 0 then the following lower bound holds

R(p) ≥α ·LPL(G).

13For a two party function f and a distribution µ on the inputs of f , we will use Dǫ,µ(f) to denote the minimum expected communication

cost over the distribution µ for the worst-case inputs over all protocols that compute f with probability at least 1−ǫ on every input.

22

Next, we show we can use Corollary 2 to reprove the following lower bound on the ED function:

Theorem 11 ([11]).

R(ED,G,K , {0,1}n) ≥Ω

(

σK (G)

logk

)

.

Proof. Let µ be the distribution that picks k random vectors without replacement from {0,1}n . It was shown in [11]

that for for every cut C of G, we have D1/3,µC (EDC) ≥Ω(min(|C |, |K \C |). The claim then follows from Corollary 2

(for ℓ= 1), Theorem 7 and noting that with the constraints above LPL(G) is the same as LPMDN(G,K).

G Proof of Theorem 5

G.1 A collection of multi-way cuts

We will consider multi-way cuts of a graph G = (V ,E). For our purposes a multi-way cut C of G is a partition of V

into at least two sets. For notational convenience, we will list all but one set of a multi-way cut C : i.e. the “missing"

set will be implicitly defined by the set V \∪S∈C S. Just for concreteness, we will call the sets explicitly mentioned

in C is explicit sets and the missing set to be the implicit set. (Note that this implies that the size of a multi-cut |C |
is the number of explicit sets in C .) Also δ(C) denotes the set of cut-edges of C : i.e. the set of edges that have one

end point in one explicit set of C and the other end point in another set (explicit or implicit) of C .

Given two multi-way cuts C and C ′ of G, we say that C is contained in C ′ is every explicit set of C ′ is the union

of one or more explicit set of C (and maybe some extra elements from the implicit set of C).

We now define a family of collection of multi-way cuts that will be useful in proving our lower bounds.

Definition 1. We call a family of collection of multi-way cuts C1, . . . ,Cℓ to be (ℓ,α)-multicut family for G if the

following is true for every i ∈ [ℓ]. (For every i ∈ [ℓ], let Ci = {C (1)
i

, . . . ,C
(mi)
i

}, where each C
(j)

i
is a multi-way cut for G.)

(i) (Containment property) For every 1 ≤ j < mi , C
(j)

i
is contained in C

(j+1)

i
.

(ii) (Disjointness property) For every 1 ≤ j1 6= j2 ≤ mi , δ
(

C
(j1)

i

)

and δ
(

C
(j1)

i

)

are disjoint.

(iii) (Singleton property) Call an explicit set S in C
(j)

i
for any j ∈ [mi] to be singleton if S contains exactly one set

from C (1)
i

. Then C
(mi)
i

has at least α ·
∣

∣

∣C
(1)
i

∣

∣

∣ singleton explicit sets.

G.2 Multicut family to a lower bound

Next we show how an (ℓ,α)-multicut family implies a lower bound for certain functions. We begin with the specific

class of functions.

Recall that f : ΣK → {0,1} is h-maximally hard on the star graph if the following holds for any multicut C of K .

There exists a distribution µ
f

C
such that the expected cost (under µ

f

C
) of any protocol that correctly computes f

on any star graph where each of the leaves has terminals from an explicit set from C (and the center contains the

implicit set of C) is Ω(|C | ·h(|Σ|)).

Lemma G.1. Let C be an (ℓ,α)-multicut family for G such that every (explicit) set in C (1)
1 has at least one terminal

from K in it and let f :ΣK → {0,1} be an h-maximally hard on the star graph function. Then

R(f ,G,K ,Σ) ≥Ω

(

α ·h(|Σ|)
ℓ · log k

·
ℓ
∑

i=1

mi ·
∣

∣

∣C
(1)
i

∣

∣

∣

)

.

Proof. Fix an i ∈ [ℓ]. We will define a hard distribution µi for terminals in K such that the expected cost of com-

munication over all the crossing edges in the multi-way cuts in Ci for any correct protocol will be

Ω

(

1

logk
·α ·h(|Σ|) ·mi ·

∣

∣

∣C
(1)
i

∣

∣

∣

)

. (7)

23

Note that by picking the final hard distribution µ= 1
ℓ

∑ℓ
i=1

µi , will complete the proof.

To complete the proof, we argue (7). Let s be the number of singleton sets in C
(mi)
i

. Then by the containment

property of C , this implies that there exist explicit sets T1, . . . ,Ts ∈ C (1)
1 such that for every 1 < j ≤ [mi], C

(j)

i
has

s singleton sets that contain T1, . . . ,Ts respectively. We then let µi be µ
f

{T1 ,...,Ts }
, where we think of {T1, . . . ,Ts } as a

multicut on K .

