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On the diameter of hyperbolic random graphs
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Abstract Large real-world networks are typically scale-free. Recent re-
search has shown that such graphs are described best in a geometric
space. More precisely, the internet can be mapped to a hyperbolic space
such that geometric greedy routing performs close to optimal (Boguná,
Papadopoulos, and Krioukov. Nature Communications, 1:62, 2010). This
observation pushed the interest in hyperbolic networks as a natural
model for scale-free networks. Hyperbolic random graphs follow a power-
law degree distribution with controllable exponent β and show high clus-
tering (Gugelmann, Panagiotou, and Peter. ICALP, pp. 573–585, 2012).

For understanding the structure of the resulting graphs and for
analyzing the behavior of network algorithms, the next question is
bounding the size of the diameter. The only known explicit bound is
O((log n)32/((3−β)(5−β))+1) (Kiwi and Mitsche. ANALCO, pp. 26–39,
2015). We present two much simpler proofs for an improved upper bound
of O((log n)2/(3−β)) and a lower bound of Ω(logn).

1 Introduction

Large real-world networks are almost always sparse and non-regular. Their de-
gree distribution typically follows a power law, which is synonymously used for
being scale-free. Since the 1960’s, large networks have been studied in detail
and hundreds of models were suggested. In the past few years, a new line of
research emerged, which showed that scale-free networks can be modeled more
realistically when incorporating geometry.

Euclidean random graphs. It is not new to study graphs in a geometric
space. In fact, graphs with Euclidean geometry have been studied intensively for
more than a decade. The standard Euclidean model are random geometric graphs
which result from placing n nodes independently and uniformly at random on
an Euclidean space, and creating edges between pairs of nodes if and only if
their distance is at most some fixed threshold r. These graphs have been studied
in relation to subjects such as cluster analysis, statistical physics, hypothesis
testing, and wireless sensor networks [22]. The resulting graphs are more or
less regular and hence do not show a scale-free behavior with power-law degree
distribution as observed in large real-world graphs.

Hyperbolic random graphs. For modeling scale-free graphs, it is natural
to apply a non-Euclidean geometry with negative curvature. Krioukov et al.
[19] introduced a new graph model based on hyperbolic geometry. Similar to
euclidean random graphs, nodes are uniformly distributed in a hyperbolic space

http://arxiv.org/abs/1512.00184v1
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Random Graph Model Diameter

Sparse Erdős-Rényi [6] Θ(log n) [23]

d-dim. Euclidean [22] Θ(n1/d) [15]
Watts-Strogatz [25] Θ(log n) [7]
Kleinberg [18] Θ(log n) [20]

Chung-Lu [10] Θ(log n) [10]
Pref. Attachment [2] Θ(log logn) [11]

Hyperbolic [19] O((log n)
32

(3−β)(5−β)
+1) [17]

power-law graphs

Table 1: Known diameter bounds for various random graphs. In all cases the diameter
depends on the choice of the model parameters. Here we consider a constant average
degree. For scale-free networks, we also assume a power law exponent 2 < β < 3.1

and two nodes are connected if their hyperbolic distance is small. The resulting
graphs have many properties observed in large real-world networks. This was
impressively demonstrated by Boguná et al. [5]: They computed a maximum
likelihood fit of the internet graph in the hyperbolic space and showed that
greedy routing in this hyperbolic space finds nearly optimal shortest paths in
the internet graph. The quality of this embedding is an indication that hyperbolic
geometry naturally appears in large scale-free graphs.

Known properties. A number of properties of hyperbolic random graphs
have been studied. Gugelmann et al. [16] compute exact asymptotic expressions
for the expected number of vertices of degree k and prove a constant lower bound
for the clustering coefficient. They confirm that the clustering is non-vanishing
and that the degree sequence follows a power-law distribution with controllable
exponent β. For 2 < β < 3, the hyperbolic random graph has a giant component
of size Ω(n) [3, 4], similar to other scale-free networks like Chung-Lu [10]. Other
studied properties include the clique number [14], bootstrap percolation [9]; as
well as algorithms for efficient generation of hyperbolic random graphs [24] and
efficient embedding of real networks in the hyperbolic plane [21].

