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Abstract

Given a graph G and integers k1, k2, and k3, the unit interval editing problem asks whether G can be
transformed into a unit interval graph by at most k1 vertex deletions, k2 edge deletions, and k3 edge
additions. We give an algorithm solving this problem in time 2O(k logk) · (n+m), where k := k1 +k2 +k3,
and n,m denote respectively the numbers of vertices and edges of G. Therefore, it is fixed-parameter
tractable parameterized by the total number of allowed operations.

Our algorithm implies the fixed-parameter tractability of the unit interval edge deletion problem, for
which we also present a more efficient algorithm running in time O(4k · (n+m)). Another result is an
O(6k · (n+m))-time algorithm for the unit interval vertex deletion problem, significantly improving the
algorithm of van ’t Hof and Villanger, which runs in time O(6k · n6).

1 Introduction

A graph is a unit interval graph if its vertices can be assigned to unit-length intervals on the real line such
that there is an edge between two vertices if and only if their corresponding intervals intersect. Most
important applications of unit interval graphs were found in computational biology [5, 16, 18], where
data are mainly obtained by unreliable experimental methods. Therefore, the graph representing the
raw data is very unlikely to be a unit interval graph, and an important step before understanding the
data is to find and fix the hidden errors. For this purpose various graph modification problems have been
formulated: Given a graph G on n vertices and m edges, is there a set of at most k modifications that
make G a unit interval graph. In particular, edge additions, also called completion, and edge deletions are
used to fix false negatives and false positives respectively, while vertex deletions can be viewed as the
elimination of outliers. We have thus three variants, which are all known to be NP-complete [21, 30, 16].

These modification problems to unit interval graphs have been well studied in the framework of
parameterized computation, where the parameter is usually the number of modifications. Recall that a
graph problem, with a nonnegative parameter k, is fixed-parameter tractable (FPT) if there is an algorithm
solving it in time f(k) · (n +m)O(1), where f is a computable function depending only on k [12]. The
problems unit interval completion and unit interval vertex deletion have been shown to be FPT by Kaplan
et al. [18] and van Bevern et al. [3] respectively. In contrast, however, the parameterized complexity of the
edge deletion version remained open to date, which we settle here. Indeed, we devise single-exponential
linear-time parameterized algorithms for both deletion versions.

Theorem 1.1. The problems unit interval vertex deletion and unit interval edge deletion can be solved in
time O(6k · (n+m)) and O(4k · (n+m)) respectively.

Our algorithm for unit interval vertex deletion significantly improves the currently best parameterized
algorithm for it, which takes O(6k · n6) time [17]. Another algorithmic result of van ’t Hof and Villanger
[17] is an O(n7)-time 6-approximation algorithm for the problem, which we improve to the following.

Theorem 1.2. There is an O(nm + n2)-time approximation algorithm of approximation ratio 6 for the
minimization version of the unit interval vertex deletion problem.

The structures and recognition of unit interval graphs have been well studied and well understood
[11]. It is known that a graph is a unit interval graph if and only if it contains no claw, S3,S3, (as depicted
in Fig. 1,) or any hole (i.e., an induced cycle on at least four vertices) [26, 29]. Unit interval graphs are
thus a subclass of chordal graphs, which are those graphs containing no holes. Modification problems
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Figure 1: Small forbidden induced graphs.

to chordal graphs and unit interval graphs are among the earliest studied problems in parameterized
computation, and their study had been closely related. For example, the algorithm of Kaplan et al. [18]
for unit interval completion is a natural spin-off of their algorithm for chordal completion, or more
specifically, the combinatorial result of all minimal ways to fill holes in. A better analysis was shortly
done by Cai [7], who also made explicit the use of bounded-depth search in disposing of finite forbidden
induced subgraphs. This observation and the parameterized algorithm of Marx [24] for the chordal vertex
deletion problem immediately imply the fixed-parameter tractability of the unit interval vertex deletion
problem: One may break first all induced claws, S3’s, and S3’s, and then call Marx’s algorithm. Here we
are using the hereditary property of unit interval graphs,—recall that a graph class is hereditary if it is
closed under taking induced subgraphs. However, neither approach can be adapted to the edge deletion
version in a simple way. Compared to completion that needs to add Ω(`) edges to fill a C` (i.e., a hole
of length `) in, an arbitrarily large hole can be fixed by a single edge deletion. On the other hand, the
deletion of vertices leaves an induced subgraph, which allows us to focus on holes once all claws, S3’s, and
S3’s have been eliminated; however, the deletion of edges to fix holes of a {claw, S3,S3}-free graph may
introduce new claws, S3’s, and/or S3’s. Therefore, although a parameterized algorithm for the chordal
edge deletion problem has also been presented by Marx [24], there is no obvious way to use it to solve
the unit interval edge deletion problem.

Direct algorithms for unit interval vertex deletion were later discovered by van Bevern et al. [3] and
van ’t Hof and Villanger [17], both using a two-phase approach. The first phase of their algorithms
breaks all forbidden induced subgraphs on at most six vertices. Note that this differentiates from the
aforementioned simple approach in that it breaks not only claws, S3’s, and S3’s, but all C`’s with ` 6 6.
Although this phase is conceptually intuitive, it is rather nontrivial to efficiently carry it out, and the simple
brute-force way introduces an n6 factor to the running time. Their approaches diverse completely in the
second phase. Van Bevern et al. [3] used a complicated iterative compression procedure that has a very
high time complexity, while van ’t Hof and Villanger [17] showed that after the first phase, the problem
is linear-time solvable. The main observation of van ’t Hof and Villanger [17] is that a connected {claw,
S3,S3, C4, C5, C6}-free graph is a proper circular-arc graph, whose definition is postponed to Section 2.
In the conference presentation where Villanger first announced the result, it was claimed that this settles
the edge deletion version as well. However, the claimed result has not been materialized: It appears
neither in the conference version [28] (which has a single author) nor in the significantly revised and
extended journal version [17]. Unfortunately, this unsubstantiated claim did get circulated.

Although the algorithm of van ’t Hof and Villanger [17] is nice and simple, its self-contained proof is
excruciatingly complex. We revisit the relation between unit interval graphs and some subclasses of proper
circular-arc graphs, and study it in a structured way. In particular, we observe that unit interval graphs
are precisely those graphs that are both chordal graphs and proper Helly circular-arc graphs. As a matter
of fact, unit interval graphs can also be viewed as “unit Helly interval graphs” or “proper Helly interval
graphs,” thereby making a natural subclass of proper Helly circular-arc graphs. The full containment
relations are summarized in Fig. 2; the reader unfamiliar with some graph classes in this figure may
turn to the appendix for a brief overview. These observations inspire us to show that a connected {claw,
S3,S3, C4, C5}-free graph is a proper Helly circular-arc graph. It is easy to adapt the linear-time certifying
recognition algorithms for proper Helly circular-arc graphs [22, 9] to detect an induced claw, S3,S3,C4,
or C5 if one exists. Once all of them have been completely eliminated and the graph is a proper Helly
circular-arc graph, it is easy to solve the unit interval vertex deletion problem in linear time. Likewise,
using the structural properties of proper Helly circular-arc graphs, we can derive a linear-time algorithm
for unit interval edge deletion on them. It is then straightforward to use simple branching to develop the
parameterized algorithms stated in Theorem 1.1, though some nontrivial analysis is required to obtain the
time bound for unit interval edge deletion.

Van Bevern et al. [3] showed that the unit interval vertex deletion problem remains NP-hard on
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Figure 2: Containment relation of related graph classes.
Normal Helly circular-arc ∩ Chordal = Interval.

Proper Helly circular-arc ∩ Chordal = Unit Helly circular-arc ∩ Chordal = Unit interval.

{claw, S3,S3}-free graphs. After deriving a polynomial-time algorithm for the problem on {claw,
S3,S3,C4,C5,C6}-free graphs, van ’t Hof and Villanger [17] asked for its complexity on {claw, S3,S3,C4}-
free graphs. (It is somewhat intriguing that they did not mention the {claw, S3,S3,C4,C5}-free graphs.)
Note that a {claw, S3,S3,C4}-free graph is not necessarily a proper (Helly) circular-arc graph, evidenced
by the W5 (Fig. 1d). We answer this question by characterizing connected {claw, S3,S3, C4}-free graphs
that are not proper Helly circular-arc graphs. We show that such a graph must be like a W5: If we keep
only one vertex from each twin class (all vertices in a twin class have the same closed neighborhood) of
the original graph, then we obtain a W5. It is then routine to solve the problem in linear time.

Theorem 1.3. The problems unit interval vertex deletion and unit interval edge deletion can be solved in
O(n+m) time on {claw, S3,S3, C4}-free graphs.

We remark that the techniques we developed in previous work [8] can also be used to derive
Theorems 1.1 and 1.2. Those techniques, designed for interval graphs, are nevertheless far more
complicated than necessary when applied to unit interval graphs. The approach we used in the current
work, i.e., based on structural properties of proper Helly circular-arc graphs, is tailored for unit interval
graphs, hence simpler and more natural. Another benefit of this approach is that it enables us to devise a
parameterized algorithm for the general modification problem to unit interval graphs, which allows all
three types of operations. This formulation generalizes all the three single-type modifications, and is also
natural from the viewpoint of the aforementioned applications for de-noising data, where different types
of errors are commonly found coexisting. Indeed, the assumption that the input data contain only a single
type of errors is somewhat counterintuitive. Formally, given a graph G, the unit interval editing problem
asks whether there are a set V− of at most k1 vertices, a set E− of at most k2 edges, and a set E+ of at
most k3 non-edges, such that the deletion of V− and E− and the addition of E+ make G a unit interval
graph. We show that it is FPT, parameterized by the total number of allowed operations, k := k1 + k2 + k3.

