Skip to main content

Normalization Phenomena in Asynchronous Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9135))

Abstract

In this work we study a diffusion process in a network that consists of two types of vertices: inhibitory vertices (those obstructing the diffusion) and excitatory vertices (those facilitating the diffusion). We consider a continuous time model in which every edge of the network draws its transmission time randomly. For such an asynchronous diffusion process it has been recently proven that in Erdős-Rényi random graphs a normalization phenomenon arises: whenever the diffusion starts from a large enough (but still tiny) set of active vertices, it only percolates to a certain level that depends only on the activation threshold and the ratio of inhibitory to excitatory vertices. In this paper we extend this result to all networks in which the percolation process exhibits an explosive behaviour. This includes in particular inhomogeneous random networks, as given by Chung-Lu graphs with degree parameter \(\beta \in (2,3)\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamic, L.A., Huberman, B.A.: Power-law distribution of the world wide web. Science 287(5461), 2115–2115 (2000)

    Article  Google Scholar 

  2. Amini, H., Fountoulakis, N.: Bootstrap Percolation in Power-Law Random Graphs. Journal of Statistical Physics 155(1), 72–92 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for bootstrap percolation in all dimensions. Transactions of the American Mathematical Society (2012)

    Google Scholar 

  4. Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in three dimensions. The Annals of Probability, 1329–1380 (2009)

    Google Scholar 

  5. Balogh, J., Peres, Y., Pete, G.: Bootstrap percolation on infinite trees and non-amenable groups. Combinatorics, Probability & Computing 15(5), 715–730 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Balogh, J., Pittel, B.G.: Bootstrap percolation on the random regular graph. Random Structures & Algorithms 30(1–2), 257–286 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  8. Breskin, I., Soriano, J., Moses, E., Tlusty, T.: Percolation in living neural networks. Physical Review Letters (2006)

    Google Scholar 

  9. Chalupa, J., Leath, P., Reich, G.: Bootstrap percolation on a bethe lattice. Journal of Physics C: Solid State Physics 12(1), L31 (1979)

    Article  Google Scholar 

  10. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proceedings of the National Academy of Sciences 99(25), 15879–15882 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.: Critical phenomena in complex networks. Reviews of Modern Physics 80(4), 1275 (2008)

    Article  Google Scholar 

  12. Einarsson, H., Lengler, J., Panagiotou, K., Mousset, F., Steger, A.: Bootstrap percolation with inhibition (2014). arXiv preprint arXiv:1410.3291

  13. Faloutsos, M., Faloutsos, P., and Faloutsos, C. On power-law relationships of the internet topology. In: ACM SIGCOMM Computer Communication Review, vol. 29, pp. 251–262. ACM (1999)

    Google Scholar 

  14. Grimmett, G., Stirzaker, D.: One Thousand Exercises in Probability. OUP Oxford (2001)

    Google Scholar 

  15. Holroyd, A.E.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probability Theory and Related Fields 125(2), 195–224 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: ACM SIGKDD Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

    Google Scholar 

  17. Lelarge, M.: Diffusion and cascading behavior in random networks. Games and Economic Behavior 75(2), 752–775 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Moore, C., Newman, M.E.: Epidemics and percolation in small-world networks. Physical Review E 61(5), 5678 (2000)

    Article  Google Scholar 

  19. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Toninelli, C., Biroli, G., Fisher, D.S.: Jamming percolation and glass transitions in lattice models. Physical review letters 96(3), 035702 (2006)

    Article  Google Scholar 

  21. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook social graph (2011). arXiv preprint arXiv:1111.4503

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Lengler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karbasi, A., Lengler, J., Steger, A. (2015). Normalization Phenomena in Asynchronous Networks. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47666-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47666-6_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47665-9

  • Online ISBN: 978-3-662-47666-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics