
Streaming Algorithms for
Submodular Function Maximization

Chandra Chekuri∗ Shalmoli Gupta† Kent Quanrud‡

Dept. of Computer Science, Univ. of Illinois, Urbana IL 61801, USA
{chekuri,sgupta49,quanrud2}@illinois.edu

May 1, 2015

We consider the problem of maximizing a nonnegative submodular set function
f : 2N → R+ subject to a p-matchoid constraint in the single-pass streaming
setting. Previous work in this context has considered streaming algorithms for
modular functions and monotone submodular functions. The main result is
for submodular functions that are non-monotone. We describe deterministic
and randomized algorithms that obtain a Ω(1p)-approximation using O(k log k)-
space, where k is an upper bound on the cardinality of the desired set. The
model assumes value oracle access to f and membership oracles for the matroids
defining the p-matchoid constraint.

1. Introduction

Let f : 2N → R be a set function defined over a ground set N . f is submodular if it exhibits
decreasing marginal values in the following sense: if e ∈ N is any element, and A,B ⊆ N
with A ⊆ B are any two nested sets, then f(A+ e)− f(A) ≥ f(B + e)− f(B). The gap
f(A + e) − f(A) is called the marginal value of e with respect to f and A, and denoted
fA(e). An equivalent characterization for submodular functions is that for any two sets
A,B ⊆ N , f(A ∪B) + f(A ∩B) ≤ f(A) + f(B).
Submodular functions play a fundamental role in classical combinatorial optimization

where rank functions of matroids, edge cuts, coverage, and others are instances of submodular
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functions (see [Sch03, Fuj05]). More recently, there is a large interest in constrained
submodular function optimization driven both by theoretical progress and a variety of
applications in computer science. The needs of the applications, and in particular the sheer
bulk of large data sets, have brought into focus the development of fast algorithms for
submodular optimization. Recent work on the theoretical side include the development of
faster worst-case approximation algorithms in the traditional sequential model of computation
[BV14, IJB13, CJV15], algorithms in the streaming model [BMKK14, CK14] as well as in
the map-reduce model of computation [KMVV13].
In this paper we consider constrained submodular function maximization. The goal is

to find maxS∈I f(S) where I ⊆ 2N is a downward-closed family of sets; i.e., A ∈ I and
B ⊆ A implies B ∈ I. I is also called an independence family and any set A ∈ I is called an
independent set. Submodular maximization under various independence constraints has been
extensively studied in the literature. The problem can be easily seen to be NP-hard even for
a simple cardinality constraint as it encompasses standard NP-hard problems like the Max-k-
cover problem. Constrained submodular maximization has found several new applications in
recent years. Some of these include data summarization [LB11, SSSJ12, DKR13], influence
maximization in social networks [KKT03, CWY09, CWW10, GBL11, SS13], generalized
assignment[CCPV07], mechanism design [BIK07], and network monitoring [LKG+07].

In some of these applications, the amount of data involved is much larger than the main
memory capacity of individual computers. This motivates the design of space-efficient
algorithms which can process the data in streaming fashion, where only a small fraction of
the data is kept in memory at any point. There has been some recent work on submodular
function maximization in the streaming model, focused on monotone functions (i.e. f(A) ≤
f(B), whenever A ⊆ B). This assumption is restrictive from both a theoretical and practical
point of view.
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Figure 1: Hierarchy of set systems

In this paper we present streaming algorithms
for non-monotone submodular function maxi-
mization subject to various combinatorial con-
straints, the most general being a p-matchoid.
p-matchoid’s generalize many basic combinato-
rial constraints such as the cardinality constraint,
the intersection of p matroids, and matchings in
graphs and hyper-graphs. A formal definition of
a p-matchoid is given in Section 2. We consider
the abstract p-matchoid constraint for theoretical
reasons, and most constraints in practice should
be simpler. We explicitly consider the cardinality
constraint and obtain an improved bound.
We now describe the problem formally. We