Diameter. The diameter, the length of the longest shortest path, is a fun-
damental property of a network. It also sets a worst-case lower bound on the
number of steps required for all communication processes on the graph. In con-
trast to the average distance, it is determined by a single—atypical—long path.
Due to this sensitivity to small changes, it is notoriously hard to analyze. Even
subtle changes to the graph model can make an exponential difference in the di-
ameter, as can be seen when comparing Chung-Lu (CL) random graphs [10] and
Preferential Attachment (PA) graphs [2] in the considered range of the power
law exponent 2 < β < 3: On the one hand, we can embed a CL graph in the
PA graph and they behave effectively the same [12]; on the other hand, the di-
ameter of CL graphs is Θ(log n) [10] while for PA graphs it is Θ(log logn) [11].
Table 1 provides an overview over existing results. It was open so far how the

1 Note that the table therefore refers to a non-standard Preferential Attachment ver-
sion with adjustable power law exponent 2 < β < 3 (normally, β = 3).
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diameter of hyperbolic random graphs compares to the aforementioned bounds
for other scale-free graph models. The only known results for their diameter are

O((log n)
32

(3−β)(5−β)
+1) by Kiwi and Mitsche [17], and a polylogarithm with no

explicit constant by Bringmann, Keusch, and Lengler [8].
Our contribution. We improve upon the previous results as described by

the following theorems. First, we present a much simpler proof which also shows
polylogarithmic upper bound for the diameter, but with a better (i.e. smaller)
exponent.2

Theorem 1. Let 2 < β < 3. The diameter of the giant component in the hyper-

bolic random graph G(n, α, C) is O((log n)
2

3−β ) with probability 1−O(n−3/2).

The proof of Theorem 1 is presented in Section 3. For a lower bound on the
diameter, we prove the following theorem.

Theorem 2. Let 2 < β < 3. Then, the diameter of the giant component in the
hyperbolic random graph G(n, α, C) is Ω(log n) with probability 1− n−Ω(1).

We point out that although we prove all diameter bounds on the giant com-
ponent, our proofs will make apparent that the giant component is in fact the
component with the largest diameter in the graph.

2 Notation and Preliminaries

In this section, we briefly introduce hyperbolic random graphs. Although this
paper is self-contained, we recommend to a reader who is unfamiliar with the
notion of hyperbolic random graphs the more thorough investigations [16, 19].

Let H2 be the hyperbolic plane. Following [19], we use the native representa-
tion; in which a point v ∈ H2 is represented by polar coordinates (rv, ϕv); and
rv is the hyperbolic distance of v to the origin.3

To construct a hyperbolic random graph G(n, α, C), consider now a circle Dn

with radius R = 2 lnn+C that is centered at the origin of H2. InsideDn, n points
are distributed independently as follows. For each point v, draw ϕv uniformly at
random from [0, 2π), and draw rv according to the probability density function

ρ(r) :=
α sinh(αr)

cosh(αR)− 1
≈ αeα(r−R).

Next, connect two points u, v if their hyperbolic distance is at most R, i.e. if

d(u, v) := cosh−1(cosh(ru) cosh(rv)− sinh(ru) sinh(rv) cos(∆ϕu,v)) 6 R. (1)

2 The conference version of this paper [13] also contained an incorrect proof of a
logarithmic upper bound on the diameter for small average degrees. In particular,
Lemma 14 contained a mistake where the expected value was taken over probabilities
pi that did not add up to 1. It is an open problem to close the gap between the
polylogarithmic upper and logarithmic lower bound.

3 Note that this seemingly trivial fact does not hold for conventional models (e.g.
Poincaré halfplane) for the hyperbolic plane.
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By ∆ϕu,v we describe the small relative angle between two nodes u, v, i.e.
∆ϕu,v := cos−1(cos(ϕu − ϕv)) 6 π.

This results in a graph whose degree distribution follows a power law with
exponent β = 2α+ 1, if α > 1

2 , and β = 2 otherwise [16]. Since most real-world
networks have been shown to have a power law exponent 2 < β < 3, we assume
throughout the paper that 1

2 < α < 1. Gugelmann et al. [16] proved that the

average degree in this model is then δ = (1 + o(1)) 2α2e−C/2

π(α−1/2)2 .

We now present a handful of Lemmas useful for analyzing the hyperbolic
random graph. Most of them are taken from [16]. We begin by an upper bound
for the angular distance between two connected nodes. Consider two nodes with
radial coordinates r, y. Denote by θr(y) the maximal radial distance such that
these two nodes are connected. By equation (1),

θr(y) = arccos

(

cosh(y) cosh(r) − cosh(R)

sinh(y) sinh(r)

)

. (2)

This terse expression is closely approximated by the following Lemma.

Lemma 3 ([16]). Let 0 6 r 6 R and y > R− r. Then,

θr(y) = θy(r) = 2e
R−r−y

2 (1 ±Θ(eR−r−y)).