By the definition of µ
f

{T1 ,...,Ts }
, we get that the expected amount of communication on the cut edges δ

(

C
(j)

i

)

(for

any j ∈ [mi]) is Ω(sh(|Σ|)/ log k).14 Since the cut edge sets are disjoint for any two cuts C
(j1)

i
and C

(j2)

i
, by linearity of

expectation, the expected cost over all edges in ∪mi

j=1
δ

(

C
(j)

i

)

is Ω(smi h(|Σ|)/ log k). The proof is complete by noting

that the Singleton property of C implies that s ≥α ·
∣

∣

∣C
(1)
i

∣

∣

∣.

G.3 Constructing the multicut family

The main result in this section is to show that we can construct a good multicut family.

Lemma G.2. For any given instance (G,K) there exists an (ℓ = O(logk),α = 1/3)-multicut family for G such that

C (1)
1 = {{i }|i ∈ K }: i.e. all the explicit sets in C (1)

1 just contain one terminal from K . Further, we have

ℓ
∑

i=1

mi
∑

j=1

∣

∣

∣C
(j)

i

∣

∣

∣≥Ω(ST(G,K)) .

Note that Lemmas G.1 and G.2 prove Theorem 5.

In the rest of the section, we prove Lemma G.2. We will in fact first define a collection of multi-way cuts

C1, . . . ,Ct for some t ≥ 1 such that they satisfy the containment and disjointness properties in Definition 1 for

ℓ = 1 (but not necessarily the singleton property). Further, these cuts satisfy the two extra properties needed in

Lemma G.2. Finally, we will show how to divide the collection of multicuts into O(logk) sub-collections so that the

new family is actually an (O(logk),1/3)-multicut family for G (without losing the other desired properties).

We start with a notation that will help us define our multi-way cut family. For any non-empty subset S ⊆V , let

BG (S,r) denote the set of all vertices in G with a (shortest path) distance of at most r from some node in S. More

precisely:

BG (S,r)= {u ∈V | there exists a w ∈ S such that dG (u, w) ≤ r } .

We will define the multicuts C1, . . . ,Ct by defining a partition of K for each i ∈ [t]: let us call the i th partition

Si . Given the partition Si , the definition of the multicut Ci is simple: there is one explicit set in Ci corresponding

to each S ∈Si . In particular, for every S ∈Si , we have

Ci = {BG (S, i −1)|S ∈Si },

where recall we only state the explicit sets in the multi-way cut Ci .

Thus, to complete the descriptions of the multi-way cuts, it is enough to show how to compute Si . S1 is defined

to be the partition of K into the k singleton sets {i } (for every i ∈K). To compute Si+1 from Si we first construct a

graph G ′
i

which has one node for every S ∈Si . Add an edge (S,T) for T 6= S ∈Si in G ′
i

if BG (S, i) intersects BG (T, i).

For each connected component in G ′
i
, add the union of all sets from Si in the connected component as one set in

Si+1 . Note that it is possible that Si+1 =Si . The last index t is defined as the smallest index such that |St+1| = 1.

Note that the containment and disjointness properties of the multi-way cuts C1, . . . ,Ct follow from construc-

tion. Further, by definition, all the explicit sets in C1 contains exactly one terminal from K . Next we argue that

Lemma G.3.
t

∑

i=1

|Ci | ≥
1

2
·ST(G,K).

14The definition implies a lower bound on a star but it is easy to see that any protocol on any connected graph can be simulated on a star

graph with only a O(logk) blowup in the total communication. In particular, consider the following simulation. When a message needs to be

sent from one of the k nodes u to another v, the leaf corresponding to u in the k-star uses O(logk) bits to identify the leaf corresponding to v

to the center so that the center can relay the original message from u to v.

24

Proof. Let Ḡ denote the complete graph on the vertex set K , where the edge (u, v) in Ḡ has a cost of dG (u, v). Let

T (Ḡ) denote an MST of Ḡ. It is easy to see the cost of T (Ḡ) (denoted by COST(T (Ḡ))) is at least ST(G,K). Next we

argue that
∑t

i=1
|Ci | is at least half of the cost of T (Ḡ), which would complete the proof.

Intuitively, the argument about the cost of T (Ḡ) is essentially that our algorithm to compute the various Si

simulates a run of Boru̇vka’s algorithm [33] for computing an MST of Ḡ.

We will now prove the result by induction on k
def= |K |. When k = 2, then it is easy to see that

∑t
i=1

|Ci | ≥
COST(T (Ḡ))−1 ≥ COST(T (Ḡ))/2, as desired.15 Let us assume that the claim is true for all K with |K | = k ≥ 2.

Next consider the case when |K | = k+1. Let i be the smallest index where the graph G ′
i−1

has at most k compo-

nents (i.e. this is the first i such that at least two singletons sets from Si−1 are merged when computing Si). Let G ′

denote the graph where we collapse all nodes in Ci into “super-nodes" and let K ′ denote the corresponding set of

terminals in G ′: i.e. K ′ is in one to one correspondence with Si . Let C ′
1, . . . ,C ′

t ′ denote the cuts defined if our algo-

rithm ran on G ′ and K ′. We claim two properties: (i)
∑t

i=1
|Ci |−

∑t ′

j=1
|C ′

j
| = (k+1) ·(i −1) and (ii) the corresponding

graph16 Ḡ ′ has its MST cost (denoted by COST(T (Ḡ ′))) to be at least COST(T (G))−2k(i −1). Note that claims (i) and

(ii) complete the inductive step of the proof.17 To complete the proof, we argue these two claims.

