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Abstract

What is the value of input information in solving linear programming? The celebrated
ellipsoid algorithm tells us that the full information of input constraints is not necessary; the
algorithm works as long as there exists an oracle that, on a proposed candidate solution, returns
a violation in the format of a separating hyperplane. Can linear programming still be efficiently
solved if the returned violation is in other formats?

Motivated by some real-world scenarios, we study this question in a trial-and-error frame-
work: there is an oracle that, upon a proposed solution, returns the index of a violated constraint
(with the content of the constraint still hidden). When more than one constraint is violated, two
variants in the model are investigated. (1) The oracle returns the index of a “most violated”
constraint, measured by the Euclidean distance of the proposed solution and the half-spaces
defined by the constraints. In this case, the LP can be efficiently solved (under a mild condition
of non-degenerency). (2) The oracle returns the index of an arbitrary (i.e., worst-case) violated
constraint. In this case, we give an algorithm with running time exponential in the number of
variables. We then show that the exponential dependence on n is unfortunately necessary even
for the query complexity. These results put together shed light on the amount of information
that one needs in order to solve a linear program efficiently.

The proofs of the results employ a variety of geometric techniques, including McMullen’s
Upper Bound Theorem, the weighted spherical Voronoi diagram, and the furthest Voronoi dia-
gram. In addition, we give an alternative proof to a conjecture of Laszl6 Fejes Téth on bounding
the number of disconnected components formed by the union of m convex bodies in R™. Our
proof, inspired by the Gauss-Bonnet Theorem in global differential geometry, is independent of
the old one by Kovalev [I7] and reveals more clear insights into the problem and the bound.
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1 Introduction

Solving linear programming (LP) is a central question studied in operations research and theoretical
computer science. The existence of efficient algorithms for LP is one of the cornerstones of a broad
class of designs in, for instance, approximation algorithms and combinatorial optimization. The
feasibility problem of linear programming asks to find an z € R” to satisfy a number of linear
constraints Az > b. Some previous algorithms, such as the simplex and interior point algorithms,
assume that the constraints are explicitly given. In contrast, the ellipsoid method is able to find a
feasible solution even without full knowledge of the constraints. This remarkable property grants
the ellipsoid method an important role in many theoretical applications.

A central ingredient in the ellipsoid method is an oracle that, for a proposed (infeasible) point
r € R™, provides a violation that separates x and the feasible region of the LP in the format
of a hyperplane. Such a separation oracle captures situations in which the input constraints are
unavailable or cannot be accessed affordably, and the available information is from separating
hyperplanes for proposed solutions. A natural question is what if the feedback for a proposed
solution is not a separating hyperplane. Aside from theoretical curiosity, the question relates to
practical applications, where the acquired violation information is actually rather different and even
more restricted and limited.

Transmit power control in cellular networks has been extensively studied in the past two decades,
and the techniques developed have become foundations in the CDMA standards in today’s 3G
networks. In a typical scenario, there are a number of pairs of transmitters and receivers, and
the transmission power of each transmitter needs to be determined to ensure that the signal is
strong enough for the target receiver, yet not so strong that it interferes with other receivers. This
requirement can be written as an LP of the form Ax > b, where each constraint ¢ corresponds to
the requirement that the Signal to Interference Ratio (SIR) is no less than a certain threshold. In
general the power control is a well-known hard problem (except for very few cases, such as power
minimization [9]); a major difficulty is that matrix A depends mainly on the “channel gains”,
which are largely unknown in many practical scenarios [4]. Thus the LP Az > b needs to be solved
despite the unavailability of (A,b). What is available here is that the system can try some candidate
solution z and observe violation information (namely whether the SIR exceeds the threshold). The
system can then adjust and propose new solutions until finally finding an x to satisfy Az > b.

There are more examples in other areas (e.g., normal form games and product design and
experiments [23]) with input information hidden. In these examples, for any unsatisfied proposed
solution, only certain salient phenomena of violation (such as signal interference) are exhibited,
which give indices of violated constraints but not their contents. With so little information obtained
from violations, is it still possible to solve linear programming efficiently? We attempt to answer
that question in the present paper. Our work aims to address the value of input information in
solving LP, and can hopefully help to deepen our understanding of the following general question.

What is the least amount of input information, in what format, that one needs to solve
a linear program efficiently?

In this paper, we study the above question by testing both sides of the boundary.



1.1 Our Model and Results

Our model is defined as follows. In an LP Ax > b, the constraints a;x > b; are hidden to us. We
can propose candidate solutions x € R" to a wverification omcl. If x satisfies Ax > b, then the
oracle returns Yes and the job is done. If x is not a feasible solution, then the oracle returns the
index of a violated constraint. The algorithm continues until it either finds a feasible solution or
concludes that no feasible solution exists. The algorithm is adaptive in the sense that future queries
may depend on the information returned during previous queries. We focus only on the feasibility
problem, to which an optimization LP can be transformed by a standard binary search.

Note that when the proposed solution is not feasible, the oracle returns only the index i of
a violation rather than the constraint a;z > b; itself. We make this assumption for two reasons.
First, consistent with the aforementioned examples, we are often only able to observe unsatisfactory
phenomena (such as a strong interference in the power control problem). However, the exact
reasons (corresponding to the content of violated constraints) for these problems may still be
unknown. Second, as our major focus is on the value of information in solving linear programming,
a weaker assumption on the information obtained implies stronger algorithmic complexity results.
Indeed, as will be shown, in some settings efficient algorithms exist even with this seeming deficit
of information.

For a proposed solution z, if there are multiple violated constraints, the oracle returns the index
of one of themq. This raises the question of which violation the oracle returns, and two variants are
studied in this paper. In the first one, the oracle gives more information by returning the index of
a “most violated” constraint, where the extent of a violation is measured by the Fuclidean distance
of the proposed solution x and the half-space defined by the constraint. This oracle, referred to
as the furthest oracle, attempts to capture the situation in which the first violation that occurs or
is observed is usually the most severe one. The second variant follows the tradition of worst-case
analysis in theoretical computer science, and makes no assumption about the returned violation.
This oracle is referred to as the worst-case oracle.

We will denote by UnknownLP the problem of solving LP with unknown constraints in the above
model. In either oracle model, the time complexity is the minimum amount of time needed for any
algorithm to solve the UnknownLP problem, where each query, as in the standard query complexity,
costs a unit of time.

Our results are summarized below. In a nutshell, when given a furthest oracle, a polynomial-
time algorithm exists to solve LP (under a mild condition of non-degeneracy). On the other hand,
if only a worst-case oracle is given, the best time cost is exponential in n, the number of variables.
Note that it is efficient when n is small, a well-studied scenario called fized-dimensional LP. The
exponential dependence on n is unfortunately necessary even for the query complexity. This lower
bound, when combined with the positive result for the furthest oracle case, yields an illustration of
the boundary of tractable LP.

Furthest oracle. The worst-case oracle necessitates an exponential time complexity, but in some
practical applications failed trials may reveal more violation information. For instance, in the power

!The verification oracle is simply a means of determining whether a solution is feasible. It arises from the nature
of LP as shown from the foregoing examples. For infeasible solutions, the feedback is a signaled violation.

2Tt is also natural to consider the case where the oracle returns the indices of all violated constraints. That model
turns out to be so strong as to make the linear program easily solvable. We study oracles returning only one index
to emphasize that even given such limited information, efficient algorithms exist in some settings.



control problem all of the distances between the proposed solution point to the half-spaces of
violated constraints can be estimated and reported. Is this additional information greatly helpful
in reducing the computational cost? In general, what is the least amount of information about
violations needed to solve an LP efficiently? Compared to providing all distances, the furthest
oracle reveals only a small amount of extra information by returning the index of a most violated
constraint. However, this turns out to be sufficient to admit a polynomial-time algorithm.

As mentioned earlier, returning the indices of all violated constraints makes the model strong
enough to admit efficient algorithms. Since our goal is to understand the boundary of tractability,
it is desirable to have a model as weak as possible in which tractability is still maintained. The
furthest oracle is defined for this purpose: compared to providing all violations, the furthest oracle
only reveals one of the indices i among the maximizers in max;(b; — (a;, x))/||a;||. Despite this
small amount of information, surprisingly, the furthest oracle turns out to be informative enough
to admit a polynomial-time algorithm under a mild condition.

Theorem 1. The UnknownLP problem can be solved in time polynomial in the input size in the
furthest oracle model, provided that the input is non-degeneratd.

The main idea of the algorithm design is as follows. Instead of searching for a solution directly,
we consider the unknown matrix A and vector b as a degenerate polyhedron in R™"+1)  and
use the ellipsoid method to find (A,b). In each iteration we consider the center (A’,d') of the
current ellipsoid in R™"+1) | and aim to construct a separating hyperplane between (A,b) and
(A’, V) through queries to the furthest oracle. The main difficulty lies in the case when (A’,¥) is
infeasible, in which a separating hyperplane cannot be constructed explicitly. It can be observed
that upon a query x, with the help of the furthest oracle, the information returned from the oracle
has a strong connection to the Voronoi diagram. Specifically, if z is not a feasible solution, then
the returned index is always the furthest Voronoi cell that contains x. We can manage to compute
the Voronoi diagram, but this does not uniquely determine the constraints that define the LP. To
handle this difficulty, we give a sufficient and necessary characterization reducing the input LP to
that of a new and homogeneous LP, for which the constraints can be identified using the structure
of a corresponding weighted spherical closest Voronoi diagram.

Worst-case oracle. Recall that the worst-case oracle may return the index of an arbitrary viola-
tion. In this case, we first establish the following upper bound which is exponential in the number
of variables only.

Theorem 2. The UnknownLP problem with m constraints, n variables, and input size L can be
deterministically solved in time (an)pOly("). In particular, the algorithm is of polynomial time for
constant dimensional LP (i.e. constant number of variables).