Theorem 1.4. The unit interval editing problem can be solved in time 2O(k logk) · (n+m).

By and large, our algorithm for unit interval editing again uses the two-phase approach. However,
we are not able to show that it can be solved in polynomial time on proper Helly circular-arc graphs.
Therefore, in the first phase, we use brute force to remove not only claws, S3’s, S3’s, and C4’s, also all
holes of length at most k3 + 3. The high exponential factor in the running time is due to purely this phase.
After that, every hole has length at least k3 + 4, and has to be fixed by deleting a vertex or edge. We
manage to show that an inclusion-wise minimal solution of this reduced graph does not add edges, and
the problem can then be solved in linear time.

The study of general modification problems was initiated by Cai [7], who observed that the problem
is FPT if the objective graph class has a finite number of minimal forbidden induced subgraphs. More
challenging is thus to devise parameterized algorithms for those graph classes whose minimal forbidden
induced subgraphs are infinite. Prior to this paper, the only known nontrivial graph class on which the
general modification problem is FPT is the chordal graphs [10]. Theorem 1.4 extends this territory by
including another well-studied graph class. As a corollary, Theorem 1.4 implies the fixed-parameter
tractability of the unit interval edge editing problem, which allows both edge operations but not vertex
deletions [6]. To see this we can simply try every combination of k2 and k3 as long as k2 + k3 does not
exceed the given bound.
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Organization. The rest of the paper is organized as follows. Section 2 presents combinatorial and
algorithmic results on {claw, S3,S3, C4}-free graphs. Sections 3 and 4 present the algorithms for unit
interval vertex deletion and unit interval edge deletion respectively (Theorems 1.1–1.3). Section 5 extends
them to solve the general editing problem (Theorem 1.4). Section 6 closes this paper by discussing some
possible improvement and new directions. The appendix provides a brief overview of related graph classes
as well as their characterizations by forbidden induced subgraphs.

2 {Claw, S3,S3, C4}-free graphs

All graphs discussed in this paper are undirected and simple. A graph G is given by its vertex set V(G)
and edge set E(G), whose cardinalities will be denoted by n and m respectively. All input graphs in this
paper are assumed to be nontrivial (n > 1) and connected, hence n = O(m). For ` > 4, we use C` to
denote a hole on ` vertices; if we add a new vertex to a C` and make it adjacent to no or all vertices in the
hole, then we end with a C∗` or W`, respectively. For a hole H, we have |V(H)| = |E(H)|, denoted by |H|.
The complement graph G of a graph G is defined on the same vertex set V(G), where a pair of vertices u
and v is adjacent if and only if uv 6∈ E(G); e.g., W5 = C∗5, and depicted in Fig. 1f is the complement of C6.

An interval graph is the intersection graph of a set of intervals on the real line. A natural way to extend
interval graphs is to use arcs and a circle in the place of intervals and the real line, and the intersection
graph of arcs on a circle is a circular-arc graph. The set of intervals or arcs is called an interval model or
arc model respectively, and it can be specified by their 2n endpoints. In this paper, all intervals and arcs
are closed, and no distinct intervals or arcs are allowed to share an endpoint in the same model; these
restrictions do not sacrifice any generality. In a unit interval model or a unit arc model, every interval or
arc has length one. An interval or arc model is proper if no interval or arc in it properly contains another
interval or arc. A graph is a unit interval graph, proper interval graph, unit circular-arc graph, or proper
circular-arc graph if it has a unit interval model, proper interval model, unit arc model, or proper arc
model, respectively. The forbidden induced subgraphs of unit interval graphs have been long known.

Theorem 2.1 ([29]). A graph is a unit interval graph if and only if it contains no claw, S3,S3, or any hole.

Clearly, any (unit/proper) interval model can be viewed as a (unit/proper) arc model leaving some
point uncovered, and hence all (unit/proper) interval graphs are always (unit/proper) circular-arc graphs.
A unit interval/arc model is necessarily proper, but the other way does not hold true in general. A
well-known result states that a proper interval model can always be made unit, and thus these two graph
classes coincide [26, 29].1 This fact will be heavily used in the present paper; e.g., most of our proofs
consist in modifying a proper arc model into a proper interval model, which represents the desired unit
interval graph. On the other hand, it is easy to check that the S3 is a proper circular-arc graph but not
a unit circular-arc graph. Therefore, the class of unit circular-arc graphs is a proper subclass of proper
circular-arc graphs.

An arc model is Helly if every set of pairwise intersecting arcs has a common intersection. A circular-arc
graph is proper Helly if it has an arc model that is both proper and Helly.

Theorem 2.2 ([27, 22, 9]). A graph is a proper Helly circular-arc graph if and only if it contains no claw,
S3,S3, W4, W5, C6, or C∗` for ` > 4.

The following is immediate from Theorems 2.1 and 2.2.

Corollary 2.3. If a proper Helly circular-arc graph is chordal, then it is a unit interval graph.

From Theorems 2.1 and 2.2 one can also derive the following combinatorial result. But since we will
prove a stronger result in Theorem 2.5 that implies it, we omit its proof here.

Proposition 2.4. Every connected {claw, S3,S3, C4, C5}-free graph is a proper Helly circular-arc graph.

Note that in Proposition 2.4, as well as most combinatorial statements to follow, we need the graph
to be connected. Circular-arc graphs are not closed under taking disjoint unions. If a (proper Helly)
circular-arc graph is not chordal, then it is necessarily connected. In other words, a disconnected (proper)
circular-arc graph must be a (unit) interval graph.

1The reason we choose “unit” over “proper” in the title of this paper is twofold. On the one hand, the applications we are
interested in are more naturally represented by unit intervals. On the other hand, we want to avoid the use of “proper interval
subgraphs,” which is ambiguous.
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Proposition 2.4 can be turned into an algorithmic statement. We say that a recognition algorithm (for
a graph class) is certifying if it provides a minimal forbidden induced subgraph of the input graph G when
G is determined to be not in this class. Linear-time certifying algorithms for recognizing proper Helly
circular-arc graphs have been reported by Lin et al. [22] and Cao et al. [9], from which one can derive a
linear-time algorithm for detecting an induced claw, S3, S3, C4, or C5 from a graph that is not a proper
Helly circular-arc graph.

This would suffice for us to develop most of our main results. Even so, we would take pain to
prove slightly stronger results (than Proposition 2.4) on F-free graphs, where F denotes the set {claw,
S3,S3, C4}. The purpose is threefold. First, they enable us to answer the question asked by van ’t Hof
and Villanger [17], i.e., the complexity of unit interval vertex deletion on F-free graphs, thereby more
accurately delimiting the complexity border of the problem. Second, as we will see, the disposal of
C5’s would otherwise dominate the second phase of our algorithm for unit interval edge deletion, so
excluding them enables us to obtain better exponential dependency on k in the running time. Third, the
combinatorial characterization might be of its own interest.

A (true) twin class of a graph G is an inclusion-wise maximal set of vertices in which all have the same
closed neighborhood. A graph is called a fat W5 if it has precisely six twin classes and it becomes a W5

after we remove all but one vertices from each twin class.2 By definition, vertices in each twin class induce
a clique. The five cliques corresponding to hole in the W5 is the fat hole, and the other clique is the hub,
of this fat W5.

Theorem 2.5. Let G be a connected graph.

(1) If G is F-free, then it is either a fat W5 or a proper Helly circular-arc graph.

(2) In O(m) time we can either detect an induced subgraph of G in F, partition V(G) into six cliques
constituting a fat W5, or build a proper and Helly arc model for G.

Proof. We prove only assertion (2) using the algorithm described in Fig. 3, and its correctness implies
assertion (1). The algorithm starts by calling the certifying algorithm of Cao et al. [9] for recognizing
proper Helly circular-arc graphs (step 0). It enters one of steps 1–4, or 6 based on the outcome of step 0.
Here the subscripts of vertices in a hole C` should be understood to be modulo `.

If the condition of any of steps 1–4 is satisfied, then either a proper and Helly arc model or a subgraph
in F is returned. The correctness of steps 1–3 is straightforward. Step 4.1 can find the path because G is
connected; possibly v = x, which is irrelevant in steps 4.2–4.4. Note also that ` > 4 in step 4.

By Theorem 2.2, the algorithm passes steps 1–4 only when the outcome of step 0 is a W5; let H be its
hole and let v be the other vertex. Steps 5–7 either detect an induced subgraph of G in F or partition
V(G) into six cliques constituting a fat W5. Step 6 scans vertices not in the W5 one by one, and proceeds
based on the adjacency between x and H. In step 6.1, H and x make a C∗5, which means that we can
proceed exactly the same as step 4. Note that the situation of step 6.4 is satisfied if x is adjacent to four
vertices of H. If none of the steps 6.1 to 6.5 applies, then x has precisely three neighbors in H and they
have to be consecutive. This is handled by step 6.6.

Steps 0 and 4 take O(m) time. Steps 1, 2, 3, 5, and 7 need only O(1) time. If the condition in step 6.1
is true, then it takes O(m) time but it always terminates the algorithm after applying it. Otherwise,
step 6.1 is never called, and the rest of step 6 scans the adjacency list of each vertex once, and hence
takes O(m) time in total. Therefore, the total running time of the algorithm is O(m). This concludes the
proof.

Implied by Theorem 2.5, a connected {claw, S3,S3, C4, W5}-free graph is a proper Helly circular-arc
graph, which in turns implies Proposition 2.4. At this point a natural question appealing to us is the
relation between connected {claw, S3,S3, C4, C5}-free graphs and unit Helly circular-arc graphs. Recall
that the class of unit interval graphs is a subclass of unit Helly circular-arc graphs, on which we have a
similar statement as Corollary 2.3, i.e., a unit Helly circular-arc graph that is chordal is a unit interval
graph. However, a connected {claw, S3,S3, C4, C5}-free graph that is not a unit Helly circular-arc graph
can be constructed as follows: Starting from a C` with ` > 6, for each edge hihi+1 in the hole add a new
vertex vi and two new edges vihi, vihi+1. (This is actually the CI(`, 1) graph defined by Tucker [27]; see
also [22].) Therefore, Proposition 2.4 and Theorem 2.5 are the best we can expect in this sense.

2Interestingly, in the study of proper circular-arc graphs that are chordal, Bang-Jensen and Hell [1] showed that if a connected
{claw, S3, C4,C5}-free graph contains an S3, then it must be a fat S3, which is defined analogously as a fatW5.
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Algorithm recognize-F-free(G)
Input: a connected graph G.
Output: a proper and Helly arc model, a subgraph in F, or six cliques making a fat W5.

0. call the recognition algorithm for proper Helly circular-arc graphs [9];
1. if a proper and Helly arc model A is found then return it;
2. if a claw, S3, or S3 is found then return it;
3. if a W4, C∗4, or C6 is found then return a C4 contained in it;
4. if a C∗` with hole H and isolated vertex v is found then
4.1. use breadth-first search to find a shortest path v · · · xyhi from v to H;
4.2. if y has a single neighbor hi in H then return claw {hi,y,hi−1,hi+1};
4.3. if y has only two neighbors on H that are consecutive, say, {hi,hi+1} then

return S3 {x,y,hi−1,hi,hi+1,hi+2};
4.4. return claw {y, x,hj,hj′ }, where hj,hj′ are two nonadjacent vertices in N[y] ∩H;
\\ The outcome of step 0 must be a W5; let it be H and v. All subscripts of hi and Ki are modulo 5.
5. K0 ← {h0};K1 ← {h1};K2 ← {h2}; K3 ← {h3};K4 ← {h4};Kv ← {v};
6. for each vertex x not in the W5 do
6.1. if x is not adjacent to H then similar as step 4 (H and x make a C∗5);
6.2. if x has a single neighbor hi in H then return claw {hi, x,hi−1,hi+1};
6.3. if x is only adjacent to hi,hi+1 in H then

if xv ∈ E(G) then return claw {v,hi−1,hi+2, x};
else return S3 {x,hi,hi+1,hi−1, v,hi+2};

6.4. if x is adjacent to hi−1,hi+1 but not hi then return xhi−1hihi+1 as a C4;
6.5. if x is adjacent to all vertices in H then

if xy 6∈ E(G) for some y ∈ Kv or Ki then return xhi−1yhi+1 as a C4;
else add x to Kv; \\x is adjacent to all vertices in the six cliques.

6.6. else \\ Hereafter |N(x) ∩H| = 3; let them be hi−1,hi,hi+1.
if xy 6∈ E(G) for some y ∈ Ki or Kv then return xhi−1yhi+1 as a C4;
if xy 6∈ E(G) for some y ∈ Ki−1 then return claw {v,y,hi+2, x};
if xy 6∈ E(G) for some y ∈ Ki+1 then return claw {v,hi−2,y, x};
if xy ∈ E(G) for some y ∈ Ki−2 then return xhi+1hi+2y as a C4;
if xy ∈ E(G) for some y ∈ Ki+2 then return xhi−1hi−2y as a C4;
else add x to Ki; \\Kv,Ki−1,Ki,Ki+1 ⊆ N(x) and Ki−2,Ki+2 ∩N(x) = ∅.

7. return the six cliques.

Figure 3: Recognizing F-free graphs.

Note that a C4 is a proper Helly circular-arc graph. Thus, the algorithm of Theorem 2.5 is not yet a
certifying algorithm for recognizing F-free graphs. To detect an induced C4 from a proper Helly circular-
arc graph, we need to exploit its arc model. If a proper Helly circular-arc graph G is not chordal, then the
set of arcs for vertices in a hole necessarily covers the circle, and it is minimal. Interestingly, the converse
holds true as well—note that this is not true for chordal graphs.

Proposition 2.6. [22, 9] Let G be a proper Helly circular-arc graph. If G is not chordal, then at least four
arcs are needed to cover the whole circle in any arc model for G.

Proposition 2.6 forbids among others two arcs from having two-part intersection.3

Corollary 2.7. Let G be a proper Helly circular-arc graph that is not chordal and let A be an arc model for G.
A set of arcs inclusion-wise minimally covers the circle in A if and only if the vertices represented by them
induce a hole of G.

Therefore, to find a shortest hole from a proper Helly circular-arc graph, we may work on an arc model
of it, and find a minimum set of arcs covering the circle in the model. This is another important step of
our algorithm for the unit interval editing problem. It has the detection of C4’s as a special case, because
a C4, if existent, must be the shortest hole of the graph.

3A model having no such intersection is called normal; see the appendix for more discussion.
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Lemma 2.8. There is an O(m)-time algorithm for finding a shortest hole of a proper Helly circular-arc graph.

Before proving Lemma 2.8, we need to introduce some notation. In an interval model, the interval I(v)
for vertex v is given by [lp(v), rp(v)], where lp(v) and rp(v) are its left and right endpoints respectively. It
always holds lp(v) < rp(v). In an arc model, the arc A(v) for vertex v is given by [ccp(v), cp(v)], where
ccp(v) and cp(v) are its counterclockwise and clockwise endpoints respectively. All points in an arc model
are assumed to be nonnegative; in particular, they are between 0 (inclusive) and ` (exclusive), where ` is
the perimeter of the circle. We point out that possibly ccp(v) > cp(v); such an arc A(v) necessarily passes
through the point 0. Note that rotating all arcs in the model does not change the intersections among
them. Thus we can always assume that a particular arc contains or avoids the point 0. We say that an
arc model (for an n-vertex circular-arc graph) is canonical if the perimeter of the circle is 2n, and every
endpoint is a different integer in {0, 1, . . . , 2n− 1}. Given an arc model, we can make it canonical in linear
time: We sort all 2n endpoints by radix sort, and replace them by their indices in the order.

Each point α in an interval model I or arc model A defines a clique, denoted by KI(α) or KA(α)
respectively, which is the set of vertices whose intervals or arcs contain α. There are at most 2n distinct
cliques defined as such. If the model is Helly, then they include all maximal cliques of this graph [15].
Since the set of endpoints is finite, for any point ρ in an interval or arc model, we can find a small positive
value ε such that there is no endpoint in [ρ− ε, ρ) ∪ (ρ, ρ+ ε],—in other words, there is an endpoint in
[ρ − ε, ρ + ε] if and only if ρ itself is an endpoint. Note that the value of ε should be understood as a
function, depending on the interval/arc model as well as the point ρ, instead of a constant.

Let G be a non-chordal graph and let A be a proper and Helly arc model for G. If uv ∈ E(G),
then exactly one of ccp(v) and cp(v) is contained in A(u) (Proposition 2.6). Thus, we can define a
“left-right relation” for each pair of intersecting arcs, which can be understood from the viewpoint of
an observer placed at the center of the model. We say that arc A(v) intersects arc A(u) from the left
when cp(v) ∈ A(u), denoted by v → u. Any set of arcs whose union is an arc not covering the circle
(the corresponding vertices induce a connected unit interval graph) can be ordered in a unique way such
that vi → vi+1 for all i. From it we can find the leftmost (most counterclockwise) and rightmost (most
clockwise) arcs.

For any vertex v, let h(v) denote the length of the shortest holes through v, which is defined to be +∞
if no hole of G contains v. The following is important for the proof of Lemma 2.8.

Lemma 2.9. Let A be a proper and Helly arc model for a non-chordal graph G. Let v1, v2, . . . , vp be a
sequence of vertices such that for each i = 2, . . . ,p, the arc A(vi) is the rightmost of all arcs containing
cp(vi−1). If v1 is contained in some hole and viv1 6∈ E(G) for all 2 < i 6 p, then there is a hole of length
h(v1) containing v1, v2, . . . , vp as consecutive vertices on it.

Proof. Suppose that there is no such a hole, then there exists a smallest number i with 2 6 i 6 p such that
no hole of length h(v1) contains v1, v2, . . . , vi. By assumption, there is a hole v1 · · · vi−1uiui+1 · · ·uh(v1)

of length h(v1) with ui 6= vi; let it be H. In case that i = 2, we assume that H is given in the way
that v1 → u2. By Corollary 2.7, the set of arcs for H cover the circle in A. Since vi−1 → ui and by the
assumption on vi, the arc A(vi) covers [cp(vi−1), ccp(ui+1)] (note that i < h(v1) as otherwise vi → v1).
Therefore, the arcs for V(H) \ {ui} ∪ {vi} cover the circle as well. By Corollary 2.7, a subset of these
vertices induces a hole; since vi is not adjacent to v1 from the left, this subset has to contain v1. But a
hole containing v1 cannot be shorter than H, and hence it contains v1, . . . , vi, a contradiction. Therefore,
such an i does not exist, and there is a hole of length h(v1) containing v1, v2, . . . , vp.

Since vj and vj+1 are adjacent for all 1 6 j 6 p− 1, vertices v1, v2, . . . , vp have to be consecutive on
this hole.

Let α be any fixed point in a proper and Helly arc model. According to Corollary 2.7, every hole needs
to visit some vertex in KA(α). Therefore, to find a shortest hole in G, it suffices to find a hole of length
min{h(x) : x ∈ KA(α)}.

Proof of Lemma 2.8. The algorithm described in Fig. 4 finds a hole of length min{h(x) : x ∈ KA(cp(v) +
0.5)}. Step 1 creates |KA(cp(v) + 0.5)| arrays, each starting with a distinct vertex in KA(cp(v) + 0.5),
and they are ordered such that their (counter)clockwise endpoints are increasing. The main job of this
algorithm is done in step 3. During this step, w is the new vertex to be processed, and U is the current
array. Each new vertex is added to at most one array, while each array is either dropped or extended.
We use ⊥ as a dummy vertex, which means that no new vertex has been met after the last one has been
put into the previous array. Step 3.1 records the last scanned arc. Once the clockwise endpoint of the
last vertex z of the current array U is met, w is appended to U (step 3.4); note that A(w) is the most
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Algorithm shortest-hole(G,A)
Input: a proper and Helly arc model A for a non-chordal graph G.
Output: a shortest hole of G.

0. make A canonical where 0 is ccp(v) for some v;
1. for i = 1, . . . , cp(v) − 1 do
1.1. if i is ccp(x) then create a new array {x};
\\ these arrays are circularly linked so that the next of the last array is the first one.
2. w← ⊥; U← the first array;
3. for i = cp(v) + 1, . . . , 2n− 1 do
3.0. z← the last vertex of U;
3.1. if i is ccp(x) then w← x; continue†;
3.2. if i 6= cp(z) then continue;
3.3. if w = ⊥ then delete U; U← the next array of U;
3.4. if w 6= ⊥ then append w to U; w← ⊥; U← the next array of U;
4. for each U till the last array do
4.1. if the first and last vertices of U are adjacent then return U;
5. return U ∪ {v}. \\U is the last array.

†: i.e., ignore the rest of this iteration of the for-loop and proceed to the next iteration.

Figure 4: Finding a shortest hole in a proper Helly circular-arc graph.

clockwise arc that contains cp(z). On the other hand, if w = ⊥, then we drop this array from further
consideration (step 3.3). If after step 3, one of the arrays already induces a hole (i.e., the first and last
vertices are adjacent), then it is returned in step 4.1. Otherwise, U does not induces a hole, and step 5
returns the hole induced by U and v.

We now verify the correctness of the algorithm. It suffices to show that the length of the found hole is
min{h(x) : x ∈ KA(cp(v) + 0.5)}. The following hold for each array U:

(1) For any pair of consecutive vertices u,w of U, the arc A(w) is the rightmost of all arcs containing
cp(u).

(2) At the end of the algorithm, if U is not dropped, then 0 < cp(z) < cp(v), where z is the last vertex of
U.

Let v1, v2, . . . , vp be the vertices in U. From (1) and (2) it can be inferred that for 1 < i < p, the vertex
vi is adjacent to only vi−1, vi+1 in U, while v1 and vp may or may not be adjacent. If v1vp ∈ E(G), then
vertices in U induce a hole of G; otherwise U ∪ {v} induces a hole of G. By Lemma 2.9, this hole has
length h(v1).

Some of the |KA(cp(v) + 0.5)| arrays created in step 1 may be dropped in step 3. Note that step 3
processes arrays in a circular order starting from the first one, and each array is either deleted (step 3.3)
or extended by adding one vertex (step 3.4).

(3) At any moment of the algorithm, the sizes of any two arrays differ by at most one. In particular, at
the end of step 3, if the current array U is not the first, then U, as well as all the succeeding arrays,
has one less element than its predecessor(s).

This ensures that the hole returned in step 4.1 or 5 is the shortest among all the holes decided by the
remaining arrays after step 3.

It remains to argue that for any array U deleted in step 3.3, the found hole is not longer than h(x),
where x is the first vertex of U. All status in the following is referred at the moment before U is deleted
(i.e., before step 3.3 that deletes U). Let z be the last vertex of U. Let U ′ be the array that is immediately
preceding U, and let z ′ be its last vertex. Note that there is no arc with a counterclockwise endpoint
between cp(z ′) and cp(z), as otherwisew 6= ⊥ andUwould not be deleted. Therefore, any arc intersecting
A(z) from the right also intersects A(z ′) from the right. By Lemma 2.9, there is a hole H that has length
h(x) and contains U ∪ {z ′}. We find a hole through U ′ of the same length as follows. If U is not the first
array, then |U ′| = |U|+ 1, and we replace U∪ {z ′} by U ′. Otherwise, |U ′| = |U|, and we replace U∪ {z ′} by
{v} ∪U ′. It is easy to verify that after this replacement, H remains a hole of the same length.
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We now analyze the running time of the algorithm. Each of the 2n endpoints is scanned once, and
each vertex belongs to at most one array. Using a linked list to store an array, the addition of a new vertex
can be implemented in constant time. Using a circularly linked list to organize the arrays, we can find the
next array or delete the current one in constant time. With the (endpoints of) all arcs given, the adjacency
between any pair of vertices can be checked in constant time, and thus step 4 takes O(n) time. It follows
that the algorithm can be implemented in O(m) time.

3 Vertex deletion

We say that a set V− of vertices is a hole cover of G if G− V− is chordal. The hole covers of proper Helly
circular-arc graphs are characterized by the following lemma.

Lemma 3.1. Let A be a proper and Helly arc model for a non-chordal graph G. A set V− ⊆ V(G) is a hole
cover of G if and only if it contains KA(α) for some point α in A.

Proof. For any vertex set V−, the subgraph G− V− is also a proper Helly circular-arc graph, and the set of
arcs {A(v) : v ∈ V(G) \ V−} is a proper and Helly arc model for G − V−. For the “if” direction, we may
rotate A to make α = 0, and then setting I(v) = A(v) for each v ∈ V(G) \ V− gives a proper interval
model for G−V−. For the “only if” direction, note that if there is no α with KA(α) ⊆ V−, then we can find
a minimal set X of vertices from V(G) \ V− such that

⋃
v∈XA(v) covers the whole circle in A. According

to Corollary 2.7, X induces a hole of G, which remains in G− V−.

Noting that any “local” part of a proper and Helly arc model “behaves similarly” as an interval model,
Lemma 3.1 is an easy extension of the clique separator property of interval graphs [14]. On the other
hand, to get a unit interval graph out of a fat W5, it suffices to delete a smallest clique from the fat hole.
Therefore, Theorem 2.5 and Lemma 3.1 imply the following linear-time algorithm.

Corollary 3.2. The unit interval vertex deletion problem can be solved in O(m) time (1) on proper Helly
circular-arc graphs and (2) on F-free graphs.

We are now ready to prove the main results of this section.

Theorem 3.3. There are an O(6k ·m)-time parameterized algorithm for the unit interval vertex deletion
problem and an O(nm)-time approximation algorithm of approximation ratio 6 for its minimization version.

Proof. Let (G,k) be an instance of unit interval vertex deletion; we may assume that G is not a unit
interval graph and k > 0. The parameterized algorithm calls first Theorem 2.5(2) to decide whether it
has an induced subgraph in F, and then based on the outcome, it solves the problem by making recursive
calls to itself, or calling the algorithm of Corollary 3.2. If an induced subgraph F in F is found, it calls
itself |V(F)| times, each with a new instance (G− v,k− 1) for some v ∈ V(F); since we need to delete at
least one vertex from V(F), the original instance (G,k) is a yes-instance if and only if at least one of the
instances (G − v,k − 1) is a yes-instance. Otherwise, G is F-free and the algorithm calls Corollary 3.2
to solve it. The correctness of the algorithm follows from discussion above and Corollary 3.2. On each
subgraph in F, which has at most 6 vertices, at most 6 recursive calls are made, all with parameter value
k− 1. By Theorem 2.5, each recursive call is made in O(m) time; each call of Corollary 3.2 takes O(m)
time. Therefore, the total running time is O(6k ·m).

The approximation algorithm is adapted from the parameterized algorithm as follows. For the subgraph
F found by Theorem 2.5, we delete all its vertices. We continue the process until the remaining graph is
F-free, and then we call Corollary 3.2 to solve it optimally. Each subgraph in F has 4 or 6 vertices, and
thus at most n/4 such subgraphs can be detected and deleted, each taking O(m) time, hence O(nm) in
total. Corollary 3.2 takes another O(m) time. The total running time is thus O(nm) +O(m) = O(nm),
and the approximation ratio is clearly 6.

4 Edge deletion

Inspired by Lemma 3.1, one may expect a similarly nice characterization—being “local” to some point in
an arc model for G—for a minimal set of edges whose deletion from a proper Helly circular-arc graph G
makes it chordal. This is nevertheless not the case; as shown in Fig. 5, they may behave in a very strange
or pathological way.
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u1

u2u3

u4

u5 u6

v1

v2v3

v4

v5 v6

Figure 5: The set of all 30 edges (both
solid and dashed) spans a proper Helly
circular-arc graph. After the set of 19
dashed edges deleted (we rely on the
reader to verify its minimality), the re-
maining graph on the 11 solid edges is
a unit interval graph.
Note that four edges would suffice, e.g.,
{u2u3,u2v3, v2u3, v2v3}.

Recall that v → u means arc A(v) intersecting arc A(u) from the left, or cp(v) ∈ A(u). For each
point α in a proper and Helly arc model A, we can define the following set of edges:

−→
E A(α) = {vu : v ∈ KA(α), u 6∈ KA(α), v→ u}. (1)

One may symmetrically view
−→
E A(α) as {vu : v 6∈ KA(β), u ∈ KA(β), v→ u}, where β := max{cp(x) : x ∈

KA(α)}+ ε. It is easy to verify that the following gives a proper interval model for G−
−→
E A(0):

I(v) :=

{
[ccp(v), cp(v) + `] if v ∈ KA(0),
[ccp(v), cp(v)] otherwise,

(2)

where ` is the perimeter of the circle in A; see Fig. 6. For an arbitrary point α, the model G−
−→
E A(α) can

be given analogously, e.g., we may rotate the model first to make α = 0.

α(0) β

(a) An arc model for G.

0 `

(b) The interval model for G−
−→
E A(α) given by (2).

Figure 6: Illustration for Proposition 4.1.

Proposition 4.1. Let A be a proper and Helly arc model for a non-chordal graph G. For any point α in A,
the subgraph G−

−→
E A(α) is a unit interval graph.

The other direction is more involved and very challenging. A unit interval graph G is called a
spanning unit interval subgraph of G if V(G) = V(G) and E(G) ⊆ E(G); it is called maximum if it has the
largest number of edges among all spanning unit interval subgraphs of G. To prove that all maximum
spanning unit interval subgraphs have a certain property, we use the following argument by contradiction.
Given a spanning unit interval subgraph G not having the property, we locally modify a unit interval
model I for G to a proper interval model I ′ such that the represented graph G ′ satisfies E(G ′) ⊆ E(G)
and |E(G ′)| > |E(G)|. Recall that we always select ε in a way that there cannot be any endpoint in
[ρ− ε, ρ) ∪ (ρ, ρ+ ε], and thus an arc covering ρ+ ε or ρ− ε must contain ρ.

Lemma 4.2. Let A be a proper and Helly arc model for a non-chordal graph G. For any maximum spanning
unit interval subgraph G of G, the deleted edges, E(G) \ E(G), are

−→
E A(ρ) for some point ρ in A.

Proof. Let I be a unit interval model for G, and let E− = E(G) \ E(G), i.e., the set of deleted edges from
G. We find first a vertex v satisfying at least one of the following conditions.

(C1) The sets NG[v] and KA(ccp(v) − ε) are disjoint and all edges between them are in E−.

(C2) The sets NG[v] and KA(cp(v) + ε) are disjoint and all edges between them are in E−.

Recall that a vertex u ∈ KA(ccp(v) − ε) if and only if u → v, and a vertex w ∈ KA(cp(v) + ε) if and
only if v → w; see Fig. 7a. These two conditions imply NG[v] ⊆ KA(cp(v)) and NG[v] ⊆ KA(ccp(v))
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u
v

w

cp(v) + εccp(v)

(a)

v0
v u u′

v′w

(b)

v
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y′y

(c)

v
u

ww′

lp(u) rp(u)

(d)

v
u

w
u′ w′

lp(w′) rp(u′)

(e)

Figure 7: Illustration for the proof of Lemma 4.2.

respectively: All edges between v itself, which belongs to NG[v], and KA(ccp(v) − ε) or KA(cp(v) + ε)
are in E−.

Let I(v0) be the leftmost interval in I. Note that by Proposition 2.6, arcs for NG[v0] cannot cover
the whole circle. If NG[v0] is a separate component in G, then we can take v to be the vertex from
NG[v0] with the leftmost arc; it satisfies condition (C1). Otherwise, let I(u) be the last interval containing
rp(v0) and let I(u ′) be the next interval (i.e., I(u ′) is the leftmost interval that does not intersect I(v0)).
See Fig. 7b. Intervals I(u) and I(u ′) intersect (NG[v0] is not isolated), but v0u

′ 6∈ E(G) because G is
maximum: Moving I(v0) to the right to intersect I(u ′) would otherwise make a unit interval model that
represents a subgraph of G having one more edge than G.

• If u ′ → u, then u ′ → u → v0. We argue by contradiction that there cannot be vertices v ′ ∈
KA(cp(v0) + ε) and w 6∈ NG(v0) with uv ′, v ′w ∈ E(G). If uv ′ ∈ E(G) ⊆ E(G), then by the position
of A(v0), we must have u→ v ′ and v0 → v ′. Then v0u

′ 6∈ E(G) excludes the possibility u ′ → v ′; on
the other hand, v ′ → u ′ is excluded by Proposition 2.6: The arcs for u ′,u, v ′ cannot cover the whole
circle. Therefore, v ′u ′ 6∈ E(G), and likewise uw 6∈ E(G). They cannot be in E(G) either, but this is
impossible; See Fig. 7b. Let v be the vertex in NG[v0] such that A(v) is the rightmost; it satisfies
condition (C2).

• If u → u ′, then v0 → u → u ′. Similarly as above, the vertex v in NG[v0] such that A(v) is the
leftmost satisfies condition (C1).

Noting that conditions (C1) and (C2) are symmetric, we assume that the vertex v found above satisfies
condition (C2), and a symmetric argument would apply to condition (C1). Note that by the selection of v,
which has the leftmost arc among NG[v0], we have NG[v] ⊆ NG[v ′] for every v ′ satisfying lp(v ′) < lp(v);
thus setting their intervals to be [lp(v) + ε, rp(v) + ε] would produce another unit interval model for G.
In the rest of the proof we may assume without loss of generality that I(v) is the first interval in I.

Since the model A is proper and Helly, no arc in A can contain both ccp(v) and cp(v) + ε. In other
words, KA(ccp(v)) and KA(cp(v) + ε) are disjoint, and

−→
E A(ccp(v)) comprises precisely edges between

them; see Fig. 7a. By Proposition 4.1, |E−| 6 |
−→
E A(ccp(v))|. If KA(ccp(v)) is not adjacent to KA(cp(v)+ε)

in G, then
−→
E A(ccp(v)) ⊆ E−, and they have to be equal. In this case the proof is complete: ρ = ccp(v).

We are hence focused on edges between KA(ccp(v)) and KA(cp(v) + ε).

Claim 1. Let u ∈ KA(ccp(v)). If u is adjacent to KA(cp(v) + ε) in G, then I(u) does not intersect the
intervals for NG[v].
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Proof. Recall that uv /∈ E(G) by condition (C2) and the fact that u is adjacent to KA(cp(v) + ε) in G. Let
u ′ be the vertex in NG[v] with the rightmost interval, and let I(y) be the leftmost interval not intersecting
I(v). Note that vy 6∈ E(G): Otherwise moving I(v) to the right to intersect I(y) would make a unit interval
model that represents a subgraph of G with one more edge than G. Suppose to the contrary of this claim
that I(u) intersects some interval for NG[v], then it intersects I(u ′). See Fig. 7c. Since v satisfies condition
(C2) and by Proposition 2.6, u ′ → v and y→ u,u ′.

Let w be the vertex in KA(cp(v) + ε) that has the leftmost interval. Since v satisfies condition (C2),
lp(w) > rp(u ′); by the assumption that u is adjacent to KA(cp(v) + ε) in G, we have lp(w) < rp(u).
By Proposition 2.6, yw 6∈ E(G). Let A(y ′) be the leftmost arc such that y ′ ∈ KA(ccp(u)) and I(y ′)
lies in (rp(v), lp(w)); this vertex exists because y itself is a candidate for it. Again by Proposition 2.6,
y ′w 6∈ E(G).

Let X denote the set of vertices x with lp(x) < lp(w). We make a new interval model by resetting
intervals for these vertices. Since every vertex in X is adjacent to at least one of u and u ′, by Proposition 2.6,
the union of arcs for X do not cover the circle in A. These arcs can thus be viewed as a proper interval
model for G[X]. The new intervals for X, adapted from these arcs, are formally specified as follows. The
left endpoint of each x ∈ X is set as lp ′(x) = lp(w) − (ccp(w) − ccp(x)). For each vertex x ∈ X \NG(w),
we set

I ′(x) = [lp(w) − (ccp(w) − ccp(x)), lp(w) − (ccp(w) − cp(x))].

By the selection of w, we have x → w for all x ∈ X ∩ NG(w). Arcs for X ∩ NG(w) are thus pairwise
intersecting; by Proposition 2.6, they cannot cover the whole circle. We can thus number vertices in
X ∩NG(w) as u1, . . . ,up such that ui → ui+1 for each i = 1, . . . ,p− 1. Their right endpoints are set as

rp ′(u1) = max
{
lp(w) + ε, rp(u1)

}
, and

rp ′(ui) = max
{
rp ′(ui−1) + ε, rp(ui)

}
for i = 2, . . . ,p.

Let I ′ denote the resulting new interval model. To see that I ′ is proper, note that (a) no new interval
can contain or be contained by an interval I(z) for z ∈ V(G) \ X; and (b) the left and right endpoints
of the intervals for X have the same ordering as the counterclockwise and clockwise endpoints of the
arcs {A(x) : x ∈ X}, hence necessarily proper. Let G ′ denote the proper interval graph represented by I ′.
We want to argue that E(G) ⊂ E(G ′) ⊆ E(G), which would contradict that G is a maximum unit interval
subgraph of G, and conclude the proof of this claim.

By construction, G ′ − X is the same as G − X, while G ′[X] is the same as G[X]. Thus, we focus on
edges between X and V(G) \ X, which are all incident to X ∩ NG(w). For each i = 1, . . . ,p, we have
rp ′(ui) > rp(ui), and thus E(G) ⊆ E(G ′); on the other hand, they are not equal because uv ∈ E(G ′)\E(G).
We show by induction that for every i = 1, . . . ,p, the edges incident to ui in G ′ is a subset of G. The
base case is clear: NG′(u1) \ X is either {w} or NG(u1) \ X. For the inductive step, if rp ′(ui) = rp(ui),
then NG′(ui) \ X = NG(ui) \ X ⊆ NG(ui); otherwise, NG′(ui) \ X ⊆ NG(ui−1) \ X, which is a subset of
NG(ui) because ui−1 → ui. This verifies E(G ′) ⊆ E(G). y

We consider then edges deleted from each vertex in KA(ccp(v)), i.e., edges in E− that is incident to
KA(ccp(v)).

Claim 2. Let u ∈ KA(ccp(v)). If u is adjacent to KA(cp(v) + ε) in G, then there are strictly more edges
incident to u in E− than in

−→
E A(ccp(v)) (i.e., between u and KA(cp(v) + ε).).

Proof. The vertices inNG(u) consists of three parts, NG[v], those in KA(cp(v)+ε), and others. By Claim 1,
edges between u and all vertices in NG[v] are in E−; they are not in

−→
E A(ccp(v)). All edges between u

and KA(cp(v) + ε) are in
−→
E A(ccp(v)). In

−→
E A(ccp(v)) there is no edge between u and the other vertices.

Therefore, to show the claim, it suffices to show |NG[u] ∩ KA(cp(v) + ε)| 6 |NG(v)| < |NG[v]|.
Let uw be an edge of G with w ∈ KA(cp(v) + ε). Since v satisfies condition (C2), both uv and vw are

in E−. We show only the case that I(w) intersects I(u) from the right; a similar argument works for the
other case: Note that all the intervals used below are disjoint from I(v).

Consider first that there exists another vertex w ′ ∈ KA(cp(v) + ε) with interval I(w ′) intersecting
I(u) from the left. See Fig. 7d. Any interval that intersects I(u) necessarily intersects at least one of
I(w) and I(w ′), and thus by Proposition 2.6, its vertex must be in NG(v). As a result, setting I(v) to
[lp(u) − ε, rp(u) − ε] gives another proper interval model and it represents a subgraph of G. Since G is
maximum, we can conclude |NG[u]| 6 |NG(v)| < |NG[v]|. In this case the proof of this claim is concluded.

In the second case there is no vertex in KA(cp(v) + ε) whose interval intersects I(u) from the left.
Note that every interval intersecting [lp(w), rp(u)] represents a vertex in NG[v]. Let w ′ be vertex in
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KA(cp(v))∩KI(rp(u)) that has the leftmost interval, and let u ′ be vertex in KA(ccp(v))∩KI(lp(w)) that
has the rightmost interval; these two vertices exist because u and w are candidates for them, respectively.
See Fig. 7e. There cannot be any vertex whose interval contains [lp(w ′), rp(u ′)]: Such a vertex, if it
exists, is in NG(v), but then it contradicts the selection of u ′ and w ′. Also by the selection of u ′ and
w ′, no interval contains [lp(w ′) − ε, rp(u ′) + ε]. Thus, setting I(v) to [lp(w ′) − ε, rp(u ′) + ε] gives
another proper interval model and it represents a subgraph of G. Since G is maximum, we can conclude
|NG[u] ∩ KA(cp(v) + ε)| 6 |NG(v)| < |NG[v]|. y

Therefore, for every vertex u ∈ KA(ccp(v)), there are no less edges incident to u in E− than in
−→
E A(ccp(v)). Moreover, as there is at least one vertex in KA(ccp(v)) adjacent to KA(cp(v)+ε) inG, (noting
that no edge in

−→
E A(ccp(v)) is incident to two vertices in KA(ccp(v)),) it follows that |E−| > |

−→
E A(ccp(v))|,

contradicting that G is a maximum unit interval subgraph of G.

It is worth stressing that a thinnest place in an arc model with respect to edges is not necessarily a
thinnest place with respect to vertices; see Fig. 8 for an example. There is a linear number of different
places to check, and thus the edge deletion problem can also be solved in linear time on proper Helly
circular-arc graphs. The problem is also simple on fat W5’s.

β

α

Figure 8: The thinnest points for vertices
and edges are α and β respectively:
KA(α) = 2 < KA(β) = 3; while
−→
E A(α) = 8 >

−→
E A(β) = 6.

Theorem 4.3. The unit interval edge deletion problem can be solved in O(m) time (1) on proper Helly
circular-arc graphs and (2) on F-free graphs.

Proof. For (1), we may assume that the input graph G is not an unit interval graph; according to
Corollary 2.3, it is not chordal. We build a proper and Helly arc model A for G; without loss of generality,
assume that it is canonical. According to Lemma 4.2, the problem reduces to finding a point α in A such
that
−→
E A(α) is minimized. It suffices to consider the 2n points i+ 0.5 for i ∈ {0, . . . , 2n− 1}. We calculate

first
−→
E A(0.5), and then for i = 1, . . . , 2n−1, we deduce

−→
E A(i+0.5) from

−→
E A(i−0.5) as follows. If i is a

clockwise endpoint of some arc, then
−→
E A(i+ 0.5) =

−→
E A(i− 0.5). Otherwise, i = ccp(v) for some vertex

v, then the difference between
−→
E A(i+ 0.5) and

−→
E A(i− 0.5) is the set of edges incident to v. In particular,

{uv : u→ v} =
−→
E A(i − 0.5) \

−→
E A(i + 0.5), while {uv : v→ u} =

−→
E A(i + 0.5) \

−→
E A(i − 0.5). Note that

the initial value
−→
E A(0.5) can be calculated in O(m) time, and then each vertex and its adjacency list is

scanned exactly once. It follows that the total running time is O(m).
For (2), we may assume that the input graph G is connected, as otherwise we work on its components

one by one. According to Theorem 2.5(1), G is either a proper Helly circular-arc graph or a fat W5. The
former case has been considered above, and now assume G is a fat W5. Let K0, . . . ,K4 be the five cliques
in the fat hole, and let K5 be the hub. We may look for a maximum spanning unit interval subgraph G
of G such that NG[u] = NG[v] for any pair of vertices u, v in Ki, where i ∈ {0, . . . , 5}. We now argue the
existence of such a subgraph. By definition, NG[u] = NG[v]. Let G ′ be a maximum spanning unit interval
subgraph of G where NG′ [u] 6= NG′ [v], and assume without loss of generality, |NG′ [u]| > |NG′ [v]|. We
may change the deleted edges that are incident to v to make another subgraph where v has the same
neighbors as NG′ [u]; this graph is clearly a unit interval graph and has no less edges than G ′. This
operation can be applied to any pair of u, v in the same twin class, and it will not violate an earlier pair.
Repeating it we will finally end with a desired maximum spanning unit interval subgraph. Therefore,
there is always some i ∈ {0, . . . , 4} (all subscripts are modulo 5) such that deleting all edges between
cliques Ki and Ki+1 together with edges between one of them and K5 leaves a maximum spanning unit
interval subgraph. Once the sizes of all six cliques have been calculated, which can be done in O(m) time,
the minimum set of edges can be decided in constant time. Therefore, the total running time is O(m).
The proof is now complete.
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Indeed, it is not hard to see that in the proof of Theorems 4.3(2), every maximum spanning unit
interval subgraph of a fat W5 keeps its six twin classes, but we are satisfied with the weaker statement
that is sufficient for our algorithm.

Theorems 4.3 and 2.5 already imply a branching algorithm for the unit interval edge deletion problem
running in time O(9k ·m). Here the constant 9 is decided by the S3, which has 9 edges. However, a closer
look at it tells us that deleting any single edge from an S3 introduces either a claw or a C4, which forces
us to delete some other edge(s). The disposal of an S3 is similar. The labels for an S3 and a S3 used in the
following proof are as given in Fig. 1.

Proposition 4.4. Let G be a spanning unit interval subgraph of a graph G, and let F = E(G) \ E(G).

(1) For an S3 of G, there must be some i = 1, 2, 3 such that F contains at least two edges from the triangle
involving ui.

(2) For an S3 of G, the set F contains either an edge uivi for some i = 1, 2, 3, or at least two edges from the
triangle u1u2u3.

Proof. (1) We consider the intervals for v1, v2, and v3 in a unit interval model I for G. If v1v2v3 remains a
triangle of G, then the interval I(v1) ∪ I(v2) ∪ I(v3) has length less than 2, and it has to be disjoint from
I(ui) for at least one i ∈ {1, 2, 3}. In other words, both edges incident to this ui are in F. Otherwise, v1v2v3

is not a triangle of G. Assume without loss of generality lp(v1) < lp(v2) < lp(v3). Then v1v3 6∈ E(G) and
u2 cannot be adjacent to both v1 and v3. Therefore, at least two edges from the triangle u2v1v3 are in F;
other cases are symmetric.

(2) If F contains none of the three edges v1u1, v2u2, and v3u3, then it contains at least two edges from
the triangle u1u2u3: Otherwise there is a claw.

This observation and a refined analysis will yield the running time claimed in Theorem 1.1. The
algorithm goes similarly as the parameterized algorithm for unit interval vertex deletion used in the proof
of Theorem 3.3.

Theorem 4.5. The unit interval edge deletion problem can be solved in time O(4k ·m).

Proof. The algorithm calls first Theorem 2.5(2) to decide whether there exists an induced subgraph in F,
and then based on the outcome, it solves the problem by making recursive calls to itself, or calling the
algorithm of Theorem 4.3. When a claw or C4 is found, the algorithm makes respectively 3 or 4 calls to
itself, each with a new instance with parameter value k− 1 (deleting one edge from the claw or C4). For
an S3, the algorithm branches on deleting two edges from a triangle involving a vertex ui with i = 1, 2, 3.
Since there are three such triangles, and each has three options, the algorithm makes 9 calls to itself, all
with parameter value k− 2. For an S3, the algorithm makes 6 calls to itself, of which 3 with parameter
value k− 1 (deleting edge viui for i = 1, 2, 3), and another 3 with parameter value k− 2 (deleting two
edges from the triangle v1v2v3).

To verify the correctness of the algorithm, it suffices to show that for any spanning unit interval
subgraph G of G, there is at least one recursive call that generates a graph G ′ satisfying E(G) ⊆ E(G ′) ⊆
E(G). This is obvious when the recursive calls are made on a claws or C4. It follows from Proposition 4.4
when the recursive calls are made on an S3 or S3. With standard technique, it is easy to verify that O(4k)
recursive calls are made, each in O(m) time. Moreover, the algorithm for Theorem 4.3 is called O(4k)
times. It follows that the total running time of the algorithm is O(4k ·m).

What dominates the branching step is the disposal of C4’s. With the technique the author developed
in [23], one may (slightly) improve the running time to O(ck ·m) for some constant c < 4. To avoid
blurring the focus of the present paper, we omit the details.

5 General editing

Let V− ⊆ V(G), and let E− and E+ be a set of edges and a set of non-edges of G−V− respectively. We say
that (V−,E−,E+) is an editing set of G if the deletion of E− from and the addition of E+ to G− V− create
a unit interval graph. Its size is defined to be the 3-tuple (|V−|, |E−|, |E+|), and we say that it is smaller
than (k1,k2,k3) if all of |V−| 6 k1 and |E−| 6 k2 and |E+| 6 k3 hold true and at least one inequality is
strict. The unit interval editing problem is formally defined as follows.
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Input: A graph G and three nonnegative integers k1, k2, and k3.
Task: Either construct an editing set (V−,E−,E+) of G that has size at most (k1,k2,k3),

or report that no such set exists.

We remark that it is necessary to impose the quotas for different modifications in the stated, though
cumbersome, way. Since vertex deletions are clearly preferable to both edge operations, the problem
would be computationally equivalent to unit interval vertex deletion if we have a single budget on the
total number of operations.

By and large, our algorithm for the unit interval editing problem also uses the same two-phase
approach as the previous algorithms. The main discrepancy lies in the first phase, when we are not
satisfied with a proper Helly circular-arc graph or an F-free graph. In particular, we also want to dispose
of all holes C` with ` 6 k3 + 3, which are precisely those holes fixable by merely adding edges (recall
that at least `− 3 edges are needed to fill a C` in). In the very special cases where k3 = 0 or 1, a fat W5

is F ∪ {C` : ` 6 k3 + 3}-free. It is not hard to solve fat W5’s, but to make the rest more focused and also
simplify the presentation, we also exclude these cases by disposing of all C5’s in the first phase.

A graph is called reduced if it contains no claw, S3,S3, C4, C5, or C` with ` 6 k3 +3. By Proposition 2.4,
a reduced graph G is a proper Helly circular-arc graph. Hence, if G happens to be chordal, then it must be
a unit interval graph (Corollary 2.3), and we terminate the algorithm. Otherwise, our algorithm enters
the second phase. Now that G is reduced, every minimal forbidden induced subgraph is a hole C` with
` > k3 + 3, which can only be fixed by deleting vertices and/or edges. Here we again exploit a proper
and Helly arc model A for G. According to Lemma 3.1, if there exists some point ρ in the model such
that |KA(ρ)| 6 k1, then it suffices to delete all vertices in KA(ρ), which results in a subgraph that is a unit
interval graph. Therefore, we may assume hereafter that no such point exists, then G remains reduced
and non-chordal after at most k1 vertex deletions. As a result, we have to delete edges as well.

Consider an (inclusion-wise minimal) editing set (V−,E−,E+) to a reduced graph G. It is easy to verify
that (∅,E−,E+) is an (inclusion-wise minimal) editing set of the reduced graph G− V−. In particular, E−
needs to intersect all holes of G − V−. We use A − V− as a shorthand for {A(v) ∈ A : v 6∈ V−}, an arc
model for G− V− that is proper and Helly. One may want to use Lemma 4.2 to find a minimum set E−
of edges (i.e.,

−→
E A−V−

(α) for some point α) to finish the task. However, Lemma 4.2 has not ruled out
the possibility that we delete less edges to break all long holes, and subsequently add edges to fix the
incurred subgraphs in {claw, S3, S3, C4, C5, C`} with ` 6 k3 + 3. So we need the following lemma.

Lemma 5.1. Let (V−,E−,E+) be an inclusion-wise minimal editing set of a reduced graph G. If |E+| 6 k3,
then E+ = ∅.

Proof. We may assume without loss of generality V− = ∅, as otherwise it suffices to consider the inclusion-
wise minimal editing set (∅,E−,E+) to the still reduced graph G− V−. Let A be a proper and Helly arc
model for G. Let E ′− be an inclusion-wise minimal subset of E− such that for every hole in G− E ′−, the
union of arcs for its vertices does not cover the circle of A. We argue the existence of E ′− by showing
that E− itself satisfies this condition. Suppose for contradiction that there exists in G− E− a hole whose
arcs cover the circle of A. Then we can find a minimal subset of them that covers the circle of A. By
Corollary 2.7, this subset has at least k3 + 4 vertices, and thus the length of the hole in G− E− is at least
k3 + 4. But then it cannot be fixed by the addition of the at most k3 edges from E+.

Now for the harder part, we argue that G := G− E ′− is already a unit interval graph. Together with
the inclusion-wise minimality, it would imply E− = E ′− and E+ = ∅.

Suppose for contradiction that G[X] is a claw, S3,S3, or a hole for some X ⊆ V(G). We find three
vertices u, v,w ∈ X such that uw ∈ E ′− and uv, vw ∈ E(G) as follows. By Corollary 2.7 and the fact that
G is {C4,C5}-free, at least six arcs are required to cover the circle. As a result, if the arcs for a set Y of at
most six vertices covers the circle, then G[Y] must be a C6, and its subgraph G[Y] cannot be a claw, S3, or
S3. Therefore,

⋃
v∈XA(v) cannot cover the whole circle when G[X] is a claw, S3, or S3. On the other hand,

from the selection of E ′−, this is also true when G[X] is a hole. Thus, G[X] is a unit interval graph, and we
can find two vertices x, z from X having xz ∈ E ′−. We find a shortest x-z path in G[X]. If the path has more
than one inner vertex, then it makes a hole together with xz; as G[X] is a unit interval graph, this would
imply that there exists an inner vertex y of this path such that xy ∈ E ′− or yz ∈ E ′−. We consider then the
new pair x,y or y, z accordingly. Note that their distance in G[X] is smaller than xz, and hence repeating
this argument (at most |X|− 3 times) will end with two vertices with distance precisely 2 in G[X]. They
are the desired u and w, while any common neighbor of them in G[X] can be v.

By the minimality of E ′−, in G+ uw there exists a hole H such that arcs for its vertices cover the circle
in A. This hole H necessarily passes uw, and we denote it by x1x2 · · · x`−1x`, where x1 = u and x` = w.

15



Note that A(u) intersects A(w), and since A is proper and Helly, A(u),A(v),A(w) cannot cover the circle;
moreover, it cannot happen that A(v) intersects all the arcs A(xi) for 1 < i < ` simultaneously. From
x1x2 · · · x`−1x` we can find p and q such that 1 6 p < p+ 1 < q 6 ` and vxp, vxq ∈ E(G) but vxi 6∈ E(G)
for every p < i < q. Here possibly p = 1 and/or q = `. Then vxp · · · xq makes a hole of G, and the union
of its arcs covers the circle, contradicting the definition of E ′−. This concludes the proof.

Therefore, a yes-instance on a reduced graph always has a solution that does not add any edge.
By Lemma 4.2, for any editing set (V−,E−, ∅), we can always find some point α in the model and use
−→
E A−V−

(α) to replace E−. After that, we can use the vertices “close” to this point to replace V−. Therefore,
the problem again boils down to find some “weak point” in the arc model. This observation is formalized
in the following lemma. We point out that this result is stronger than required by the linear-time algorithm,
and we present in the current form for its own interest (see Section 6 for more discussions).

Lemma 5.2. Given a proper Helly circular-arc graph G and a nonnegative integer p, we can calculate in
O(m) time the minimum number q such that G has an editing set of size (p,q, 0). In the same time we can
find such an editing set.

Proof. We may assume that G is not chordal; otherwise, by Corollary 2.3, G is a unit interval graph and
the problem becomes trivial because an empty set will suffice. Let us fix a proper and Helly arc model
A for G. The lemma follows from Lemma 3.1 when there is some point ρ satisfying KA(ρ) 6 p. Hence,
we may assume that no such point exists, and for any subset V− of at most p vertices, G− V− remains
a proper Helly circular-arc graph and is non-chordal. Hence, q > 0. For each point ρ in A, we can
define an editing set (Vρ−,Eρ−, ∅) by taking the p vertices in KA(ρ) with the most clockwise arcs as Vρ− and
−→
E A−Vρ

−
(ρ) as Eρ−. We argue first that the minimum cardinality of this edge set, taken among all points in

A is the desired number q. See Fig. 9.
Let (V∗−,E∗−, ∅) be an editing set of G with size (p,q, 0). According to Lemma 4.2, there is a point α

such that the deletion of E ′− :=
−→
E A−V∗−(α) from G− V∗− makes it a unit interval graph and |E ′−| 6 |E∗−|.

We now consider the original model A. Note that a vertex in V∗− is in either KA(α) or {v 6∈ KA(α) : u→
v,u ∈ KA(α)}; otherwise replacing this vertex by any end of an edge in E∗−, and removing this edge from
E∗− gives an editing set of size (p,q− 1, 0). Let V− comprise the |V∗− ∩ KA(α)| vertices of KA(α) whose
arcs are the most clockwise in them, as well as the first |V∗− \ KA(α)| vertices whose arcs are immediately
to the right of α. And let E− :=

−→
E A−V−

(α). It is easy to verify that |E−| 6 |E∗−| = q and (V−,E−, ∅) is also
an editing set of G (Lemma 4.1). Note that arcs for V− are consecutive in A. Let v be the vertex in V−

with the most clockwise arc, and then ccp(v) + ε is the desired point ρ.
We give now the O(m)-time algorithm for finding the desired point, for which we assume that A is

canonical. It suffices to consider the 2n points i+ 0.5 for i ∈ {0, . . . , 2n− 1}. We calculate first the V0.5
−

and E0.5
− , and maintain a queue that is initially set to be V0.5

− . For i = 1, . . . , 2n− 1, we deduce the new
sets Vi+0.5

− and Ei+0.5
− from Vi−0.5

− and Ei−0.5
− as follows. If i is a clockwise endpoint of some arc, then

Vi+0.5
− = Vi−0.5

− and Ei+0.5
− = Ei−0.5

− . Otherwise, i = ccp(v) for some vertex v, then we enqueue v, and
dequeue u. We set Vi+0.5

− to be the vertices in the queue, whose size remains p. The different edges
between Ei+0.5

− and Ei−0.5
− are those incident to u and v. In particular, Ei+0.5

− \ Ei−0.5
− = {ux : u→ x, x 6∈

Vi+0.5
− }, while Ei−0.5

− \ Ei+0.5
− = {xv : x → v, x 6∈ Vi−0.5

− }. Note that the initial sets V0.5
− and E0.5

− can be
found in O(m) time, and then each vertex and its adjacency is scanned exactly once. The total running
time is O(m). This concludes the proof.

vu

α
β

Figure 9: Illustration for the proof of
Lemma 5.2. Here p = 2 and q = 3. Then Vα−
consists of the two thick arcs, and |Eα−| = 3.
Moving from point α to β (= α + 1) gives
|Eβ−| = |Eα−|+ 4 − 2 = 5.

Again, one should note that in the general case (when both p,q > 0), the point identified by Lemma 5.2
may not be the thinnest point for vertices or the thinnest point for edges, as specified by respectively
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Lemmas 3.1 and 4.2. Indeed, for different values of p, the thinnest points found by Lemma 5.2 may be
different.

The mixed hole covers consists of both vertices and edges, and thus the combinatorial characterization
given in Lemma 5.2 extends Lemmas 3.1 and 4.2. The algorithm used in the proof is similar as that of
Theorem 4.3. Recall that a reduced graph is a proper Helly circular-arc graph. Thus, Lemmas 5.1 and
5.2 have the following consequence: It suffices to call the algorithm with p = k1, and returns the found
editing set if q 6 k2, or “NO” otherwise.

Corollary 5.3. The unit interval editing problem can be solved in O(m) time on reduced graphs.

Putting together these steps, the fixed-parameter tractability of unit interval editing follows. Note that
to fill a hole, we need to add an edge whose ends have distance 2.

Proof of Theorem 1.4. We start by calling Theorem 2.5. If a subgraph in F or W5 is detected, then we
branch on all possible ways of destroying it or the contained C5. Otherwise, we have in our disposal a
proper and Helly arc model for G, and we call Lemma 2.8 to find a shortest hole C`. If ` 6 k3 + 3, then
we either delete one of its ` vertices and ` edges, or add one of ` edges hihi+2 (the subscripts are modulo
`). One of the three parameters decreases by 1. We repeat these two steps until some parameter becomes
negative, then we terminate the algorithm by returning “NO”; or the graph is reduced, and then call the
algorithm of Corollary 5.3 to solve it. The correctness of this algorithm follows from Lemma 2.8 and
Corollary 5.3. In the disposal of a subgraph of F, at most 21 recursive calls are made, while 3` for a C`,
each having a parameter k− 1. Therefore, the total number of instances (with reduced graphs) made in
the algorithm is O((3k3+21)k). It follows that the total running time of the algorithm is 2O(k logk) ·m.

It is worth mentioning that Lemma 5.2 actually implies a linear-time algorithm for the unit interval
deletion problem (which allows k1 vertex deletions and k2 edge deletions) on the proper Helly circular-arc
graphs and an O(10k1+k2 ·m)-time algorithm for it on general graphs. The constant 10 can be even
smaller if we notice that (1) the problem is also easy on fat W5’s, and (2) the worst cases for vertex
deletions (S3’s and S3’s) and edge deletions (C4’s) are different.

6 Concluding remarks

All aforementioned algorithms exploit the characterization of unit interval graphs by forbidden induced
subgraphs [29]. Very recently, Bliznets et al. [4] used a different approach to produce a subexponential-
time parameterized algorithm for unit interval completion (whose polynomial factor is however not
linear). Using a parameter-preserving reduction from vertex cover [21], one can show that the vertex
deletion version cannot be solved in 2o(k) · nO(1) time, unless the Exponent Time Hypothesis fails [7].
Now that the edge deletion version is FPT as well, one may want to ask to which side it belongs. The
evidence we now have is in favor of the hard side: In all related graph classes, the edge deletion versions
seem to be harder than their vertex deletion counterparts.

As said, it is not hard to slightly improve the constant c in the running time O(ck ·m), but a significant
improvement would need some new observation(s). More interesting would be to fathom their limits. In
particular, can the deletion problems be solved in time O(2k ·m)?

Polynomial kernels for unit interval completion [2] and unit interval vertex deletion [13] have been
known for a while. Using the approximation algorithm of Theorem 1.2, we [19] recently developed an
O(k4)-vertex kernel for unit interval vertex deletion, improving from the O(k53) one of Fomin et al. [13].
We conjecture that the unit interval edge deletion problem also has a small polynomial kernel.

The algorithm for unit interval editing is the second nontrivial FPT algorithm for the general editing
problem. The main ingredient of our algorithm is the characterization of the mixed deletion of vertices
and edges to break holes. A similar study has been conducted in the algorithm for the chordal editing
problem [10]. In contrast to that, Lemmas 5.1 and 5.2 are somewhat stronger. For example, we have
shown that once small forbidden subgraphs have been all fixed, no edge additions are further needed.
Together with Marx, we had conjectured that this is also true for the chordal editing problem, but we failed
to find a proof. Very little study had been done on the mixed deletion of vertices and edges [25]. We hope
that our work will trigger more studies on this direction, which will further deepen our understanding of
various graph classes.

We point out that although we start by breaking small forbidden induced subgraphs, our major
proof technique is instead manipulating (proper/unit) interval models. The technique of combining
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(a) F1 (b) F2 (c) F3 (d) † (e) ‡

(f) K2,3 (g) F4 (h) F5 (i) F6 (j) F7 (k) F8 (l) F9

Figure 10: Forbidden induced graphs.

Circular-arc

Normal circular-arc Helly circular-arc

Proper circular-arc

claw S3 W5 F1 F2 F6 F7 S∗
3 C∗

` C2` C∗
2`−1

Normal Helly circular-arc

F2 F3 F8 F9K2,3 C6 F4 F5 † ‡ C∗
` W`

Chordal

C`

Unit circular-arc Proper Helly circular-arc

Interval

Unit Helly circular-arc

Unit interval = Proper interval

C`

{CI(n, k) : n > 3k}

{CI(n, k) : n > 2k} W4 S3

W4

claw

C` F2 F3 † ‡

claw

Figure 11: Forbidden induced subgraphs and containment relations of related graph classes (` > 4)

(constructive) interval models and (destructive) forbidden induced subgraphs is worth further study on
related problems.

Appendix

For the convenience of the reader, we collect related graph classes and their containment relations in
Fig. 11, which is adapted from Lin et al. [22] (note that some of these graph classes are not used in
the present paper). The CI(n,k) graphs are defined by Tucker [27]; see also [22]. Other subgraphs
that have not been introduced in the main text are depicted in Fig. 10. The relations in Fig. 11 can be
viewed both from the intersection models, arcs or intervals, and forbidden induced subgraphs, every
minimal forbidden induced subgraph of a super-class being a (not necessarily minimal) forbidden induced
subgraph of its subclass. For example, Proposition 2.6 and Corollary 2.7 are actually properties of normal
Helly circular-arc graphs. For a normal Helly circular-arc graph that is not chordal, every arc model has to
be normal and Helly [22, 9]. This is also true for the subclass of proper Helly circular-arc graphs, but an
arc model for a proper Helly circular-arc graph may not be proper.

A word of caution is worth on the definition of proper Helly circular-arc graphs. One graph might
admit two arc models, one being proper and the other Helly, but no arc model that is both proper and
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Helly, e.g., the S3 and the W4. Therefore, the class of proper Helly circular-arc graphs does not contain all
those graphs being both proper circular-arc graphs and Helly circular-arc graphs, but a proper subclass of
it. A similar remark applies to normal Helly circular-arc graphs.

For the three classes at the top of Fig. 11, their characterizations by minimal forbidden induced
subgraphs are still open. At the third level, the minimal forbidden induced subgraphs for proper circular-
arc graphs and normal Helly circular-arc graphs are completely determined by Tucker [27] and Cao et
al. [9]. For all the classes at lower levels, their forbidden induced subgraphs with respect to its immediate
super-classes are given. From them we are able to derive all the minimal forbidden induced subgraphs for
each of these classes.

For example, the characterization of unit interval graphs (Theorem 2.1) follows from the characteri-
zation of interval graphs and that we can find a claw in an F2, an F3, a † that is not an S3, or a ‡ that is
not an S3. Likewise, the minimal forbidden induced subgraphs of proper Helly circular-arc graphs stated
in Theorem 2.2 can be derived from those of proper circular-arc graphs and by Corollary 5 of [22]: A
proper circular-arc graph that is not a proper Helly circular-arc graph must contain a W4 or S3. Clearly, S∗3
contains an S3. To see that each of F1, F2, F6, F7, and C2`,C∗2`−1 for ` > 4 contain a W4, it is equivalent
to check that each of F1, F2, F6, F7, and C2`,C∗2`−1 for ` > 4 contains a W4, i.e., two non-incident edges
and another independent vertex v. This can be directly read from Fig. 10 for F1, F2, F6, F7. Let h1,h2, . . .
denote the vertices in the hole of C2` and C∗2`−1. Then edges h1h2 and h4h5 are non-incident. In a C∗7,
the vertex not in the hole can be the v, while in all other holes longer than 7, the vertex h7 can be the v.
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