We begin with claim (i). We first note that the multi-way cut C ′
j

(for j ∈ [t ′]) is in one to one correspondence18

with Ci+ j−1. In particular, we have |C ′
j
| = |Ci+ j−1|. The claim then follows by noting that all Sℓ =S1 for ℓ< i (and

hence
∑i−1

ℓ=1
|Cℓ| = (k +1)(i −1)).

We finish by arguing claim (ii). The main observation is that T (Ḡ) can be obtained by starting with T (Ḡ ′) and

then replacing each super node in T (Ḡ ′) by a spanning tree of the corresponding component of G ′
i−1

(recall that

each super node in K ′ is constructed by collapsing a component in G ′
i−1

of size at least two). To complete the

claim, we need to track the changes in edge weights. We first note that the cost of edges in Ḡ ′ is smaller than the

corresponding edge in Ḡ by exactly 2(i −1). Second, each edge added back for each super node in K ′ has cost at

most 2(i −1). This implies that

COST(T (Ḡ))−COST(Ḡ ′) =
(

|K ′|−1
)

·2(i −1)+
(

|K |− |K ′|
)

·2(i −1) ≤ 2k(i −1),

as desired.

Note that now we have shown an (1,1/k)-multicut family that satisfies all the other conditions in Lemma G.2.

We now present a simple way to convert this into an (O(logk),1/3)-multicut family. In particular, we will group

ℓ = O(logk) consecutive chunks of multi-way cuts from C1, . . . ,Ct to obtain our final family C1, . . . ,Cℓ. We first

show how we compute C1. Let j be the largest index in [t] such that S j has at least k/3 singleton sets. Then

C1 = {C1, . . . ,C j }. Now note that |S j+1| ≤ 2k/3 (because it has at most k/3 singleton sets and the rest in the worst-

case might form subset of size 2). We now re-start the process from C j+1, where we think of S j+1 as the set of

terminals. If this process stops in ℓ steps note that this results in an (ℓ,1/3)-multicut family. Recall that once we

go from Ci to constructing Ci+1, the number of terminals decreases by a factor of at least 3/2. This in turn implies

that ℓ=O(logk), as desired.

15The inequality holds as long as COST(T (Ḡ)) ≥ 2. If COST(T (Ḡ)) = 1, then note that Ḡ is just a unit cost edge with the two end points being the

two terminals. Note that in this case |C1| = 1 and hence the inequality
∑t

i=1
|Ci | ≥ COST(T (Ḡ))/2 still holds as required.

16In particular, Ḡ ′ is a complete graph on Si and the cost of an edge (u′,v ′) is dG (u′,v ′)−2(i −1), where dG (u′,v ′) is the distance between

the closest pairs of terminals in u′ and v ′ (recall that u′ and v ′ correspond to disjoint subsets of K).
17It can be verified that our construction of Ci , . . . ,Ct on G corresponds to running our algorithm on G ′ with the terminal set K ′. This implies

(e.g. by induction) that
∑t ′

j=i
|C ′

j
| ≥ COST(T (Ḡ ′))/2. Hence by (i) we have

∑t
i=1

|Ci | ≥ (k+1)(i−1)+COST(T (Ḡ ′))/2 ≥ (k+1)(i−1)+COST(T (G))/2−
k(i −1) ≥ COST(T (G))/2+ (i −1) ≥ COST(T (G))/2, where the second inequality follows from (ii).

18This follows by our earlier observation that we can think of the construction of Ci , . . . ,Ct as running our algorithm on G ′ with the terminal

set being K ′.

25

	1 Introduction
	2 Our Results
	3 Key Technical Results and Our Techniques
	3.1 A Result on Two LPs
	3.1.1 Proof Overview

	3.2 From Star to Steiner Trees
	3.2.1 Proof Overview

	4 Open Questions
	A Related Work in Distributed Computing
	B Communcation Complexity Lower Bounds via LPs
	C More Details on Graph Parameters
	D Sub-additivity Property
	E Applications
	E.1 Lower Bound For Every Function
	E.2 Bounds for DISJ
	E.3 Composed Functions
	E.3.1 Bounds for EDXORn
	E.3.2 Bounds for XORIP
	E.3.3 Bounds for XORED

	F Omitted Proofs from Section ??
	F.1 Proof of Theorem ??
	F.2 Proof of Lemma ??
	F.3 Relating Communication Complexity Lower Bounds to LPL(G)

	G Proof of Theorem ??
	G.1 A collection of multi-way cuts
	G.2 Multicut family to a lower bound
	G.3 Constructing the multicut family