For most computations on hyperbolic random graphs, we need expressions
for the probability that a sampled point falls into a certain area. To this end,
Gugelmann et al. [16] define the probability measure of a set S ⊆ Dn as

µ(S) :=

∫

S

f(y) dy,

where f(r) is the probability mass of a point p = (r, ϕ) given by f(r) := ρ(r)
2π =

α sinh(αr)
2π(cosh(αR)−1) . We further define the ball with radius x around a point (r, ϕ) as

Br,ϕ(x) := {(r′, ϕ′) | d((r′, ϕ′), (r, ϕ)) 6 x}.

We write Br(x) for Br,0(x). Note that Dn = B0(R). Using these definitions, we
can formulate the following Lemma.

Lemma 4 ([16, 17]). For any 0 6 r 6 R we have

µ(B0(r)) = e−α(R−r)(1 + o(1)) (3)

µ(Br(R) ∩B0(R−m)) = 2α
π(α−1/2) · e

−αm−
1
2 (r−m) +O(e−αr) (4)

Since we often argue over sequences of nodes on a path, we say that a node v
is between two nodes u,w, if ∆ϕu,v + ∆ϕv,w = ∆ϕu,w. Recall that ∆ϕu,v 6 π
describes the small angle between u and v. E.g., if u = (r1, 0), v = (r2,

π
2 ), w =

(r3, π), then v lies between u and w. However, w does not lie between u and v
as ∆ϕu,v = π/2 but ∆ϕu,w +∆ϕw,v = 3

4π.
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Finally, we define the area BI := B0(R − logR
1−α − c) as the inner band, and

BO := Dn \BI as the outer band, where c ∈ R is a large enough constant.

The Poisson Point Process. We often want to argue about the probability
that an area S ⊆ Dn contains one or more nodes. To this end, we usually apply
the simple formula

Pr[∃v ∈ S] = 1− (1− µ(S))n > 1− exp(−n · µ(S)). (5)

Unfortunately, this formula significantly complicates once the positions of some
nodes are already known. This introduces conditions on Pr[∃v ∈ S] which can be
hard to grasp analytically. To circumvent this problem, we use a Poisson point
process Pn [22] which describes a different way of distributing nodes inside Dn.
It is fully characterized by the following two properties:

• If two areas S, S′ are disjoint, then the number of nodes that fall within S
and S′ are independent random variables.

• The expected number of points that fall within S is
∫

S
nµ(S).

One can show that these properties imply that the number of nodes inside S
follows a Poisson distribution with mean nµ(S). In particular, we obtain that
the number of nodes |Pn| inside Dn is distributed as Po(n), i.e. E[|Pn|] = n, and

Pr(|Pn| = n) =
e−nnn

n!
= Θ(n−1/2).

Let the random variable G(Pn, n, α, C) denote the resulting graph when using
the Poisson point process to distribute nodes inside Dn. Since it holds

Pr[G(Pn, n, α, C) = G | |Pn| = n] = Pr[G(n, α, C) = G],

we have that every property p with Pr[p(G(Pn, n, α, C))] 6 O(n−c) holds for the

hyperbolic random graphs with probability Pr[p(G(n, α, C))] 6 O(n
1
2−c).

We explicitly state whenever we use the Poisson point process G(Pn, n, α, C)
instead of the normal hyperbolic random graph G(n, α, C). In particular, we can
use a matching expression for equation (5): Pr[∃v ∈ S] = 1− exp(−n · µ(S)).

3 Polylogarithmic Upper Bound

As an introduction to the main proof, we first show a simple polylogarithmic
upper bound on the diameter of the hyperbolic random graph. We start by
investigating nodes in the inner band BI and show that they are connected by
a path of at most O(log logn) nodes. We prove this by partitioning Dn into
R layers of constant thickness 1. Then, a node in layer i has radial coordinate
∈ (R − i, R− i+ 1]. We denote the layer i by Li := B0(R − i+ 1) \B0(R − i).

Lemma 5. Let 1 6 i, j 6 R/2, and consider two nodes v ∈ Li, w ∈ Lj. Then,

2

e
e

i+j−R
2 (1 −Θ(ei+j−R)) 6 θru(rv) 6 2e

i+j−R
2 (1 +Θ(ei+j−R)),
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Furthermore, we have µ(Lj ∩BR(v)) = Θ(e−αj+ i+j−R
2 ), and, if (i+ j)/R < 1−ε

for some constant ε > 0, we have for large n

1

e
e−αj+ i+j−R

2 6 µ(Lj ∩BR(v)) 6 4e−αj+ i+j−R
2 .

Proof. The statements follow directly from Lemmas 3 and 4 and the fact that
we have R− i < rv 6 R− i+ 1 for a node v ∈ Li.