At the heart of the efficiency guarantee of our algorithm is a technical bound of } ", (T)
on the number of “holes” formed by the union of m convex bodies in R™. This bound was first
conjectured by Laszl6 Fejes Téth. The 2-dimensional case was proved by Katona [15] in 1977, based
on an analysis of the shape of the convex sets, and the general case was proved by Kovalev [I7] in
1988, by induction on dimension. We give an independent and completely different proof, which

is simpler and does not rely on induction. Compared to the previous proofs, ours reveals the

3The exact definition of non-degeneracy is given in Section[8l The condition is mild; actually a random perturbation
on inputs yields non-degeneracy, thus the theorem implies that the smooth complexity is polynomial.



nature of the problem and exhibits a clear and simple reason for the bound to hold. (One can
see clearly from our proof where each summand in the bound comes from.) The main idea and
some technical tools in our proof are inspired by the high-dimensional Gauss-Bonnet theorem, the
most important theorem in global differential geometry. A key concept needed in our proof is
a properly defined high-dimensional “exterior angle”, which connects the convex bodies and the
“holes” at every boundary point. Our exterior angle differs from the standard one by Banchoff [2]
by dropping all low-dimensional terms, but only in this way does it yield a critical identity that we
need: the integral of all exterior angles of any bounded set, convex or non-convex, is 1.

The above theorem implies a polynomial time algorithm when the number n of variables is a
constant. This is a well-studied scenario, called fized dimensional LP in which n is much smaller
than the number of constraints m; see [14], 5 [I8], 211 [7] and the survey [§].

On the other hand, a natural question is whether the exponential dependence is necessary; at
the very least, can we improve the bound to poly(m,n)+ oroly(n) a5 Matousek et al. [18] have done,
which is still polynomial when n is slowly growing as some polylog(m)? Unfortunately, the next
lower bound theorem indicates that this is impossible.

Theorem 3. Any randomized algorithm that solves the UnknownLP problem with m constraints
and n variables needs Q(mL”/ 2J) queries to the oracle, regardless of its time cost.

The lower bound implies that our algorithm, although of an exponential complexity, is close to
optimal. Our proof of the lower bound uses the dual of the seminal Upper Bound Conjecture, proved
by McMullen [19] 20], which gives a tight upper bound on the number of faces in an n-dimensional
cyclic polytope with m vertices.

It is worth comparing the exponential hardness of UnknownLP with the complexities of Nash
and CE, the problems of finding a Nash or correlated equilibrium in a normal-form game, in the
trial-and-error model. In our previous work [3], we presented algorithms with polynomial numbers
of queries for Nash and CE with unknown payoff matrices in the model with worst-case oracleﬂ.
Nash and CE can be written as quadratic and linear programs, respectively, but why is the general
UnknownLP hard while the unknown-input Nash and CE are easy (especially when all are given
unlimited computational power)? The most critical reason is that in normal-form games, there
always exists a Nash and a correlated equilibrium, but a general linear program may not have
feasible solutions. Indeed, if a feasible solution is guaranteed to exist (even for only a random
instance), such as when the number of constraints is no more than that of variables, then an
efficient algorithm for UnknownLP does exist: see Appendix[Al (In our algorithms for UnknownLP,
the major effort is devoted to handling infeasible LP instances.) It is interesting to see that the
solution-existing property plays a fundamental role in developing efficient algorithms.

1.2 Related Work

A considerable body of work has studied the value of information in various domains. We consider
algorithmic computation of linear programming from the perspective of available information. Pa-
padimitriou and Yannakakis [25] also studied solving linear programming with matrix unknown.
However, their setting is very different from ours. They studied a specific class of linear programs,
Azr <1 and x > 0 where the matrix A > 0, and considered a set of decision-makers who hold each

4An algorithm proposes a candidate equilibrium and a verification oracle returns the index of an arbitrary better
response of some player as a violation.



of the variables and only know all of the constraints containing the variable. In addition, they stud-
ied the problem in the distributed decision-making setting, and focused on designing distributed
algorithms with the objective of maximizing ) x;. Ryzhov and Powell [26] studied information
collection in linear programming, but their unknown is the coefficients of the objective function.

In our previous work [3], we studied the trial-and-error approach to finding a feasible solution
for a search problem with unknown input and a verification oracle for a number of combinatorial
problems, such as stable matching, SAT, group and graph isomorphism, and the Nash equilibrium.
However, to bypass the computational barrier for some problems (e.g., SAT), [3] equipped an
algorithm with a separate computation oracle, whereas in the present paper we only have the
verification oracle. In addition, we consider not only the worst-case oracle but also a natural
furthest oracle. Finally, our major focus is on the algorithm design in solving the UnknownLP
problem, but the main consideration of [3] is the relative complexity of solving a search problem
with an unknown input compared to that with a known input.

2 Preliminaries

Consider the following linear program (LP): Az > b, where A = (ajj)mxn € R™*" and b =
(bi,...,bm)T € R™. The feasibility problem asks to find a feasible solution 2 € R™ that satisfies
Az > b (or report that such a solution does not exist). Equivalently, this is to find a point x € R™
that satisfies m linear constraints {a;z > b; : i € [m]}, where each a; = (a;1,. .., aip).

In the unknown-constraint LP feasibility problem, denoted by UnknownLP, the coefficient matrix
A and the vector b are unknown to us, but we still need to determine whether the LP has a feasible
solution and find one if it does. The way of solution finding is through an adaptive interaction
with a wverification oracle: We can propose candidate solutions x € R”. If a query z is indeed a
feasible solution, the oracle returns Yes and the job is done. Otherwise, the oracle returns an index
1 satisfying a;z < b;, i.e., the index of a violated constraint. Note that we know only the index 1,
but not a; and b;, the content of the constraint. In addition, if multiple constraints are violated,
only the index of one of them is returned.

In the present paper, we study the computational complexity of solving the UnknownLP problem.
As in the standard complexity theory with oracles, we assume that each query to the oracle takes
unit time. We will analyze the complexity for two types of oracles: the worst-case oracle which
can return an arbitrary index among those violated constraints (Section M), and the furthest oracle
which returns the index of a “most” violated constraint (Section [3)).

Input size and solution precision. A clarification is needed for the size of the input. Since
the input LP instance (A,b) is unknown, neither do we know its binary size. To handle this issue,
we assume that we are given the information that there are m constraintﬁ, n variables, and the
binary size of the input instance (A,b) is at most L. Note that L is O(mnlog(N)), where N is
the maximum entry (in abstract value) in A and b. We say that an algorithm solves UnknownLP
efficiently if its running time is poly(m,n, L).

Given an LP with input size L = O(mnlog(N)), it is known [I6] that if the LP has a feasible
solution, then there is one whose numerators and denominators of all components are bounded by
(nIN)™. Hence, an alternative way to describe our assumption is that, instead of knowing the input

®Indeed, the number of constraints can be unknown to us as well: In an algorithm, we only need to track those
violated constraints that have ever been returned by the oracle.



size bound L, there is a required precision for feasible solutions. That is, we only look for a feasible
solution in which the numerators and denominators of all components are bounded by the required
precision. These two assumptions, i.e., giving an input size bound and giving a solution precision
requirement, are equivalent, and it is necessary to have one of them in our algorithms!” In the rest
of the paper, we will use the first one, the input size bound, to analyze the running time of our
algorithms.

Geometric background. The geometric concepts, notation and facts that we will use are sum-
marized as follows. The unit sphere in R™ is denoted by S"~! = {x € R" : ||z|| = 1}, where,
throughout this paper, || - || refers to the ¢3-norm.

Definition 1. A set C' C R" is a convex cone if for any z,y € C and any o, > 0, ax + By is
also in C. The normalized volume (also called volumetric modulus) of a convex cone C' is defined
as the ratio L (C B
N
v(0) = PulC 02
5" VOIn(B )
where B™ is the closed unit ball in R™ and vol,, refers to the n-dimensional volume.

Definition 2. For any set C € R", its polar cone C* is the set
C*={yeR": (z,y) <0,Vz € C}.

Definition 3. For any point set P, its convex hull conv(P) is the intersection of all convex sets
that contain P. In particular, for any points p1,p2,...,pm € R",

conv({pl,p27...,pm}) = {Z AiDi T A > O’Z)‘i = 1} .
=1 i=1

We will use the following technical lemmas.

Lemma 4 ([27]). Let Cy,Cs,...,Cy be k closed convex cones, then ([, C;)* = conv(lJ,; CF).

It was shown in [24] (Lemma 8.14) that if an LP has a feasible solution, then the set of solutions
within the ball {# € R" : ||lz|| < n2"} has volume at least 2-("+2)L - Given this lemma, we can
easily derive the following claim.

Lemma 5. If a linear program Ax > 0 has a feasible solution, then the feasible region is a convex
cone in R"™ and has normalized volume no less than 2~ (2n+3)L

3 Furthest Oracle

In this section, we will consider the UnknownLP problem Az > b with the furthest oracle, formally
defined as follows. For a proposed candidate solution z, if x is not a feasible solution, instead of

6QOtherwise, we may not be able to distinguish between cases when there are no feasible solutions (e.g., z > 0,z < 0)
and when there are feasible solutions but the feasible set is very small (e.g., z > 0,z < ¢). For any queried solution
y > 0, the oracle always returns that the second constraint is violated. However, we cannot distinguish whether it
is x < 0 in the first LP or < € in the second LP, as € can be arbitrarily small and we have no information on how
small it is.



returning the index of an arbitrary (worse case) violated constraint, the oracle returns the index
of a “most violated” constraint, measured by the Euclidean distance from the proposed solution
x and the half-space defined by the constraint. More precisely, the oracle returns the index of a

constraint which, among all ¢ with (a;,x) < b;, maximizes bi]fgﬁ’w, the distance from z to the

half-space {z € R" : (a;,2z) > b;}. If there are more than one maximizer, the oracle returns an
arbitrary one.

Compared to the worse-case oracle, the furthest oracle reveals more information about the
unknown LP system, and indeed, it can help us to derive a more efficient algorithm. Our main
theorem in this section is the following.

Theorem 6. The UnknownlLP problem Az > b with a non-degenerate matriz A in the furthest
oracle model can be solved in time polynomial in the input size.

We call a matrix A = (ay,...,a,)T non-degenerate if for each point p € S*~1 = {z € R" :
||| = 1}, at most n points in {2 T+ ”a 0 } have the same spherical distance to p on S™~*. This
assumption is with little loss of generality; it holds for almost all real instances and can be derived
easily by a small perturbation.

Note that in the worst-case oracle setting, we can easily reduce the general LP Ax > b to
Az — by > 0 by adding a new variable y. However, the same trick does not apply to the furthest
oracle setting. This is because for a given query, the furthest violated constraint in Ax > b can be
different from that in Axz — by > 0. Next we will first describe our algorithm for the special case
Ax > 0, then generalize the algorithm to the Ax > b case. The formal proof of the algorithm is
deferred to Appendix [Bl

3.1 Algorithm Solving Ax > 0

We assume without loss of generality that |la;|| = 1 for all i. Furthermore, we can also always
propose points in S™~! for the same reason.

Ellipsoid method and issues. The main approach of the algorithm is to use the ellipsoid method
to find the unknown matrix A = (@;j)mxn, which can be viewed as a point in the dimension R™",
i.e., a degenerate polyhedron in R™". Initially, for the given input size information m,n and L,
we choose a sufficiently large ellipsoid that contains the candidate region of A, and pick the center
A’ € R™ of the ellipsoid. To further the ellipsoid method, we need a hyperplane that separates A’
from the true point A.

Consider the linear system A’z > 0. If it has a feasible solution z, then {z : A’z > 0} is a
full-dimensional cone. We query an x in this cone to the oracle. If the oracle returns an affirmative
answer, then z is a feasible solution of Ax > 0 as well, and the job is done. Otherwise, the oracle
returns an index 4, meaning that (a;,z) < 0. Hence, we have (a},x) > 0 > (a;,z), which defines a
separating hyperplane between A and A’ (note that we know the information of A" and x). Thus,
we can cut the candidate region of A by a constant fraction and continue with the ellipsoid method.

Note that there is a small issue: In our problem, the solution polyhedron degenerates to a point
A € R™ and has volume 0. As the input A is unknown, we cannot use the standard approach in the
ellipsoid method to introduce a positive volume for the polyhedron by adding a small perturbation.
This issue can be handled by a more involved machinery developed by Grotschel, Lovasz, and
Schrijver [I1}, 12], which solves the strong nonemptiness problem for well-described polyhedra given
by a strong separation oracle, as long as a strong separation oracle exists. In the algorithms



described below, we will construct such oracles, thereby circumventing the issue of perturbation of
the unknown point A. The same idea has been used in [3] to find a Nash equilibrium when the
payoff matrix is unknown and degenerates to a point in a high-dimensional space. More discussions
refer to [1T), 121 [3].

The main difficulty is when the LP A’x > 0 is infeasible. In the following part of this section
we will discuss how to find a proper separating hyperplane in this case.

Spherical (closest) Voronoi diagram. Note that Az > 0 is equivalent to —Az < 0, and i
minimizes (a;,x) if and only if it maximizes (—a;,x). In the rest of this subsection, for notational
convenience, we use € S"! to denote a proposed solution point, and let y = —z. Since the
distance from a proposed solution x to a half-space {z € R" : (a;,z) > 0} is —(a;,z) = (a;,y),
the oracle returns us an index i € argmax; {(a;,y) : (a;,y) > 0} if x is not feasible. Note that
|z — ail| < ||z — a;|| if and only if (a;,z) > (a;, z) for any z € S; thus, (a;,y) is closely related to
the distance between a; and y on S™~!. That is, the oracle actually provides information about
the closest Voronoi diagram of a1, ...,a, on S™'.

Recall that the (closest) Voronoi diagram (also called Dirichlet tessellation) of a set of points
{a;}; in a space S is a partition of S into cells, such that each point a; is associated with the cell
{z € S :d(z,a;) <d(z,a;),Vj}, where d in our case is the spherical distance on S"~!. We denote
by Vor the spherical (closest) Voronoi diagram of the points ay,...,a;, on S" ! and denote by
Vor(7) the cell in the diagram associated with a;, i.e.,

Vor(i) = {z¢€ S™1 i (ai, 2) > {aj,2), Vi € [m] } (1)
= {z eSS ilz—ail| < |2 — ajll, Vj € [m]}

If the oracle returns i upon a query z = —y € S, then y € Vor(3).

Representation. Note that for a general (spherical) Voronoi diagram formed by m points, it is
possible that some of its cells contain exponential number of vertices, which is unaffordable for our
algorithm. However, in the H-representation of a convex polytope, every cell can be represented
by at most m linear inequalities, as shown in Formula (). In the following, we will see that the
information of these linear inequalities is sufficient to implement our algorithm efficiently.

Weighted spherical (closest) Voronoi diagram. For the presumed matrix A’ note that it can
be an arbitrary point in the space R™" and may not necessarily fall into S™"~!. Our solution is to

ay A on Sn—l

consider a weighted spherical Voronoi diagram, denoted by Vor’, of points

as follows: for each point ||Z}:||

, its associated cell is defined as

Vor'(i) = {z € S"" " : (a},z) > (af,2),Vj € [m]}.

Note that Vor’ is a partition of S"~1; and if we assign a weight ||a}|| to each point ﬁ, then for

each point p € Vor/(i), the site among ”Z—}”, ceey ”22”” that has the smallest weighted distance to p
1 m

is ﬁﬁ Note that each cell of Vor’ is defined by a set of linear inequalities (other than the unit

norm requirement) and each of them can be computed efficiently.

"The reason of defining such a weighted spherical Voronoi diagram is that we want to have a separating hyperplane
/ ’
between A and A’ = (a},...,al,)”, rather than (ﬁ, e ﬁ)T
1 m



Now we have two diagrams: Vor, which is unknown, and Vor’, which can be represented effi-
ciently using the H-representation. If Vor # Vor’, then there exists a point y € S”~! such that
y € Vor(i) and y ¢ Vor'(i). Suppose that y € Vor'(j) for some j # i. According to the definition, we
have (a;,y) > (a;,y) and (a,y) < (a;», y); this gives us a separating hyperplane between A and A’.

The questions are then (1) how to find such a point y when Vor # Vor’, and (2) what if Vor = Vor'.

Consistency check. In this part we will show how to check whether Vor = Vor’, and if not equal,
how to find a y as above. Although we know neither the positions of points a,...,a,,, nor the
corresponding spherical Voronoi diagram Vor, we can still efficiently compare it with Vor’, with the
help of the oracle.

For each cell Vor'(i), assume that it has k facets (i.e., (n — 1)-dimensional faces). Note that
k < m and that Vor'(i) is uniquely determined by these facets. Further, each facet is defined by
a hyperplane Hj; = {z € S"7! : (a},z) = (d}, 2)} for some j # i. To decide whether Vor = Vor’,
for each i and j such that Vor'(i) N Vor'(j) # 0, we find a sufficiently small €, and three points y,
Y + €y, Y — €, such that

y € Vor'(i) NVor'(j) C Hj;, y+ €, € Vor'(i) — Vor'(j), y— ¢, € Vor'(j) — Vor'(i).

Notice that such y and ¢, exist and can be found efficiently. We now query points y + ¢, and
y — €y to the oracle. If the oracle does return us the expected answers, i.e., ¢ and j, respectively,
then, with ||e,| sufficiently small (up to 27P°%(1)), we can conclude that y must also be in the
facet of Vor(i) and Vor(j) of the hidden diagram Vor. That is, y € H;j = {z € S" ! : (a;,2) =
(aj,z)}. We implement the above procedure n — 1 times to look for n — 1 linearly independent
points 41, ...,yn_1 € Vor'(i) N Vor'(j). If the oracle always returns the expected answers i and j,
respectively, for all k =1,...,n — 1, then we know that H;; = HZ’]

The procedure described above can be implemented in polynomial time. Now we can use this
approach to check all facets of all of the cells of Vor’. If none of them returns us an unexpected
answer, we know that every facet of every cell Vor'(i) is also a facet of cell Vor(i), i.e., the set
of linear constraints that defines Vor'(i) is a subset of those that define Vor(i). Thus, we have
Vor(i) C Vor'(i) for each i. Together with the fact that both Vor and Vor’ are tessellations of S"~1,
we can conclude that Vor = Vor'.

Lemma 7. For the hidden matriz A € R™ with spherical Voronoi diagram Vor and proposed
matriz A" € R™" with weighted spherical Voronoi diagram Vor', we can in polynomial time

e cither conclude that Vor = Vor', or
e find a separating hyperplane between A and A’.

A formal and detailed description of this consistency check procedure and its correctness proof
can be found in the Appendix [Bl

Voronoi diagram recognization. If the above process concludes that Vor = Vor’, we have suc-
cessfully found the Voronoi diagram Vor (in its H-representation) for the hidden points aq, ..., an.
It was shown by Hartvigsen [I3] that given a Voronoi diagram with its H-representation, a set of
points that generates the diagram can be computed efficiently. Further, Ash and Bolker [I] showed
that the set of points that generates a non-degenerate Voronoi diagram is unique. Therefore, by
coupling these two results and the assumption that the input matrix A is non-degenerate, we are
able to identify the positions of aq,...,a,, given the computed Voronoi diagram Vor, and easily
determine if the LP Axz > 0 has a feasible solution, and compute one if it exists.



3.2 The General Az > b

In this section, we extend our algorithm to the general case Az > b. Due to space limit, we will
only give the main ideas in this section and leave the formal proof to Appendix [Bl

The idea is still to use the ellipsoid method to find the unknown point (A,b), which is a
degenerate polyhedron in R™™ Y Our goal is, for any considered point (4’,0) € R™™ 1) of the
center of the ellipsoid, to compute a hyperplane that separates it from the true point (A,b). Again,
if x is a feasible solution of A’x > 1/, we can query it to the oracle and using the returned index to
get a separating hyperplane. Thus, in the following, we assume that the LP A’z > ' is infeasible.

Generalized furthest Voronoi diagram. Similar to the previous case, for the hidden LP Ax > b,
we assume without loss of generality that ||a;|| = 1, for all 1 <+i < m. We denote by GenVor the
tessellation of R™ into polyhedra GenVor(1),...,GenVor(m), where

GenVor(i) = {z € R" : b; — (a;,x) > b; — (aj, x), j € [m]}. (2)

Note that different from the Az > 0 case, GenVor is no longer a spherical closest Voronoi diagram;
it can be seen as a generalized furthest Voronoi diagram over R™ where each source site is a half-
space. It follows that for any query x € R", if x is not a feasible solution to the LP Ax > b, the
oracle always returns an index i where = € GenVor (7).

For any presumed point (4’,0) € R™" 1 we compute

GenVor'(i) = {z € R" : b — (a}, ) > V; — (da}, x), j € [m]} (3)

and denote GenVor' = {GenVor/(1),...,GenVor'(m)}. Similar to the previous case, if GenVor #
GenVor’, we want to find a point # € R™ such that € GenVor(i) and = € GenVor'(j) for some
i # j; this gives us b; — (a;,¥) > bj — (aj,z) and b} — (af,z) < b} — (a},x), with at least one of
the inequalities strict. Thus, we have a separating hyperplane between (A,b) and (A’, V). Again
because each cell GenVor' (i) (as well as GenVor(i)) is a polytope defined by a set of linear inequalities,
and GenVor’ and GenVor are a tessellation of the space R", we can apply the same procedure as
the Az > 0 case to check whether GenVor = GenVor’ in polynomial time (even if GenVor'(i) or
GenVor(7) is empty).

However, even after finding the tessellation GenVor for the hidden LP Az > b, i.e., GenVor =
GenVor', we still cannot recover the actual instance A and b from GenVor even all half-spaces are non-
degenerate. For instance, for any scale ¢ € R, the two systems Az > b and Az > b+ {c,c,...,c}T
have the exactly same tessellation GenVor, but they may have different feasible solutions. In the
following, we will show that when GenVor = GenVor’, we are able to focus on a particular point in
R"™, and use the claims proved in the previous section to solve the problem.

Extreme point. Given a matrix A and a vector b, define

d(A,b) = ;2111@2 { mzax{bi — (a;,z)}}, and (4)
extreme(A,b) = {z € R": mlax{bi — (az, )} = d(A,b)}. (5)

Notice that d(A,b) may be unbounded for general A and b, e.g., when Ax > b has an unbounded
feasible region. For such a case, we define d(A,b) to be —oo and extreme(A4,b) = (. But when
Az > b is infeasible, extreme(A,b) is always nonempty and d(A4,b) is bounded by 0 from below.
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The definition of extreme(A,b) gives the set of points that minimizes the maximal distance from
which to all half-spaces {z € R" : (a;, z) > b;}. Note that given matrix A and vector b, both d(A,b)
and a point in extreme(A, b) can be computed efficiently through linear programming. (The value
d(A,b) is an LP and extreme(A,b) is the union of the feasible regions of m LP’s.)

The next lemma links the homogeneous and non-homogeneous forms and will be later used to
decide the infeasibility.

Lemma 8. A linear system Ax > b is infeasible if and only if there is a point p € R"™ such that

e p is not a feasible solution of Ax > b, and

e the linear system {{a;,z) > 0 : i € S}, called the support linear system of Ax > b at p, is
infeasible, where S is the set of the indices of the half-spaces in the LP Ax > b that has the
(same) mazimal distance to point p.

Further, if Az > b is infeasible, then any point in extreme(A,b) satisfies the above two conditions.

The proof of the lemma is deferred to Appendix [B.dl We will use the lemma to infer that
the hidden linear system Az > b is infeasible. For the considered LP A’z > I/, as it is infeasible,
extreme(A’, V') # (); we then compute an extreme point p € extreme(A’,b’).

Now, if we focus on the region around p and limit our queries within the ball B = {z € R" :
|z — p|| < €} for some small enough € > 0, then for each query z = p + 2/ within the ball B,
where ||2’|| < €*, the oracle returns an index

i € arg?el% {b; — (a;,z)} = arg max {b; — (a;,z)}

= b_ . _ . / — _ . /
argmax (b — (a5p) — {a,')} = avgmax { — (a2}

where the first equality is because €* is sufficiently small, and the last equality follows from the
fact that all half-spaces in S have the same maximal distance to p. Thus, for any queried point
within this ball B, the set of indices possibly returned by the oracle for Az > b is the same as
that by the furthest oracle for the support linear system {(a;,z) > 0 : i € S}. This means that
the Voronoi structure GenVor in B is exactly the same as the weighted spherical Voronoi diagram
GenVor’ for the corresponding support system in B. Then, by the results in previous section, we
are able to identify the exact values for all a; in S; that is, the support system {{(a;,z) >0:7 € S}
is revealed. The last step is straightforward: if the support system is infeasible, then by Lemma [8]
we can conclude that LP Ax > b is also infeasible. If the support system has a feasible solution x*,
since we know x* is not a feasible solution to {(a;,z) > 0:i € S} (by Lemma [, we must have
(al,z*) <0 < (a;,z*) for some ¢ € S, which is a separating hyperplane between (A, b) and (A', V).

Putting things together. To summarize the above discussions, in our algorithm we employ
the ellipsoid method to search for (A,b) € R™"™+1) | In each iteration of the ellipsoid method, we
propose the center (A", ) € R™"+1) of the current ellipsoid, and apply the following procedure:

1. If A’z > V' is feasible, find a solution z to it and query z to the oracle, then use the returned
index to construct a separating hyperplane.

2. Otherwise (i.e., A’z > b’ is infeasible), do the following.

e Compute the generalized Voronoi diagram GenVor’ of A’ and b, and confirm that GenVor =
GenVor'.
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e Compute a point p € extreme(A’,b") and the corresponding support S, then confirm that p

is an infeasible solution to Az > b.
e Focus on a small ball B centered at p and use GenVor = GenVor’ in B to recover the support

linear system at p. Then confirm that the support system is infeasible, and, by Lemma [8],
conclude that the hidden LP Ax > b is also infeasible and terminate the whole program.

If we get an “unexpected” answer from the oracle at any step of the above procedure, then we
either receive a Yes from the oracle and thus solve the problem, or get a hyperplane that separates
the unknown (A,b) and current center (A’,b), in which case we jump out of the current iteration
and continue with the ellipsoid method with a smaller ellipsoid. From the above discussions, we
know that every step can be implemented in polynomial time. Hence, the problem can be solved
efficiently.

A complete description of the algorithm and its formal proof can be found in Appendix [Bl

4 Worst-Case Oracle

In this section, we consider the worst-case oracle. Recall that in this setting, the oracle plays as
an adversary by giving the worst-case violation index to force an algorithm to use the maximum
amount of time to solve the problem.

For any linear program Ax > b, we can introduce another variable y and transform the linear
program into the following form:

Ax —by >0
y >0

It is easy to check that Az > b is feasible if and only if the new LP is feasible, and the solutions of
these two linear systems can be easily transformed to each other. Given the oracle for Az > b, one
can also get another oracle for the new LP easily. (On a query (z,y), if y < 0, return the index
m+ 1; otherwise, query x/y to the oracle for Az > b.) This means that the UnknownLP problem of
the homogeneous form Ax > 0 is no easier than the problem of the general form. In all the analysis
of this section, we will therefore only consider the problem of form Ax > 0.

Geometric explanations. Let us consider the problem from a geometric viewpoint. Any matrix
A = (aij)mxn can be considered as m points ai,as, ..., an, in the n-dimensional space R", where
each a; = (a;1,a2,...,ai). The positions of these points are unknown to us. Finding a feasible
solution x € R™ that satisfies Az > 0 is equivalent to finding an open half-space

H,={yeR": (z,y) £ z1y1 +Toyo + -+ + Tnyp > 0}

containing all points a;.

In an algorithm, we propose a sequence of candidate solutions. When a query x € R" violates
a constraint i, we know that (a;,z) < 0. Hence, a; cannot be contained in the half-space H,, and
we are able to cut H, off from the possible region of a;. Based on this observation, we maintain a
set region(i), the region of possible positions of point a; consistent with the information obtained
from the previous queries. Initially, no information is known about the position of any point; thus,
region(i) = R™ for all 1 <i < m.

12



Let us have a closer look at these regions. For each ¢, suppose that xil, azé, . 7332 are the queried
points we have made so far for which the oracle returns index ¢. Then all information we know
about a; till this point is that the possible region is region(i) = ﬂ?zl{y eR": (xé,y> < 0}. Since
region(i) is the intersection of k closed half-spaces, it is a convex set. Equivalently, this means
that any feasible solution to the LP, if existing, cannot be in region(i)*, the polar cone of region(i).
Since the polar cone of a half-space {y € R" | <x;, y) < 0} is the ray along its normal vector, i.e.,
{\z! | X > 0}, we have by Lemma M that

region(i)* = conv(U {y | (z},y) < 0}*) = conv({)\x; [1<j<kA> 0})

J

Since region(i)*’s are the forbidden areas for any feasible solution, we can conclude that the LP has
no feasible solution if  J, region(i)* = R™.

Convex hull covering algorithms. Based on above observations, we now sketch a framework
of convex hull covering algorithms that solves the UnknownLP problem. The algorithm maintains
a list of m convex cones

region(1)*, region(2)*, ... region(m)* C R".

Initially, region(i)* = ) for all 1 < i < m. On each query z € R", the oracle either returns Yes,
indicating that the problem is solved, or returns us an index i, in which case we update region(7)*
to conv (region(i)*, {\x | A > 0}). The algorithm terminates when either the oracle returns Yes, or
when R" — [, region(7)* does not contain a convex cone with normalized volume at least 2~ (n43)L
which indicates that the given instance has no feasible solution. The above discussion can be

formalized into the following theorem.

Theorem 9. Any algorithm that falls into the convex hull covering algorithm framework solves the
UnknownLP problem.

Though the framework guarantees the correctness, it does not specify how to make queries to
control complexity. Next we will show an algorithm with nearly optimal complexity.

4.1 Warmup: 2-Dimension

To illustrate the idea of our algorithm, we consider the simplest case in which the number of
variables is 2. In a 2-dimensional plane, using the polar coordinate system, every closed convex
cone can be represented as an interval of angles [a, ] where 0 < a, 8 < 27 (e.g., [0, 7/2] represents
the first quadrant).

Our algorithm sets region(1)* = --- = region(m)* = () initially. At each step of the algorithm,
assume that [0, 27] —J, region(i)* = Ule(ai,ﬂi), where (o, 8;)N(aj, B;) = O forany 1 <i < j < k.
We pick an interval (ay, 8;) with the maximum f; —«y, and query the oracle on point (cos(7), sin(7))
where v = (a4 + (;:)/2. Suppose the oracle returns an index i, we then update region(i)* to
conv(region(i)*,7), where conv(S) here is the smallest sector containing all points in S. The
algorithm iteratively runs the above procedure, until at some point we have (8;—ay) /7 < 9~ (@n+3)L
when we can conclude that the LP has no feasible solution.

Consider the above figure for an example. Let us say that when we query x} and z%, the oracle
returns index i. Then the i-th constraint can only be in [a, b], where a and b are perpendicular to xll
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— region(j) —

and x, respectively, and no feasible solution of the LP can be in [z}, 2}]. That is, region(i) = [a, b]
and its polar cone region(i)* = [z}, 2%], which is the convex hull of z{ and x%. Similarly, if 2]
and xé are two queries in which the oracle returns another index j, we have region(j)* = [x]l,xé]
and region(j) = [c¢,d]. Now given obtained information, we have [0, 27| — |, region(i)* = (:E’l,:njl) U
(x%,xlz) Among the two, (xll,x]l) has the maximum length and will be picked by the algorithm.
Then the middle point (x in the figure) of the interval (xll,x]l) will be picked and queried to the
oracle. If the oracle returns index i, then region(i)* becomes [z}, z]; in which case the length of
the interval (xll,x]l) is cut into half. In this example, the oracle cannot return index j since the
entire candidate region region(j) has positive inner product with x. If the oracle returns a new
index k, then we have region(k)* = [z,z], and in the next iteration of the algorithm, we have
[0, 27] — U, region(i)* = (%, 2) U (x,27) U (23, z%).

Note that first, the number of candidate intervals is at most n. Second, each query either
increases the number of intervals or cut the length of a current interval into half. As there is a
lower bound on the length of each interval in the algorithm (Lemma [(l), the algorithm terminates
with a feasible solution or claims that no feasible solution exists.

4.2 Algorithm

In this section, we generalize our algorithm from 2-dimensional to n-dimensional. The basic idea
is to use induction on dimension. That is, we pick an (n — 1)-dimensional subspace and recursively
solve the problem on the subspace. The subroutine either finds a point z in the subspace that
satisfies Az > 0 (in which case the algorithm ends), or finds out that there is no feasible solution in
the entire subspace. In the latter case, the whole space of candidate solutions can be divided into
two open half-spaces, and we will work on each of them separately. In general, we have a collection
of connected regions that can still contain a valid solution. These regions are the “holes”, formally
called chambers, separated by |J, region(i)* (recall that points in region(i)* cannot be a feasible
solution). We can then pick a chamber with the largest volume, and cut it into two balanced halves
by calling the subroutine on the hyperplane slicing the chamber.

There are several issues for the above approach. The main one is that there may be too many
chambers: a priori, the number can grow exponentially with m. There are also other technical
issues to be handled, such as how to represent chambers (which are generally concave), how to
compute (even approximately) the volume of chambers, how to find a hyperplane to cut a chamber
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into two balanced halves, etc.

For the first and main issue, it can be shown that the number of chambers cannot be too large.
In general, as the later Theorem [Tshows, any m convex sets in R" cannot form more than " | (T)
chambers. For the rest technical issues, we deal with them in the following way. Instead of keeping
track of all actual chambers, in our algorithm, we maintain a collection of disjoint sector cylinders,
which can be shown to be supersets of chambers. This greatly simplifies the main algorithm (i.e.,
the induction part) to a procedure which is very similar to the 2-dimensional case as described in
the previous section. Furthermore, we only keep those cylinders that contain at least one chamber,
thus, the bound for the number of chambers also bounds the number of cylinders from above.

The algorithm is formally given as below. We call the program ALGLP(R™) to get a solution of
the UnknownLP problem. Note that each subroutine has its own local variables, and all subroutines
share the same global variables.

Algorithm 1 ALcLP(V)

Input: V: A subspace of R".
Output: A feasible solution z € V', or No (solution in V).

Global variables: region(1)*,. .., region(m)* (initially all 0).
Local variables: Cylinders.

1: Let d be the dimension of V', and {b1, b, ...,bs} be an orthonormal basis of V.
2: if d =1 then
3:  Make two queries x = b; and x = —b; to the oracle.
4. if the oracle returns Yes on an x then
5: return x and halt the whole program ALGLP(R").
6: end if
7. Update region(i)* = conv(region(i)*, {A\z : A > 0}) for each returned i in the above queries.
8:  Halt the current program ALGLP (V).
9: end if
10: Run ALGLP ({z = )", z;b; € V : angle(zq, z2) = 0}).

11: Let Cylinders = {(0,27)}.

12: while true do

13:  Pick (o, B) € Cylinders with the max § — a.

14 if (B —a)/7m <272+ then

15: return No and terminate the current program ALGLP (V).

16: else

17: Let v = (a+ 8)/2 and run ALGLP ({z = Y, ;b; € V : angle(z1,22) =7}).
18: Replace («, 3) in Cylinders by (a, ) and (v, 3).

19: for each element (4, A) in Cylinders do

20: if {x =3, 2b; €V :angle(x1,22) € (6,A)} C |, region(i)* then
21: Remove (4, \) from Cylinders

22: end if

23: end for

24:  end if

25: end while
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In the algorithm, angle function is a two-argument variant of the arctangent function: angle(z,y)
is the counter-clockwise angle between the positive horizonal axis and the point (x,y) on the plane.
The induction step is in line and [I7, where the subspaces called are defined by angle(-) of the
first two coordinates. The algorithm either returns a feasible solution x in V', or discovers that
the entire subspace of V' does not contain any feasible solution by keeping track of region(7)*. The
algorithm thus falls into the framework of convex hull covering algorithms and always returns a
correct answer.

To implement induction in the algorithm, the information of an orthonormal basis of a called
subspace can be derived from the current considered space. In particular, the subspace {a; =
>owibi € Vi angle(xy,x) = 0} in line is equivalent to the space expanded by the basis
(cos(0)by 4 sin(0)bg, bs, ..., by), and the subspace given by angle(z1, z2) = v in line [T is equivalent
to the space expanded by (cos(7y)b; + sin(vy)be, b3, ..., bg). Thus, the subspace with parameter V' in
the algorithm can be implemented efficiently.

Within the program with parameter V, each element («, ) € Cylinders corresponds to {a: =
> xibi € V i angle(x1, x2) € (o, 5)}, which is a sector cylinder in subspace V. It can be shown that
a cylinder surviving at the end of each while-loop iteration must contain at least one entire chamber;
thus, the upper bound for the number of chambers, which is at most O(m™), also bounds the number
of cylinders. The volume of a maximum cylinder is cut by half (line[I8]) and a cylinder is disqualified
if it is smaller than 2-(27+3)L (line [[d]), the algorithm takes at most mP°(™)(2n + 3)L iterations in
the while loop. Taking the recursion into consideration, there are at most O(mpdy(")poly(n) . L))
iterations executed.

The above analysis leads to the following theorem.

Theorem 10. ALGLP(R") solves the UnknownLP problem in time O((an)pOly(")). In particular,
the problem can be solved in polynomial time if the LP has constant variables.

Proof. We prove the following property by induction: when called on a parameter V', the program
either returns a feasible solution x in V', or discovers that the entire subspace V' does not contain any
feasible solution. Once this is proved, applying it to the case dim(V') = 1 gives the correctness of the
algorithm. The induction base is trivially true. Suppose that the claim is true for dim(V) =d—1,
and we consider the case for dim(V') = d. It is not hard to see that the algorithm falls into the
framework of convex hull covering algorithms: Starting from region(z)* = (), the algorithm proposes
queries (line B]) and uses the returned violations to update region(i)*’s (line [[). Thus, Theorem
guarantees the correctness of the algorithm, as long as the algorithm always terminates. We will
show this together with the complexity analysis below.

Within the program with parameter V' with an orthonormal basis {b1,bs, ..., bs}, each element
(v, B) € Cylinders corresponds the set

{a: = Zbixi eV ‘ angle(z1, x2) € (a,ﬂ)}7

which is a sector cylinder in subspace V. Each cylinder surviving at the end of each while-loop
iteration intersects with some chamber, because otherwise it is in (J; region(:)* and thus has been
eliminated in line 211 Note that the boundary of the sector cylinder (a, ) are the two (d — 1)-
dimensional subspaces

V, = {x = Zbiasi eV ‘ angle(zy,x2) = a}
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and

Vg = {g; = me eV ‘ angle(zy,x2) = /8}7

both of which have been searched in the previous loop iterations for feasible solutions. By induction
hypothesis, either a feasible solution has been found and the whole program has ended, or we have
known at this point that the two subspaces do not contain a feasible solution. Since a chamber
intersects with the cylinder, but not with the cylinder’s boundary, we can conclude that the cylinder
contains at least one entire chamber. Therefore, when all cylinders are too small to contain any
feasible region (line[I4]), we can conclude that the current subspace V' does not contain any feasible
solution. To be more precise, first, note that the normalized volume of a sector cylinder

{z € R" : ||z|| = 1, angle(z1,22) € (o, 5)}
is the same as that of a 2-dimensional sector
{x € R?: ||z|| = 1,angle(z1, 22) € (o, B)},

both equal to (8 — «)/2m. Second, in general it is not true that a set S of small volume cannot
contain a solution. But the set in our case is the sector cylinder, and the induction hypothesis
guarantees that the boundary (the two half-subspaces corresponding to angle(z1,z2) = « and )
do not contain any feasible solution. Thus the cylinder either contain no feasible solution, or the
entire convex cone of the feasible region in Lemma [l

Since each cylinder contains at least one entire chamber, and different cylinders clearly do not
intersect, the upper bound for the number of chambers also holds for the number of cylinders. As
each time the volume of the maximum cylinder shrinks by half (line [I8) until it is smaller than
2~ (n43)L (line [)), by Theorem [T} the algorithm takes at most ZZ o (M) (2n + 3)L iterations in
the while loop. Taking the recursion into consideration, there are at most

n
11 (Z ( ) 2n+3)L> — O(m"*n" L")
d=0 =0
iterations executed.
Inside each loop, the only steps other than the subroutines that cost more than a constant

amount of time is at line 20, which is to check whether |J, region(i)* contains some set. Here
we briefly argue how to do it in O( ) time. Each region(i)* has at most m™ facets and thus

n2
| region(i)* has at most (" ) < m™ vertices. These vertices can form at most 4 +1) = O(m"g)
simplexes, which are convex. For each of these potential simplexes, pick an arbitrary interior point
p and check whether it is outside | J, region()*.
Therefore, the whole algorithm ALGLP(R™) has running time O(m”gn”L”). O

4.3 Counting the Number of Chambers

Consider the union of m polytopes in R™, their complement divides the whole space R™ into a
number of disconnected components, called chambers. To analyze the running time of our algorithm,
we need to count the number of chambers formed by m polytopes (or more generally, convex sets).
This question was first raised by Laszlé Fejes Toth as an open problem. The 2-dimensional case
was proved by Katona [15] and the general case was proved by Kovalev [17].
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Theorem 11 (Kovalev [I7]). The complement of the union of m open or closed convex sets in R"
can have at most Y1 (") = O(m™) chambers.

The bound described in the theorem is tight: consider, e.g., when all convex sets are hyperplanes.
The proof of Katona was based on the analysis of the shape of the convex sets, and the proof of
Kovalev used induction on the dimension. Next, we give an alternative and simpler proof to this
theorem. Our proof does not rely on induction and is independent to [I5 [I7]. From our proof,
we can see clearly where each binomial coefficient in the summation comes from. (We recommend
readers read all these proofs for comparison.)

We will use bounded polygons in a 2-dimensional plane R? to illustrate the idea of our proof,
which is completely elementary and much simpler than the one in [I5]. Actually, we identify the
measure of exterior angledd to naturally bridge the number of polygons and that of chambers, and
we only use the well-known exterior angle theorem which says that the sum of exterior angles of a
2-dimensional polygon is 27r. For a given polygon C, let V(C') denotes the set of vertices of C' and
let (v, C') denote the exterior angle at vertex v, then }_ ¢y oy a(v, C) = 2.

Consider m bounded and closed convex polygons Ci,Cs, ..., Cp C R2. For simplicity, we
assume that no three edges intersect at the same point. Assume that the complement of their
union, ]Rz\UZ- C;, has k 4+ 1 chambers Dy, D1, ..., Dg, where Dy is unbounded and Dy, ..., Dy are
bounded polygons. Then for any vertex v € V(D;), there are two possibilities (see Figure [l for an
illustration):

e v is a vertex of some polygon Cj. In this case we have a(v, D;) <0 < (v, C;).

e v is the intersection point of two edges from two polygons C; and Cy. In this case we have
a(v,Dj) = a(v,C; N Cy).

Cy

Cs

Figure 1: Illustration of the 2D proof.

Hence, all exterior angles of D; are “contributed” by the m polygons and their intersections.

8An exterior angle of a polygon at a vertex v is defined as the angle formed by one side adjacent to v and a line
extended from the other side. The value is # minus the interior angle. For a concave vertex, its exterior angle is
negative.
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Adding up all these exterior angles, we have]

27 -k = Z a(v,Dj) <

< i a(v, Ci) + 2 “(“’Cimcj):2”'((T>+(?)>

i=1 veV(Cy) 1<i<j<mveV(C;NCy)
Thus, the total number of chambers is at most Z?:o (T’)

In order to generalize the proof to general convex sets in the n-dimensional space R", one needs
to define exterior angles for general convex sets in higher dimensions, so that it can still capture
the intrinsic relationship between convex sets and chambers. To this end, we adapt the concept of
“extreme directions” from Banchoff’s seminal work [2] and define the exterior angle of a boundary
point as the set of all extreme directions at that point. Our definition of exterior angles is different
from that of in [2], in that we drop all low dimensional terms. The reason is that Gauss-Bonnet-type
theorems relate total curvature to Euler characteristic, but for our purpose, the invariant of total
curvature (i.e., exterior angle in our definition) in the highest dimension precisely links the convex
sets and chambers. The formal proof is deferred to Appendix [Cl

4.4 Lower Bound

In this section, we establish an exponential lower bound for the UnknownLP problem. We will need
McMullen’s celebrated proof [19] 20] of the seminal Upper Bound Conjecture by cyclic polytopes.

Consider the moment curve ¢ : R — R™ that defines c(t) = (¢,#%,...,t") for t € R. For any
distinct m > n points ¢(t1), ..., c(t;,) on the moment curve, its convex hull conv(c(t1),...,c(ty,)) is
called a cyclic polytope with m vertices. It is known that its combinatorial structure (including the
number of faces of any dimension) is uniquely determined by n and m, and is independent of the
points chosen. We use C'(n, m) to denote such a cyclic polytope with m vertices in the n-dimensional
space.

Theorem 12 (Upper Bound Theorem (in dual form)). Let f(P) denote the number of k-dimensional
faces of a polytope P. For any polytope P in R™ with m facets (i.e., (n—1)-dimensional faces) and
any 0 < k <n—2, we have fr(P) < fn_r—1(C(n,m)). In particular,

() < as@Gnm) = (7T ) (7 ) g uiern),

The upper bound theorem, in its dual form, implies an upper bound on the number of vertices
of a polytope with m facets, and the maximum is achieved at the dual of a cyclic polytope with m
vertices.

Theorem 13. Any algorithm that solves the UnknownLP problem with m constraints and n variables
in the worst case needs at least Q(mL”/2J) queries to the oracle.

Proof. By Theorem [12] and the duality of polytopes, we know that the dual polytope P of a cyclic
polytope C(n,m) has m facets and k = @(mL”/ 2J) vertices. Equivalently, P can be defined by

9The second inequality only considers the intersection of two but not more C;’s, because we assumed that no three
edges intersect at the same point. When there are such three edges, it is actually to the advantage of our analysis.
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those m facet-defining half-spaces. Note that since the combinatorial structure of a cyclic polytope
C'(n,m) is only determined by m and n, the combinatorial structure of P is also fixed.

Assume that the vertices of polytope P are vy,vs,...,v,. It is easy to see that for any v,
1 < i < k, there exists a half-space H; = {y € R™ : (¢;,y) > d;} which intersects P only at
v;, le., v; = PN H;. Thus, (¢,v;) = d; and (¢;,v;) < d; for all j # i. We now slightly move
each half-space H; towards the polytope P such that (i) H; N P has a positive volume, and (ii)
(H; " P)N(H; N P) =0 for any i # j; denote the resulting open half-space by H;.

We construct our unknown LP instances as follows. Let P’ be the set of interior points of P.
Consider the following family of LP systems LP; : {P’ N HZ’}, for i = 1,...,k. From the above
analysis, we know that

e every LP; consists of n variables and m + 1 constraints: the first m ones by P’ and the last by
H;

e every LP; has a nonempty feasible region;

o the feasible regions of LFP; and LP; are disjoint, Vi # j.

Next we define the adversary oracle: For any queried point p, if p ¢ P’, the oracle returns
the index of an arbitrary violated constraint among the first m constraints that define P’. If
p € P'\ |U; H}, the oracle just returns the index m + 1, meaning that the last constraint (i.e., the
one corresponds to H/) is violated. If p € P’ N H/ for some i, then the oracle also returns the index
m + 1 if the algorithm has not made k£ queries yet.

Now for any two systems LF; and LP;, the oracle will return us a different answer only if we
propose a point in the feasible region of one of them. Because overall there are k LP systems, for
any ¢ < k — 2 queries, there are at least two linear systems LP; and LP; from which we cannot
distinguish. Thus, an algorithm has to query on at least k — 1 = Q(m L/ 2J) candidates in order to
solve the UnknownLP problem in the worse case. Hence, the theorem follows. O

5 Concluding Remarks

We consider solving linear programs when the input constraints are unknown, and show that dif-
ferent kinds of violation information yield different computational complexities. Linear programs
are powerful tools employed in real applications dealing with objects that are largely unknown.
For example, in the node localization of sensor networks where the locations of targets are un-
known [6], the computation of the locations in some settings can be formulated as a linear program
with constraints that measure partial information obtained from data [I0]. However, the estimation
usually has various levels of error, which may lead to violations of the presumed constraints. In-
teresting questions that deserve further explorations are what can be theoretically analyzed there,
and in general, what other natural formats of violations there are in linear programming and what
complexities they impose.
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A Small Number of Constraints

In this section, we consider those LP instances Az > b in which the number of constraints m is
less than or equal to the number of variables n. Note that such LP instances possess an important
property that a feasible solution almost surely exists. In the following we will see that, in contrast
to the exponential lower bound established for the general setting, the solution-existing (almost
everywhere) property yields an efficient algorithm for the UnknownLP problem.

Theorem 14. The UnknownLP problem with m constraints and n variables can be solved in poly-
nomial time with respect to the input size when m < n.

Proof. We use the ellipsoid method to find the unknown matrix A and vector b, which can be
together viewed as a point (also a degenerate polyhedron) in dimension R™(+1), Initially, we
choose a sufficiently large ellipsoid that contains the candidate region of the point (A,b). During
each iteration of the algorithm, we pick the center (A’,b) € R™™ 1 of the current ellipsoid.

If the LP A’x > U/ has a feasible solution x, then we simply query z to the oracle. If the oracle
returns Yes, then x is also a feasible solution to Ax > b, and the job is done. Otherwise, suppose
that the oracle returns an index i, then we know that (a;,z) < b; and (a},x) > b}, which gives a
separating hyperplane.

A problem arises when A’z > V' is infeasible, in which case we cannot find a separating hyper-
plane directly. However, notice that when m < n, a linear program A’z > V' is always feasible if
the matrix A’ is full rank. Also, for any matrix A’ and any € > 0, we can easily find a full rank
matrix A” such that the difference between any entry of A" and A” is at most €. Then, by querying
a feasible solution of A"z > V', we actually get a separating hyperplane between (A”,b") and (A, b).
Since (A”, V') can be arbitrarily close to the center point (A’, ') of the current ellipsoid, we are still
be able to use the original ellipsoid argument to claim that the volume of the ellipsoid uniformly
decreases at every step.

Finally, notice that the solution polyhedron degenerates to a point and has volume 0. We can
use a machinery developed by Grotschel, Lovész, and Schrijver [I1l [12] to handle this issue. The
same idea has been used in solving UnknownLP in the furthest oracle model.

Thus, the UnknownLP problem can be solved in polynomial time when m < n. O

B Furthest Oracle Algorithm: Formal Specifications and Proofs

We give formal description of algorithm and proof of its correctness and complexity in this section.
In Section B3] we show a proof of Lemma [l In Section [B.2], we give a procedure to check the
consistency of two furthest Voronoi diagrams, which will be used in the main algorithm given in
Section

B.1 Proof of Lemma [§

Proof. On the one direction, assume that Az > b is infeasible. For any point p € extreme(A,b), by
definition, p is not a feasible solution of Ax > b. Suppose for the sake of contradiction that the
support linear system {(a;,z) > 0| i € S} contains a feasible solution z € R". Consider 2’ = p+ex
for a small € > 0. We have

max {b; — (a;,a")} = miax{bi — {a;,p) — €+ {a;,x)} < d(A,b).
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This contradicts the fact that p € extreme(A,b). Thus, we know that {(a;,z) > 0 | i € S} is
infeasible.
On the other direction, let
d' = max{b; — (a;,p)}.
i€[m)]

Since p is not a feasible solution of Ax > b, we have d’ > 0. By the definition of S, we know that
for any i € S, b; — (a;,p) = d" > 0. Now consider any point x € R", let 2/ = 2z — p. Since there
exists an index ¢ € S such that (a;,2’) <0, we have

b; — (a;,x) = b; — <ai,p> — <ai,x'> >d +0>0
This means that x is not a feasible solution to Az > b. Thus, we conclude that Ax > b is
infeasible. [

B.2 Consistency Check between Voronoi Diagrams

To specify the main algorithm, we need a subprocedure VorCheck to check whether the furthest
Voronoi diagram of the unknown (A, b) is the same as that of a proposed (A’,1’). We will describe
the procedure with respect to the general Az > b case, and the discussions in Section B Ilfor Az > 0
can be considered as a special case. (Recall that the input instance has m constraints, n variables,
and binary size L.)
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Procedure 2 VorCheck (A’, 1)
Input: Presumed point (A, V')
Output: Yes, or a separating hyperplane (between (A,b) and (A’, 1))

1. for each pair i,j € [m] and 7 # j do
2. if GenVor'(i) N GenVor'(j) # () then

3: Solve the following LP feasibility problem and get a solution y™):
b — (aj,y) = b — (af,y) > bl — (aj,y) + 27100, VE # 14, j (6)
4: Take an orthonormal basis 22, ..., 2(" of the affine subspace ng D GenVor'(i) N GenVor'(j).

5: for each k € {2,...,n} do
. Let y(k) f— y(l) + 2_10L . Z(k)
Find ¢*) (the absolute value of each of its component is bounded by 272F) to satisfy the
following inequalities Eq.() and (8g]).

b — (aj,y™ + €M) > b — (af, y® + W), e £ i (7)
b; - <a;7y(k) - e(k)> > bl@ - <a/€7y(k) - 6(k)>7v€ 7&] (8)
: end for

9: for each k € [n] do

10: Query y*) + ¢ and y*) — ) to the oracle, and get answers i’ and j’, respectively.

11: if i #i or j/ # j then

12: Output the corresponding separating hyperplane.

13: end if

14: end for

15:  end if

16: end for

17: Output Yes

Lemma 15. If GenVor'(i) # 0 for all i, then the procedure VorCheck either finds a separating
hyperplane between (A’,V) and (A,b), or confirms that GenVor = GenVor’.

Proof. In the procedure VorCheck, for each (i,7) with GenVor'(i) N GenVor'(j) # 0, we first find
n — 1 linearly independent points in GenVor'(i) N GenVor'(j), and then check that they are also in
GenVor(i) N GenVor(j). We achieve this by finding a pair of points y*) & ¢*) and verify that they
are in GenVor(i) and GenVor(j), respectively. Then because of the assumed precision for (A,b), we
know that y*) € GenVor(i) N GenVor(j). Hence, after Step Idin VorCheck (A’,¥), we can conclude
that the hyperplane ng also contains GenVor (i) N GenVor(j).

Now consider each nonempty GenVor'(i). It is the intersection of k < m — 1 half-spaces with
boundary H ij, and each of these H{j’s is equal to the corresponding boundary hyperplane H;; in
GenVor. Thus, we know that GenVor(i) C GenVor'(i) as the former is the intersection of possibly
more half-spaces. But both GenVor and GenVor’ are a partition of R", together with the fact that

all GenVor'(i)’s are nonempty, we have GenVor = GenVor'. O
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The procedure VorCheck (A’,b") checks whether GenVor = GenVor’, assuming that GenVor' (i) #
() for all . However, if GenVor' (i) = () for some i, but VorCheck does not know whether GenVor(i) is
empty. Our solution to this issue is to simply ignore these indices i that are not in 7" and pretend
that the unknown LP does not have these constraints. If at any point the oracle outputs some %
that is not in 7' (i.e., with GenVor'(i) = (}), then we get a separating hyperplane. Otherwise the
algorithm just runs as if these i’s do not exist: We either find some other separating hyperplane or
a valid solution to the unknown LP, or confirm that the unknown LP restricted to T is infeasible,
which implies that the original LP is also infeasible (since it needs to satisfy even more constraints).

B.3 Main Algorithm

Now we are ready to describe the main algorithm FurthestAlg, which uses the ellipsoid method
to search for (A4,b) € R™™ D in order to solve the general UnknownLP problem Az > b. In the
algorithm, whenever we find a hyperplane that separates the unknown (A, b) and the center (A’, V')
of the current ellipsoid, we use “continue” to denote the standard procedure of proceeding to the
next iteration of the ellipsoid method with a smaller ellipsoid. Whenever we find a solution z with
Az > b, we use “terminate(z)” to mean to terminate the whole program with an output . We also
use “terminate(No)” for terminating the whole program with No, i.e., no feasible solution exists.
We use B(p, €) to denote the ball centered at p with radius e.
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Algorithm 3 FurthestAlg

Input: an unknown LP Ax > b

Output: a valid solution x for Az > b, or No.
1: Run the ellipsoid method to search for (A,b) € R™" D),
2: for each iteration of the ellipsoid method do

3:  Let (A",V) be the center of the current ellipsoid.

4:  if A’z >V is feasible then

5: Find a solution x to it and query x to the oracle.

6: if the oracle returns Yes then terminate(z).

7 else suppose that the oracle returns ¢, then we get a separating hyperplane

“ajz < b; and ajz > b)” and continue.

8  else

9: Define GenVor and GenVor’ by Eq.([2) and (3)), and let 7' = {i : GenVor' (i) # 0}.

10: Run VorCheck (A’, V). If it outputs a separating hyperplane, then continue

11: Compute a point p € extreme(A’, V') and the corresponding support S.

12: Query p to the oracle.

13: if the oracle outputs Yes then

14: terminate(p).

15: else if the oracle outputs an i ¢ T then

16: we get a separating hyperplane and continue.

17: else

18: Use GenVor = GenVor’ in B(p, ¢) for a sufficiently small € to recover {{(a;,z) > 0:i € S}.
19: if {(a;,x) > 0:1i € S} is feasible then
20: Compute a feasible solution z*, and suppose (a}, z*) < 0 for some i € S. We get a

separating hyperplane “(af,2*) <0 and (a;,z*) > 0” and continue.
21: else

22: terminate(No).
23: end if

24: end if

25:  end if

26: end for

Theorem 16. Algorithm FurthestAlg solves the UnknownLP problem Ax > b with the furthest oracle
i polynomial time.

Proof. We will prove the correctness and analyze the complexity along the way. The whole algo-
rithm runs the ellipsoid method to search for (A,b) € R™"™ Y For the center (A’, ) of the current
ellipsoid, if the LP A’z > V' is feasible, then we can find a solution z to A’z > ' in polynomial
time. If this x is also a solution to the unknown LP Ax > b from the query to the oracle, then
the algorithm successfully finds a feasible solution; thus, it outputs z and terminates. If the oracle
returns some ¢, it means that a;x < b;, then together with az > b, we get a hyperplane that sep-
arates (A,b) and (A, b') in R™™*D_ Thus, we can go to the next iteration of the ellipsoid method.
Therefore, the hard case is when the LP A’z > V' is infeasible, which will be our assumption for
the rest of the proof.

Define GenVor and GenVor’ by Eq.([) and (B]). The procedure VorCheck (A’,b') checks whether
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GenVor = GenVor', assuming that T' = {i : GenVor'(i) # 0} = [m]. By Lemma @5 if T = [m], then
either the procedure finds a separating hyperplane for (A,b) and (A’,b), or confirms that GenVor =
GenVor'. If T' # [m], then some GenVor'(i) = (), but VorCheck does not know whether GenVor(i) is
empty too. Our solution to this issue is to simply ignore these indices ¢ not in 1" and pretend that
the LP does not have these constraints. If at any point (of the current ellipsoid iteration, i.e., for
the current (A’,1')), the oracle outputs some i that is not in 7' (i.e., with GenVor'(i) = 0), then
we get a separating hyperplane (because in (A’,b) the distance b, — (a}, z) is always smaller than
v — (@}, x) for some j). If in other steps of the algorithm, i.e., at Step 10 of VorCheck (A’,d) and
Step 16 of FurthestAlg, the oracle never returns an ¢ € [m] \ T, then the algorithm just runs as if
these i’s do not exist: We either find some other separating hyperplane or a valid solution to the
unknown LP in some other steps, or we confirm that the unknown LP restricted to 7' is infeasible,
which implies that the original LP is also infeasible (since it needs to satisfy even more constraints).

Next we show that one can compute a point p € extreme(A’,b') and the corresponding support
S in polynomial time, which are defined by Eq.([) and (&). From Eq.[ ), we see that when A’z > V/
is infeasible, d(A’,b') > 0. Since Eq.() can be expressed as an LP (minz s.t. b; — (a;,2) < z,
Vi € [m]), we know that the minimum is always achievable and can be computed in polynomial time.
Then, from Eq.(#), one can search over all i € [m]| for an z satisfying that b; — (a;, z) = d(A", V) >
bj — (a;,x), Vj # i. Finally, it is easy to fix S as the set of indices ¢ with b; — (a;, z) = d(A", V).

Now that we have found a point p € extreme(A’,V'); if p happens to be a solution of Az > b,
then we are done. Below we focus on the situation that Ap > b does not hold. By Lemma [8]
it suffices to show that the support linear system of Az > b at p is infeasible. Let S (and S’,
respectively) be the set of the indices of the half-spaces in Az > b (and A’z > ¥V, respectively) that
have the (same) maximal distance to point p. Since GenVor = GenVor’ and the set of indices that
have the (same) maximal distance to some point solely depends on the Voronoi diagram, we know
S = S’. Consider the corresponding support linear system {(a;,z) > 0: ¢ € S} for the unknown LP
Az > b. We pick a small enough ¢* > 0 such that for any i ¢ S, € < d— (b; — (a;,p)). (Notice that
though we do not know the hidden (A4, b), the assumed precision implies a minimum possible gap
between the largest distance d(A,b) and the second largest distance max;.,, _(q, py<d(a,b) bi — (@i, D)-
It is not hard to see that this gap is singly exponentially small, thus we can take an e smaller than
this gap using polynomial number of bits.)

Now, if we focus on the region around p and limit our queries within the ball B = {z € R" :
||z —p|| < €*}, then for each query x = p+ 2’ within the ball B, where ||2’|| < €*, the oracle returns
an index

i € arg maﬁ {b; — (a;,z)} = arg max {b; — (a;,z)}

i€lm

— b — (a; g N — g o
argl?easx{ i <azap> (a,,x >} argl?eaéx{ (a,,x >}7

where the first equality is because when €* is sufficiently small, the maximum is always achieved
by some i € S, by the definition of S. The last equality follows from the fact that all half-spaces
in S have the same maximal distance to p. Thus, for any queried point within this ball B, the set
of indices possibly returned by the oracle for Az > b is the same as that by the furthest oracle for
the support linear system {(a;,x) > 0:¢ € S}. This means that the Voronoi structure GenVor in
B is exactly the same as the weighted spherica Voronoi diagram GenVor’ for the corresponding
support system in B. Note that the non-degenerency assumption of (A,b) holds in the ball B as

"9Recall the assumption of ||a;|| = 1, for all i € [m], for both Az > 0 in Section BIland Az > b in Section 3.2}
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well. Thus, by the results in Section Bl we are able to recover all a; for ¢ € S; namely the support
system {(a;,z) > 0:14 € S} is revealed. The last step is straightforward: if the support system is
infeasible, then by Lemma B we can conclude that LP Az > b is also infeasible. If the support
system has a feasible solution z*, since we know z* is not a feasible solution to {(a;,z) > 0:i € S}
(by Lemma []), we must have (a}, z) < 0 < (a;, z) for some ¢ € S, which is a separating hyperplane
between (A, b) and (A’, V).

From the above discussions, we know that every step can be implemented in polynomial time.
Hence, by the ellipsoid method, we can solve the problem efficiently. O

C Proof of the Chamber Counting Theorem

In this section, we will give a formal proof of Theorem [II] for counting the number of chambers
in the general n-dimensional space. We first define direction vectors in R™ and their indicator
functions; these definitions are inspired by Banchoff’s seminal work [2].

Definition 4. For a given closed set C' in R™, a vector v € R"™ is called general if there is x € C
such that (v,x) > (v,y) for anyy € C and y # x. That is, x is the unique extreme point in C' along
the direction v. Note that x, if existing, must be at the boundary of C, denoted by OC. Define an
indicator function f,(p,C) by fu(p,C) =1 if p is such a unique extreme point, and f,(p,C) =0
otherwise.

By the definition, it was shown in [2] that if v is general for a bounded set C, then Zpe ac fo(0, C) =
1. Let dw™ ! be the ordinary volume element on the sphere of the unit ball in R™, denoted by
Sr=t={peR":|p|| =1} andlet V = [q, 1 dw™ " be the volume of S"~!. Note that the integral
f gn—1 can be considered as either over all points in S™~1 or over all direction vectors, i.e., fve gn—1-
Then for any nonempty bounded convex set C' C R", it holds that

V= /Sn1 do™ ! = /Snl Z fv(p, C) dw™ L = Z /Snl fv(p; C) dw™ L. (9)

pedC pedC

That is, the summation of the indicator functions over all points on the boundary of C' over all
directions equals to the volume of S™1.

Bound the unbounds. Note that Equation (@) does not hold when the set C' is unbounded.
The major effort in our proof is devoted to dealing with unbounded convex sets, described in the
following. We add a ball B(r) = {p € R" : ||p|| < r} with radius r sufficiently large to satisfy the
following conditions.

e All bounded convex sets are contained within B(r).

e At any intersection point between the boundary of an unbounded convex set and the sphere
of B(r), a supporting hyperplane of the convex set is “almost” perpendicular to the tangent
hyperplane of B(r) at that point. Formally, for any point p € 9C;NIB(r) for some unbounded
convex set Cj, let the unique supporting hyperplane of B at p be {x € R™ : (p,x) = b}, then
the distance between (1 — €)p and the supporting hyperplane of C; is 0 when r approaches
infinity. This implies that for any x which is not linear to p, if Tlggo p+ax € C;nN B(r),

then lgn p + ref(z,p) is not an interior point of C; N B(r) (see Figure 2hl), where ref(z, p) =
T [ee]
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(2pp” — I reflects = across the line that goes through the origin and p and I is the identity
matrix.

Given the big ball B(r) described as above, let C be the closure of set C;NB(r) for all 1 < i < m;
note that all sets C/ are now closed and bounded. Let

D = (R"\U CZ-> N B(r)

be the complement of the union of these convex sets within the ball B(r). Note that the number of
chambers in D’ and that in D = R™\ |J, C; is the same. Suppose that D’ has k chambers, and let

1,--., D}, be the closure of each chamber (which are all bounded) Next we partition all points
in | ; 8D;- into three categories:

« Ip={pecl,;0D} |pcaB,p¢,aC;}.
e Tc={pel;0D} | p¢dB,pel;aC}.

We next prove a key lemma used in our proof. Note that we can assume that any D;» and D;-,,
j # 7', do not intersect; indeed, we can expand all the closed sets C; by a small € and this does not
decrease the number of chambers.

/

Lemma 17. For any chamber D;-, any p € ODJ,

hold.

(1) Ifp € s, fu(p, D) = fu(p, B).

and any vector v € R™, the following properties

(2) IfpeTe, fulp, D)) < f- (Pa Nipeoc: Cz{>'

(3) pr € IWBC'; rlggo fv (p7 D;) < rlggo fref(v,p) <p7 mi;peaclf C{) .
Proof. We prove the claim for each case respectively.
(1) Both sides equal to 1 if v = Ap for some A > 0, and both are 0 otherwise.

(2) Let I ={i € [m] | p € C/}. If the right hand side of the inequality is 0, then there is another
point w € | J;¢; Cf with (p, —v) < (w,—v). Let w = p + x. We pick a small enough e > 0,
such that p’ = p —ex ¢ C’]’- for any j ¢ I (see Figure 2a)). At the same time, for any ¢ € I,
p' ¢ C! as well, because there is a separating hyperplane such that C! is entirely at one side,
and thus, p’ cannot be an interior point of C}. So p’ € D} as we assumed that two D’’s do
not intersect. Now (p',v) = (p,v) — e({p,v) — (w,v)) > (p,v), thus, f,(p, D) = 0.

"Note that the definitions of all C} and D’ depend on the radius of the ball B(r). That is, precisely, they should
be C}(r) and D;- (r). In our discussions, for simplicity, we ignore the parameter r, and note that r is always sufficiently
large.
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p' =p+e-ref(z,p) € D]

(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
v

(a) Point p € T',.. (b) Point p € I'pc.

Figure 2: Illustration of the boundaries.

(3) We use a similar argument as above. If the right hand side of the inequality is 0, then there

is another point w € (J;c; C; with (p,ref(v,p)) < (w,ref(v,p)). Let w = p + x. We pick a
small enough € > 0, such that p’ = p + e(ref(z,p)) ¢ C; for any j ¢ I (see Figure RBl). At the
same time, when r is large enough, for any i € I, because p + ex € C/, which implies that p’
is not an interior point of C;. Then we know p" € D’. Thus, (p’,v) = (p,v) + e(ref(z,p),v) =
(p,v) + €(ref(v, p), z) > (p,v), which implies f,(p, D;) =0.

This completes the proof of the lemma. O

In addition, notice that for any point p, direction vector v and bounded set C, we have

/ Folp, C) du™t = / Foulp, O™ = / Frttor) (92 C) dis™.
Snfl Snfl Snfl

This fact, together with the above lemma, implies the following important corollary.

Corollary 18. For any chamber D’ and p € 0D, the following hold.

(1) If peTp, then [g._s fo(p, D) dw™ ' = [gus fu(p, B) dw™ 1.

(2) If pe T Ul pe, then fS"*l Tll}r{.lo fo(p, D;) dw™ 1 < fgn—l Tlggo fo <p’ ni:veac; C;) dwn 1.

Before proving the main theorem, we need to handle degenerated cases in which some points
are at the boundary of more than n convex sets.

Lemma 19. For any point p € R™, let S = {C,- |1 <i<mpce€ 8@} be the set of conver sets
whose boundary contains p. If |S| > n, then for any vector v that is general to all these convex

sets,

fv<p,ﬂ0>§ > fv<p,ﬂ0>.

Cces 5'C8,|S'|=n ces’
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Proof. For notational convenience, we shift the origin of the coordinate system to p. An important
observation is Note that for any convex set C' with p € 9C, f,(p,C) = 1 if and only if v is contained
in the polar cone of set C. Thus, by Lemma [ we know that f, (p, Nces C) = 1 if any only if
v € (Nees C)* = conv(Ugeg C*). Combining this with the fact that for any set S of more than
n cones in R", conv(S) = Ug/cgs/=n conv(S’), we know that f,(p,Nceg C) =1 then there must
exist S’ C S, |S’| = n, such that f,(p,Neey C) = 1. O

Now the main theorem can be proved by a simple counting argument.

Proof of Theorem [T As discussed above, assume there are k chambers caused by T = {C1,...,C/.}
(which are all bounded). Then we have

k
k= VZ Z/ folp, D}) dw™ " (Equation [)

Sn—1
J

1 _ .. . .
= V< Z + Z + Z >/Sn1 fo(p, D}) dw™ " (j is the unique one with p € D)

pels pelc vel'po

1 n—1 1 . / n—1
S /S A BT s Y /S im fv(p7l N Ci) o (Corollary [T5)
pedB pel; 0D} i:pedC!
1 1
< 7 Z / fu(p, B) dw"71+v Z Z / lim f, (p, m C’) dw™ ! (Lemma [T9)
peaB /5" SCT  pefaregocr 75" 7% cres
0<|S|I<n
= 14 Z 1 (Equation [])
scr
0<|S|<n
- 2(7)
. )
=0
Therefore, the theorem follows. O
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