Using Lemma 5, we can now prove that a node v ∈ BI has a path of length
O(log logn) that leads to B0(R/2). Recall that the inner band was defined as
BI := B0(R− logR

1−α − c), where c is a large enough constant.

Lemma 6. Consider a node v in layer i. With probability 1−O(n−3) it holds

1. if i ∈ [ logR
1−α + c, 2 logR

1−α + c], then v has a neighbor in layer Li+1, and

2. if i ∈ [ 2 logR
1−α + c, R/2], then v has a neighbor in layer Lj for j = α

2α−1 i.

Proof. The probability that node v ∈ Li does not contain a neighbor in Li+1 is

(1−Θ(e−α(i+1)+i+ 1−R
2 ))n 6 exp(−Θ(1) · elogR+c(1−α)).

Since R = 2 logn + C and c is a large enough constant, this proves part (1) of
the claim. An analogous argument shows part (2).

Lemma 6 shows that there exists a path of length O(log logn) from each node
v ∈ BI to some node u ∈ B0(R− 2 logR

1−α −c). Similarly, from u there exists a path
of length O(log logn) to B0(R/2) with high probability. Since we know that the
nodes in B0(R/2) form a clique by the triangle inequality, we therefore obtain
that all nodes in BI form a connected component with diameter O(log log n).

Corollary 7. Let 1
2 < α < 1. With probability 1−O(n−3), all nodes u, v ∈ BI

in the hyperbolic random graph are connected by a path of length O(log logn).

3.1 Outer Band

By Corollary 7, we obtain that the diameter of the graph induced by nodes in
BI is at most O(log log n). In this section, we show that each component in BO

has a polylogarithmic diameter. Then, one can easily conclude that the overall
diameter of the giant component is polylogarithmic, since all nodes in B0(R/2)
belong to the giant component [4]. We begin by presenting one of the crucial
Lemmas in this paper that will often be reused.

Lemma 8. Let u, v, w ∈ V be nodes such that v lies between u and w, and let
{u,w} ∈ E. If rv 6 ru and rv 6 rw, then v is connected to both u and w. If
rv 6 ru but rv > rw, then v is at least connected to w.

Proof. By [4, Lemma 5.28], we know that if two nodes (r1, ϕ1), (r2, ϕ2) are con-
nected, then so are (r′1, ϕ1), (r

′

2, ϕ2) where r1 6 r′1 and r′2 6 r2. Since the distance
between nodes is monotone in the relative angle ∆ϕ, this proves the first part
of the claim. The second part can be proven by an analogous argument.
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For convenience, we say that an edge {u,w} passes under v if one of the
requirements of Lemma 8 is fulfilled. Using this, we are ready to show Theo-
rem 1. In this argument, we investigate the angular distance a path can at most
traverse until it passes under a node in BI . By Lemma 8, we then have with
high probability a short path to the center B0(R/2) of the graph.

(Proof of Theorem 1). Partition the hyperbolic disc into n disjoint sectors of
equal angle Θ(1/n). The probability that k consecutive sectors contain no node
in BI is

(1−Θ(k/n) · µ(B0(R− logR
1−α − c)))n 6 exp(−Θ(1) · k · e−α logR/(1−α))

= exp(−Θ(1) · k · (logn)−
α

1−α ).

Hence, we know that with probability 1 − O(n−3), there are no k :=

Θ((log n)
1

1−α ) such consecutive sectors. By a Chernoff bound, the number of

nodes in k such consecutive sectors is Θ((log n)
1

1−α ) with probability 1−O(n−3).
Applying a union bound, we get that with probability 1−O(n−2), every sequence
of k consecutive sectors contains at least one node in BI and at most Θ(k) nodes
in total. Consider now a node v ∈ BO that belongs to the giant component. Then,
there must exist a path from v to some node u ∈ BI . By Lemma 8, this path can
visit at most k sectors—and therefore use at most Θ(k) nodes—before reach-
ing u. From u, there is a path of length O(log logn) to the center B0(R/2) of
the hyperbolic disc by Corollary 7. Since this holds for all nodes, and the center

forms a clique, the diameter is therefore O((log n)
1

1−α ) = O((log n)
2

3−β ).

From the proof it follows that every component inhabiting Ω((log n)
1

1−α )
sectors is connected to the center. We derive the following Corollary.

Corollary 9. Let 2 < β < 3. The second largest component of the hyperbolic

random graph is of size at most O((log n)
2

3−β ) with probability 1−O(n−3/2).

These bounds improves upon the results in [17] who show an upper bound of

O((log n)
32

(3−β)(5−β)+1) on the diameter and O((log n)
64

(3−β)(5−β) +1) on the second
largest component. As we will see in Theorem 2, however, the lower bound on
the diameter is only Ω(logn). It is an open problem to bridge this gap.

4 Logarithmic Lower Bound

Kiwi and Mitsche [17] provide a proof for the existence of a path component
of length Θ(log n) with high probability. In this section, we show a stronger
statement, namely that the largest component has a diameter of Ω(log n). This
proves the intuition that the component with the largest diameter is in fact the
giant component, which is not obvious a priori.
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Proof of Theorem 2. Let ε := (12 − 1
4α ). Observe that for 1

2 < α < 1, we have
0 < ε < 1

4 . Consider the model G(n, α, C), i.e. not the Poisson point process.
With high probability, there are no nodes in B0(εR):

Pr[B0(εR) = ∅] = exp(−Θ(1) · eR/2 · e−(α
2 + 1

4 )R))

= 1−Θ(1) · e(
1
4−

α
2 )R.

= 1− n−Ω(1).

In the following, we condition on the fact that there are no such nodes; and
switch to the Poisson point process. Consider now a node v ∈ L1. The largest
angular distance v can have to one of its neighbors is

∆ϕ 6 2e−
εR
2 (1±O(e−εR)) 6 O(n−ε). (6)

Similarly to Theorem 1, we partition the Disc Dn into Θ(n) sectors of equal
angle ϕ := e−R/2 = Θ(n). Then, two nodes u, v ∈ L1 in neighboring sectors have
angular distance at most 2e−R/2, and are therefore connected. On the flip side,
two nodes with at least 6 sectors between them have no edge, since their angle
is 6e−R/2 > 2e−R/2+1(1 +O(e−R)).

Consider now p consecutive sectors, where p is to be fixed later. For each
of these p sectors, the probability that it contains exactly one node in L1 is
> (e−R/2 · ne−α) = e−Θ(1), i.e. a constant smaller than 1. The probability that
this node has no further neighbors (apart from the neighbors in L1 in the other
sectors) is again e−Θ(1) by Lemma 4. We name these nodes v1, . . . , vp.

Similarly, the probability that sector p+1 contains exactly one node vp+1 in
L3 is again e−Θ(1). From here, we expose a path to the inner band BI as follows.
Assume we have a node v ∈ Li. Assume further that all nodes v1, . . . , vp are to
the left of v. Then, we consider the probability that v has a neighbor in layer Lj

for j = 1
2α−1 i, while we condition on the fact that none of the nodes v1, . . . , vp

have neighbors in the upper layers as stated before. By Lemma 5 this means
that in layer Lj, we have not yet uncovered an angle of at least

2
ee

(i+ i
2α−1−R)/2 − 3e(

i
2α−1−R)/2

> Θ(1) · e(i+
i

2α−1−R)/2,

as 3e
2 e

−3/2 < 1. Therefore, the probability that node v has a neighbor in layer
Lj that is not connected to v1, . . . , vp, is at least

1− exp(−Θ(1) · n · e−
αi

2α−1 e(i+
i

2α−1−R)/2) = e−Θ(1) < 1.

In total, the probability that v1, . . . , vp exist as described above; and that they
are connected to BI is thereby e−Θ(p+log log logn).

Furthermore, by equation (6), we know that when exposing this information
we at most expose an angle of O( pn +n−Ω(1)+log log logn · (logn)1/(1−α)) of the

graph. Therefore, if p
n < n−Ω(1), we can repeat this experiment independently

nΩ(1) times. The probability that all of them fail is at most

(1− e−Θ(p+log log logn))n
Ω(1)

= exp(−e−Θ(p)nΩ(1)) = exp(−nΩ(1)),

if p = Θ(log n) is chosen small enough. This proves the claim.
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5 Conclusion

We derive a new polylogarithmic upper bound on the diameter of hyperbolic
random graphs; and further prove a logarithmic lower bound. This immediately
yields lower bounds for any broadcasting protocol that has to reach all nodes.
Processes such as bootstrap percolation or rumor spreading therefore must run
at least Ω(log n) steps until they inform all nodes in the giant component. In
particular, this result stands in contrast to the average distance of two nodes in
the hyperbolic random graph, which is of order Θ(log logn) [1, 8]. This implies
the existence of a path that is exponentially longer than the average path.

Our work focuses on power law exponents 2 < β < 3, but we believe that
it is possible to bound the diameter for β > 3 by Θ(log n). For other scale-free
models it was also interesting to study the phase transition at β = 2 and β = 3.
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