are presented a groundset of elements N =
{e1, e2, . . . en}, with no assumption made on the
order or the size of the datastream. The goal is to select an independent set S ⊆ N (where
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independence is defined by the p-matchoid), which maximizes a nonnegative submodular
function f while using as little space as possible. We make the following assumptions: (i) the
function f is available via a value oracle, that takes as input a set S ⊆ N and returns the
value f(S); (ii) the independence family I is available via a membership oracle with some
additional information needed in the p-matchoid setting; and (iii) the constraints specify
explicitly, and a priori, an upper bound k on the number of elements to be chosen. We
discuss these in turn. The availability of a value oracle for f is a reasonable and standard
assumption in the sequential model of computation, but needs some justification in restrictive
models of computation such as streaming where the goal is to store at any point of time
only a small subset of the elements of N . Can f(S) be evaluated without having access to
all of N ? This of course depends on f . [BMKK14] gives several examples of interesting and
useful functions where this is indeed possible. The second assumption is also reasonable
if, as we remarked, the p-matchoid constraint is in practice going to be a simple one that
combines basic matroids such as cardinality, partition and laminar matroid constraints that
can be specified compactly and implicitly. Finally, the third assumption is guided by the fact
that an abstract model of constraints can in principle lead to every element being chosen.
In many applications the goal is to select a small and important subset of elements from
a much larger set; and it is therefore reasonable to expect knowledge of an upper bound
on how many can be chosen. Submodular set functions are ubiquitous and arise explicitly
and implicitly in a variety of settings. The model we consider in this paper may not be
useful directly in some important scenarios of interest. Nevertheless, the ideas underlying
the analysis in the streaming model that we consider here may still be useful in speeding up
existing algorithms and/or reduce their space usage.

As is typical for streaming algorithms, we measure performance in four basic dimensions:
(i) the approximation ratio f(S)/OPT, where S is the output of the algorithm and OPT
is the value of an optimal solution; (ii) the space usage of the algorithm; (iii) the update
time or the time required to process each stream element; and (iv) the number of passes the
algorithm makes over the data stream.

Our results. We develop randomized and deterministic algorithms that yield an Ω(1/p)-
approximation for maximizing a non-negative submodular function under a p-matchoid
constraint in the one-pass streaming setting. The space usage is O(k log k), essentially
matching recent algorithms for the simpler setting of maximizing a monotone submodular
function subject to a cardinality constraint [BMKK14]. The randomized algorithm achieves
better constants than the deterministic algorithm. As far as we are aware, we present
the first streaming algorithms for non-monotone submodular function maximization under
constraints beyond cardinality. We give an improved bound of 1−ε

2+e for the cardinality
constraint. For the monotone case our bounds match those of Chakrabarti and Kale [CK14]
for a single pass; we give a self-contained algorithm and analysis. Table 1 summarizes our
results for a variety of constraints.
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offline streaming

constraint monotone nonnegative monotone nonnegative

cardinality 1− 1/e [NWF78] 1/e+ .004 [BFNS14] 1−ε
2

[BMKK14] 1−ε
2+e

(R,?)

matroid 1− 1/e (R)
[CCPV11]

1−ε
e

(R) [FNS11] 1/4 [CK14] 1−ε
4+e

(R,?)

matchings 1
2+ε

[FNSW11] 1
4+ε

[FNSW11] 4/31 [CK14] 1−ε
12+ε

(R,?)

b-matchings 1
2+ε

[FNSW11] 1
4+ε

[FNSW11] 1/8 (?) 1−ε
12+ε

(R,?)

rank p
hypergraph
b-matching

1
p+ε

(R)
[FNSW11]

p−1
p2+ε

[FNSW11] 1/4p (?) (1−ε)(p−1)

5p2−4p+ε
(R,?)

intersection of
p matroids

1
p+ε

[LSV10] p−1
p2+(p−1)ε

[LSV10] 1/4p [CK14] (1−ε)(p−1)

5p2−4p
(R,?)

p-matchoids 1
p+1

[FNW78,
CCPV11]

(1−ε)(2−o(1))
ep

(R)
[FNS11, CVZ11]

1/4p (?) (1−ε)(2−o(1))
(8+e)p

(R,?)

Table 1: Best known approximation bounds for submodular maximization. Bounds for randomized
algorithms that hold in expectation are marked (R). For hypergraph b-matchings and matroid
intersection, p is fixed. In the results for p-matchoids, o(1) goes to zero as p increases. New bounds
attained in this paper are marked (?). All new bounds except for the cardinality constraint are the
first bounds for their class. The best previous bound for the cardinality constraint is about .0893,
by [BFS15].

A brief overview of techniques. Streaming algorithms for constrained modular and sub-
modular function optimization are usually clever variations of the greedy algorithm, which
picks elements in iterations to maximize the gain in each iteration locally while maintain-
ing feasibility. For monotone functions, in the offline setting, greedy gives a 1/(p + 1)-
approximation for the p-matchoid constraint and a (1−1/e)-approximation for the cardinality
constraint [FNW78]. The offline greedy algorithm cannot be directly implemented in streams,
but we outline two different strategies that are still greedy in spirit. For the cardinality
constraint, Badanidiyuru et al. [BMKK14] designed an algorithm that adds an element to
its running solution S only if the marginal gain is at least a threshold of about OPT/2k.
Although the quantity OPT/2k is not known a priori, they show that it lies in a small
and identifiable range, and can be approximated with O(log k) well-spaced guesses. The
algorithm then maintains O(log k) solutions in parallel, one for each guess. Another strategy
from Chakrabarti and Kale [CK14], based on previous work for matchings [FKM+05, McG05]
and matroid constraints [Bad11] with modular weights, will consider deleting elements from
S when adding a new element to S is infeasible. More specifically, when a new element e
is encountered, the algorithm finds a subset C ⊆ S such that (S \ C) + e is feasible, and
compare the gain f((S \C) + e)− f(S) to a quantity representing the value that C adds to
S. In the modular case, this may be the sum of weights of elements in C; for monotone
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submodular functions, Chakrabarti and Kale used marginal values, fixed for each element
when the element is added to S, as proxy weights instead.

The non-monotone case is harder because marginal values can be negative even when
f is non-negative. The natural greedy algorithm fails for even the simple cardinality
constraint, and the best offline algorithms for nonnegative submodular maximization are
uniformly weaker (see Table 1). To this end, we adapt techniques from the recent work of
Buchbinder et al. [BFNS14] in our randomized algorithm, and techniques from Gupta et al.
[GRST10] for the deterministic version. Buchbinder et al. randomized the standard greedy
algorithm (for cardinality) by repeatedly gathering the top (say) k remaining elements, and
then randomly picking only one of them. We adapt this to the greedy setting by adding
the top elements to a buffer B as they appear in the stream, and randomly adding an
element from B to S only when B fills up. What remains of B at the end of the stream is
post-processed by an offline algorithm. Gupta et al. gave a framework for adapting any
monotone submodular maximization algorithm to nonnegative submodular functions, by first
running the algorithm once to generate one independent set S1, then running the algorithm
again on the complement of S1 to generate a second set S2, and running an unconstrained
maximization algorithm on S1 to produce a third set S3, finally returning the best of S1, S2,
and S3. Our deterministic streaming algorithm is a natural adaptation, piping the rejected
elements of one instance of a streaming algorithm directly into a second instance of the
same algorithm, and post-processing all the elements taken by the first streaming instance.
Both of our algorithms require that we limit the number of elements ever added to S, which
then limits the size of the input for the post-processor. This limit is enforced by the idea of
additive thresholds from [BMKK14] and a simple but subtle notion of value that ensures
the properties we desire.

Related work. There is substantial literature on constrained submodular function opti-
mization, and we only give a quick overview. Many of the basic problems are NP-Hard, so
we will mainly focus on the development of approximation algorithms. The (offline) problem
maxS∈I f(S) for various constraints has been extensively explored starting with the early
work of Fisher, Nemhauser, Wolsey on greedy and local search algorithms [NWF78, FNW78].
Recent work has obtained many new and powerful results based on a variety of methods
including variants of greedy [GRST10, BFNS14, BFNS12], local search [LMNS10, LSV10,
FW14], and the multilinear relaxation [CCPV11, KST13, BKNS12, CVZ11]. Monotone
submodular functions admit better bounds than non-monotone functions (see Table 1). For
a p-matchoid constraint, which is our primary consideration, an Ω(1/p)-approximation can
be obtained for non-negative functions. Recent work has also obtained new lower bounds
on the approximation ratio achievable in the oracle model via the so-called symmetery gap
technique [Von13]; this also yields lower bounds in the standard computational models
[DV12].

Streaming algorithms for submodular functions are a very recent phenomenon with algo-
rithms developed recently for monotone submodular functions [BMKK14, CK14]. [BMKK14]
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gives a 1/2− ε approximation for monotone functions under cardinality constraint using
O(k log k/ε) space. [CK14] focuses on more general constraints like interesctions of p-
matroids and rank p hypergraphs, giving an approximation of 1/4p using a single pass.
Their algorithm extends to multiple passes, with an approximation bound of 1/(p+ 1 + ε)
with O(ε−3 log p) passes. The main focus of [KMVV13] is on the map-reduce model although
they claim some streaming results as well.

Related to the streaming models are two online models where elements arrive in an online
fashion and the algorithm is required to maintain a feasible solution S at all times; each
element on arrival has to be processed and any element which is discarded from S at any
time cannot be added back later. Strong lower bounds can be shown in this model and two
relaxations have been considered. In the secretary model, the elements arrive according to
a random permutation of the ground set and an element added to S cannot be discarded
later. In the secretary model, constant factor algorithms are known for the cardinality
constraint and some special cases of a single matroid constraint [GRST10, BHZ13]. These
algorithms assume the stream is randomly ordered and their performance degrades badly
against adversarial streams; the best competitive ratio for a single general matroid is O(log k)
(where k is the rank of the matroid). Recently, Buchbinder et al. [BFS15] considered a
different relaxation of the online model where preemptions are allowed: elements added
to S can be discarded later. Algorithms in the preemptive model are usually streaming
algorithms, but the converse is not true (although the one-pass algorithms in [CK14] are
preemptive). For instance, the algorithm in [BMKK14] maintains multiple feasible solutions
and our algorithms maintain a buffer of elements neither accepted nor rejected. The space
requirement of an algorithm in the online model is not necessarily constrained since in
principle an algorithm is allowed to keep track of all the past elements seen so far. The
main result in [BFS15], as it pertains to this work, is a randomized 0.0893-competitive
algorithm for cardinality constraints using O(k)-space. As Table 1 shows, we obtain a
(1− ε)/(2 + e)-competitive algorithm for this case using O(k log k/ε2)-space.

Paper organization. Section 2 reviews combinatorial definitions and introduces the notion
of incremental values. Section 3 analyzes an algorithm that works for monotone submodular
functions, and Section 4 adapts this algorithm to the non-monotone case. In Section 5, we
give a deterministic streaming algorithm with slightly weaker guarantees.

2. Preliminaries

Matroids. A matroid is a finite set system M = (N , I), where N is a set and I ⊆ 2N

is a family of subsets such that: (i) ∅ ∈ I, (ii) If A ⊆ B ⊆ N , and B ∈ I, then A ∈ I,
(iii) If A,B ∈ I and |A| < |B|, then there is an element b ∈ B \ A such that A + b ∈ I.
In a matroid M = (N , I), N is called the ground set and the members of I are called
independent sets of the matroid. The bases ofM share a common cardinality, called the
rank ofM.
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Matchoids. LetM1 = (N1, I1), . . . ,Mq = (Nq, Iq) be q matroids over overlapping ground-
sets. Let N = N1 ∪ · · · ∪Nq and I = {S ⊆ N : S ∩N` ∈ I` for all `}. The finite set system
Mp = (N , I) is a p-matchoid if for every element e ∈ N , e is a member of N` for at most
p indices ` ∈ [q]. p-matchoids generalizes matchings and intersections of matroids, among
others (see Figure 1).

Maximizing submodular functions under a p-matchoid constraint. Let N be a set of
elements, f : 2N → R≥0 a nonnegative submodular function on N , and Mp = (N , I) a
p-matchoid for some integer p. We want to approximate OPT = maxS∈I f(S). There are
several polynomial-time approximation algorithms that give an Ω(1/p)-approximation for this
problem, with better bounds for simpler constraints (see Table 1). These algorithms are used
as a black box called Offline, with approximation ratio denoted by γp: if Offline returns
S ∈ I, then E[f(S)] ≥ γpOPT (possibly without expectation, if Offline is deterministic).

Incremental Value. Let N be a ground set, and let f : 2N → R be a submodular function.
For a set S ⊆ N and an element e ∈ S, what is the value that e adds to S? One idea is
to take the margin fS−e(e) = f(S)− f(S − e) of adding e to S − e. However, because f is
not necessarily modular, we can only say that

∑
e∈S fS−e(e) ≤ f(S) without equality. It is

natural to ask for a different notion of value where the values of the parts sum to the value
of the whole.

Let N be an ordered set and f : 2N → R be a set function. For a set S ⊆ N and element
e ∈ N , the incremental value of e in S, denoted ν(f, S, e), is defined as

ν(f, S, e) = fS′(e), where S′ = {s ∈ S : s < e}.

The key point of incremental values is that they capture the entire value of a set. The
following holds for any set function.

Lemma 1. Let N be an ordered set, f : 2N → R a set function, and S ⊆ N a set. Then
f(S) =

∑
e∈S ν(f, S, e).

Proof. Enumerate S = {e1, . . . , e`} in order, and let Si = {e1, . . . , ei} denote the first i
elements in S. We have, ∑

ei∈S
ν(f, S, ei) =

∑
ei∈S

fSi−1(ei) = f(S).

When f is submodular, we have decreasing incremental values analogous (and closely
related) to decreasing marginal returns of submodular function.

Lemma 2. Let S ⊆ T ⊆ N be two nested subsets of an ordered set N , let f : 2N → R be
submodular, and let e ∈ N . Then ν(f, T, e) ≤ ν(f, S, e).
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Proof. Let S′ = {s ∈ S : s < e} and T ′ = {t ∈ T : t < e}. Since S ⊆ T , clearly S′ ⊆ T ′. We
have,

ν(f, T, e) = fT ′(e) ≤ fS′(e) = ν(f, S, e)

where the inequality follows by submodularity.

The following is also an easy consequence of submodularity.

Lemma 3. Let N be an ordered set of elements, let f : 2N → R be a submodular function,
S,Z ⊆ N two sets, and e ∈ S. Then ν(fZ , S, e) ≤ ν(f, Z ∪ S, e).

Proof. Let Z ′ = {z ∈ Z : z < e} and S′ = {s ∈ S : s < e}. By submodularity, we have,

ν(fZ , S, e) = fZ∪S′(e) ≤ fZ′∪S′(e) = ν(f, Z ∪ S, e).

3. Streaming Greedy

LetMp = (N , I) be a p-matchoid and f a submodular function. The elements of N are
presented in a stream, and we order N by order of appearance. We assume value oracle
access to f , that given S ⊆ N , returns the value f(S). We also assume membership oracles
for each of the q matroids definingMp: given S ⊆ N`, there is an oracle forM` that returns
whether or not S ∈ I`.

We first present a deterministic streaming algorithm Streaming-Greedy that yields an
Ω(1/p)-approximation for monotone submodular functions, but performs poorly for non-
monotone functions. The primary motivation in presenting Streaming-Greedy is as a
building block for a randomized algorithm Randomized-Streaming-Greedy presented in
Section 4, and a deterministic algorithm Iterated-Streaming-Greedy presented in Section
5. The analysis for these algorithms relies crucially on properties of Streaming-Greedy.
Streaming-Greedy maintains an independent set S ∈ I; as an element arrives in the

stream, it is either discarded or added to S in exchange for a well-chosen subset of S. The
threshold for exchanging is tuned by two nonnegative parameters α and β. At the end of
the stream, Streaming-Greedy outputs S.

The overall strategy is similar to previous algorithms developed for matchings [FKM+05,
McG05] and intersections of matroids [Bad11] when f is modular, and generalized by [CK14]
to monotone submodular functions. There are two main differences. One is the use of the
additive threshold α. The second is the use of the incremental value ν. By using incremental
value, the value of an element e ∈ S is not fixed statically when e is first added to S, and
increases over time as other elements are dropped from S. These two seemingly minor
modifications are crucial to the eventual algorithms for non-monotone functions.
We remark that Streaming-Greedy also fits the online preemptive model.
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Streaming-Greedy(α,β)
S ← ∅
while (stream is not empty)
e← next element in the stream
C ← Exchange-Candidates(S,e)
// C satisfies S − C + e ∈ I
if fS(e) ≥ α+ (1 + β)

∑
c∈C ν(f, S, c)

S ← S \ C + e
end while
return S

Exchange-Candidates(S,e)
C ← ∅
for ` = 1, . . . , q
if e ∈ N` and (S + e) ∩N` /∈ I`
S` = S ∩N`

X ← {s ∈ S` : (S` − s+ e) ∈ I`}
// X + e is a circuit
c` ← arg minx∈X ν(f, S, x)
C ← C + c`

end if
end for
return C

Outline of the analysis: Let T ∈ I be some fixed feasible set (we can think of T as an
optimum set). In the offline analysis of the standard greedy algorithm one can show that
f(S ∪ T ) ≤ (p+ 1)f(S), where S is the output of greedy; for the monotone case this implies
that f(S) ≥ f(T )/(p+ 1). The analysis here hinges on the fact that each element of T \ S
is available to greedy when it chooses each element. In the streaming setting, this is no
longer feasible and hence the need to remove elements in favor of new high-value elements.
To relate S̃, the final output, to T , we consider U , the set of all elements ever added to S.
The analysis proceeds in two steps.

First, we upper bound f(U) by f(S̃) as f(U) ≤ (1 + 1
β ) · f(S̃) − α

β |U |. Second, we

upper bound f(T ∪ U) as f(T ∪ U) ≤ kα + (1+β)2

β · p · f(S̃). For α = 0, we obtain

f(T ∪ U) ≤ (1+β)2

β · p · f(S̃), which yields f(T ) ≤ 4pf(S̃) when f is monotone (for β = 1);
this gives the same bound as [CK14]. The crucial difference is that we are able to prove
an upper bound on the size of U , namely, |U | ≤ OPT/α; hence, if we choose the threshold
α to be cOPT/k for some parameter c we have |U | ≤ k/c. This will play a critical role in
analyzing the non-monotone case in the subsequent sections that use Streaming-Greedy as
a black box. The upper bound on |U | is achieved by the definition of ν and the threshold
α; we stress that this is not as obvious as it may seem because the function f can be
non-monotone and the marginal values can be negative.

Some notation for the analysis:

• S̃ denotes the final set returned by Streaming-Greedy.

• For each element e ∈ N , S−e denotes the set held by S just before e is processed,
and S+

e the set held by S just after e is processed. Note that if e is rejected, then
S−e = S+

e .

• U denotes the set of all elements added to S at any point in the stream. Note that
U =

⋃
e∈N S

+
e .

9



• For e ∈ N , Ce = Exchange-Candidates(S−e ,e) ⊆ S−e denotes the set of elements
that Streaming-Greedy considers exchanging for e. Observe that {Cu, u ∈ U} forms
a partition of U \ S̃.

• For e ∈ N , δe = f(S+
e )− f(S−e ) denotes the gain from processing e. Note that δe = 0

for all e ∈ N \ U , and
∑

e∈N δe = f(S̃).

3.1. Relating f(U) to f(S̃)

When Streaming-Greedy adds an element e to S, it only compares the marginal fS(e) to
the incremental values in its exchange candidates C, and does not directly evaluate the gain
f(S \ C + e)− f(S) realized by the exchange. The first lemma derives a lower bound for
this gain.

Lemma 4. Let e ∈ U be added to S when processed by Streaming-Greedy. Then

δe ≥ α+ β
∑
c∈Ce

ν
(
f, S−e , c

)
Proof. Since e replaced Ce, by design of Streaming-Greedy, we have,

fS−e (e) ≥ α+ (1 + β)
∑
c∈Ce

ν
(
f, S−e , c

)
,

which, after rearranging, gives

fS−e (e)−
∑
c∈Ce

ν
(
f, S−e , c

)
≥ α+ β

∑
c∈Ce

ν
(
f, S−e , c

)
.

To prove the lemma, it suffices to show that

δe ≥ fS−e (e)−
∑
c∈Ce

ν
(
f, S−e , c

)
.

Let Z = S−e \ Ce = S+
e − e. Note that S+

e = Z + e and S−e = Z ∪ Ce. We have,

δe = f(Z + e)− f(Z + Ce)

= fZ(e)− fZ(Ce) by adding and subtracting f(Z),

≥ fS−e (e)− fZ(Ce) by submodularity of f ,

= fS−e (e)−
∑
c∈Ce

ν(fZ , Ce, c), by definition of ν.

≥ fS−e (e)−
∑
c∈Ce

ν
(
f, S−e , c

)
by Lemma 3 and S−e = Z ∪ Ce,

as desired.
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One basic consequence of Lemma 4 is that every element in U adds a positive and
significant amount α to the value to S. This will be crucial later, when taking α proportional
to OPT limits the size of U .

Lemma 5. For all e ∈ U , δe ≥ α and hence |U | ≤ OPT/α.

Proof. We claim that at any point in the algorithm, ν(f, S, e) ≥ 0 for all e ∈ S, from which
the lemma follows Lemma 4 immediately.
When an element e ∈ U is added to S, it has incremental value

ν
(
f, S+

e , e
)

= fS+
e −e(e) ≥ fS−e (e) ≥ α+ (1 + β)

∑
c∈Ce

ν(f, S, c).

As the algorithm continues, elements preceding e in S may be deleted while elements after
e are added, so ν(f, S, e) can only increase with time.

Returning to the original task of bounding f(U), the difference U \ S̃ is the set of deleted
elements, and the only handle on these elements is their incremental value at the point of
deletion. For d ∈ U \ S̃, let e(d) be the element that d was exchanged for; that is, e(d) > d
and d ∈ S−e(d) \ S

+
e(d) = Ce(d). For deleted elements d ∈ U \ S̃, the exit value χ(d) of d is the

incremental value of d evaluated when d is removed from S, defined formally as

χ(d) = ν
(
f, S−e(d), d

)
.

Here we bound the sum of exit values of U \ S̃.

Lemma 6. ∑
d∈U\S̃

χ(d) ≤ 1

β
·
(
f(S̃)− α|U |

)
.

Proof. Indeed,∑
d∈U\S̃

χ(d) =
∑
u∈U

∑
d∈Cu

χ(d) since {Cu : u ∈ U} partitions U \ S̃,

≤
∑
u∈U

1

β
· (δu − α) by Lemma 4,

=
1

β
·
(
f(S̃)− α|U |

)

Now we bound f(U).

11



Lemma 7.

f(U) ≤
(

1 +
1

β

)
· f(S̃)− α

β
|U |.

Proof. Recall, for each element d ∈ U \ S̃ , e(d) denotes the element added in exchange of d.
We have,

f(U)− f(S̃) = fS̃(U) =
∑
d∈U\S̃

ν
(
fS̃ , U, d

)
by Lemma 1,

≤
∑
d∈U\S̃

χ(d) by Lemma 2,

≤ 1

β
· f(S̃)− α

β
|U | by Lemma 6.

Remark 8. The preceding lemmas relating f(U) and f(S̃) do not rely on the structure of
Mp = (N , I).

3.2. Upper bounding f(U ∪ T )

Let T ∈ I be any feasible solution. The goal is to upper bound f(U ∪ T ). Here we use the
fact that I is a p-matchoid to frame an exchange argument between T and U .

Lemma 9. Let T ∈ I be a feasible solution disjoint from U . There exists a mapping
ϕ : T → 2U such that
(a) Every s ∈ S̃ appears in the set ϕ(t) for at most p choices of t ∈ T .
(b) Every d ∈ U \ S̃ appears in the set ϕ(t) for at most (p− 1) choices of t ∈ T .
(c) For each t ∈ T , ∑

c∈Ct

ν
(
f, S−t , c

)
≤

∑
d∈ϕ(t)\S̃

χ(d) +
∑

s∈ϕ(t)∩S̃

ν
(
f, S̃, s

)
. (1)

Proof. The high level strategy is as follows. For each matroid M` = (N`, I`) in the p-
matchoidMp, we construct a directed acyclic graph G` on N`, where a subset of T forms the
source vertices and arrows preserve inequality (1). Applying Lemma 30 we get an injection
from a subset of T into U ∩N`. With care, the union of these injections will produce the
mapping we seek.

Let us review and annotate the subroutine Exchange-Candidates(S,e). For each matroid
M` = (N`, I`) in which S spans e (i.e., (S+e)∩N` /∈ I`), we assemble a subset Xe,` ⊆ S∩N`
that spans e inM`. Of these, we choose the element ce,` ∈ Xe,` with the smallest incremental
value with respect to S.

12



Fix a matroidM` = (N`, I`). Let

T` =
{
t ∈ T ∩N` : (S−t + t) ∩N` /∈ I`

}
be the set of elements in T obstructed byM`, so to speak. For each x ∈ Xt,`, add a directed
edge (t, x) from t to x. Observe that for all t ∈ T`, N+

G`(t) = Xt,` spans t.
Let

D` = {d : d = ce,` for some e ∈ U}

be the elements deleted specifically forM`. Observe that D` ⊆ (U \ S̃) ∩N`. For d ∈ D`,
the set Yd,` = Xe(d),` − d+ e(d) spans d, and for all y ∈ Yd,`,

χ(d) = ν
(
f, S−e(d), d

)
≤ ν

(
f, S−e(d), y

)
≤

{
χ(y) if y ∈ U \ S̃,
ν
(
f, S̃, y

)
if y ∈ S̃.

For each y ∈ Yd,`, add the directed edge (d, y) from d to y. Observe that for all d ∈ D`,
N+
G`(d) = Yd,` spans d.
Clearly, G` is a directed acyclic graph. The elements of T` are sources in G`, and the

elements of D` are never sinks. By Lemma 30, there exists an injection ϕ` from T` to
(U ∩N`) \D` such that for each t ∈ T`, there is a path in G` from t to ϕ`(t). If we write out
the path t→ x1 → · · · → xz → ϕ`(t), we have x1, . . . , xz ∈ U \ S̃ and

ν
(
f, S−t , ct,`

)
≤ ν

(
f, S−t , x1

)
≤ χ(x1) ≤ · · · ≤ χ(xz) ≤

{
χ(ϕ`(t)) if ϕ`(t) ∈ U \ S̃,
ν
(
f, S̃, ϕ`(t)

)
if ϕ`(t) ∈ S̃.

After constructing ϕ` for each matroidM`, define ϕ : T → 2U by

ϕ(t) =
⋃
`:t∈T`

ϕ`(t).

For each t ∈ T , we have∑
c∈Ct

ν
(
f, S−t , c

)
≤

∑
d∈ϕ(t)\S̃

χ(d) +
∑

s∈S̃∩ϕ(t)

ν
(
f, S̃, s

)
.

Each u ∈ U belongs to at most p matroids, so each u ∈ U appears in ϕ(t) for at most p
values of t ∈ T . Since {D`} covers U \ S̃, and ϕ` avoids D`, each d ∈ U \ S̃ appears in ϕ(t)
at most p− 1 times.

Remark 10. A similar exchange lemma is given by Badanidiyuru for the intersection of p
matroids with modular weights [Bad11], and used implicitly by Chakrabarti and Kale in
their extension to submodular weights. Here we extend the argument to p-matchoids and
frame it in terms of incremental values.
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Now we bound f(T ∪ U).

Lemma 11. Let T ∈ I be an independent set. Then

f(T ∪ U) ≤ kα+
(1 + β)2

β
· p · f(S̃).

Proof. Let T ′ = T \ U . By submodularity, we have,

fU (T ) ≤
∑
t∈T ′

fU (t) ≤
∑
t∈T ′

fS−t
(t).

Since each t ∈ T ′ is rejected, and |T ′| ≤ k, we have∑
t∈T ′

fS−t
(t) ≤ (1 + β)

∑
t∈T ′

∑
c∈Ct

ν
(
f, S−t , c

)
+ αk.

Apply Lemma 9 to generate a mapping ϕ : T ′ → 2U . We have,

(1 + β)
∑
t∈T ′

∑
c∈Ct

ν
(
f, S−t , c

)
≤ (1 + β)

∑
t∈T ′

 ∑
d∈ϕ(t)\S̃

χ(d) +
∑

s∈S̃∩ϕ(t)

ν
(
f, S̃, s

) by construction of ϕ,

≤ (1 + β) · (p− 1)
∑
d∈U\S̃

χ(d) + (1 + β) · p
∑
s∈S̃

ν
(
f, S̃, s

)
by construction of ϕ,

≤ 1 + β

β
· (p− 1) · f(S̃) + p · (1 + β) · f(S̃) by Lemma 6,

=

(
(1 + β)2

β
· p− 1 + β

β

)
f
(
S̃
)
.

To bound f(U ∪ T ), we have,

f(U ∪ T ) = fU (T ) + f(U)

≤ kα+

(
(1 + β)2

β
· p− 1 + β

β

)
f(S̃) + f(U) by the above,

≤ kα+
(1 + β)2

β
· p · f(S̃) by Lemma 7,

as desired.
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3.3. A bound for the monotone case

If f is monotone, then f(T ) ≤ f(U ∪ T ) for any set T . If we take T to be the set T ∗

achieving OPT, α = 0, and β = 1, we obtain the followings.

Corollary 12. Let Mp = (N , I) be a p-matchoid of rank k, and let f : 2N → R≥0
be a nonnegative monotone submodular function. Given a stream over N , Streaming-
Greedy(0,1) is an online algorithm that returns a set S̃ ∈ I such that

f(S̃) ≥ 1

4p
·OPT =

1

4p
·max{f(T ) : T ∈ I}.

Remark 13. Although these bounds match those of Chakrabarti and Kale for the intersection
of p matroids [CK14], Randomized-Greedy requires more calls to the submodular value
oracle as the incremental value of an element in S updates over time. That said, the number
of times a taken element e ∈ U reevaluates its incremental value is proportional to the
number of times an element in S−e is deleted, which is at most the rank ofMp and generally
considered small compared to the size of the stream. Furthermore, by taking α proportional
to OPT (a procedure for which is discussed in Section 4.6), we can limit the size of U and
thereby the number of additional oracle calls generated by shifting incremental values.

4. Randomized Streaming Greedy

Randomized-Streaming-Greedy adapts Streaming-Greedy to nonnegative submodular func-
tions by employing a randomized buffer B to limit the probability that any element is
added to the running solution S. Like Streaming-Greedy, Randomized-Streaming-Greedy
maintains the invariant S ∈ I. However, when a “good” element would have been added to
S by Streaming-Greedy, it is instead placed in B. Once the number of elements in B hits a
limit K, we pick one element in B uniformly at random and add it to S just as Streaming-
Greedy would.

Modifying S may break the invariant that the buffer only contains good elements. Since
f is submodular, the incremental value ν(f, S, e) of each e ∈ S may increase if a preceding
element is deleted. Furthermore, the marginal value fS(b) of each buffered element b ∈ B
may decrease as elements are added to S. Thus, after modifying S, we reevaluate each
b ∈ B and discard elements that are no longer good.

Let B̃ be the set of elements remaining in the buffer B when the stream ends. We process
B̃ with an offline algorithm to produce a second solution S′, and finally return the set Ŝ
which is the better of S and S′.

Outline of the analysis. Let T ∈ I be an arbitrary independent set. Let T ′ = T \ B̃ be
the portion fully processed by the online portion and T ′′ = T ∩ B̃ the remainder left over in
the buffer and processed offline.
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Randomized-Streaming-Greedy(α, β)

S ← ∅, B ← ∅
while (stream is not empty)
e← next element in the stream
if Is-Good(S,e) then B ← B + e
if |B| = K then
e← uniformly random from B
C ← Exchange-Candidates(S,e)
B ← B − e, S ← (S \ C) + e
for all e′ ∈ B
unless Is-Good(S,e′)
B ← B − e′

end if
end while
S′ ← Offline(B)
return arg maxZ∈{S,S′} f(Z)

Is-Good(S,e)
C ← Exchange-Candidates(S,e)
if fS(e) ≥ α+ (1 + β)

∑
e′∈C ν(f, S, e′)

return TRUE
else return FALSE

In Section 4.1, we first show that the analysis for T ′ largely reduces to that of Section 3.
In particular, this gives us a bound on f(U ∪ T ′). In Section 4.2, we combine this with a
bound on f(T ′′), guaranteed by the offline algorithm, to obtain an overall bound on f(U ∪T )
by f(Ŝ). In Section 4.3, we finally bound f(T ) with respect to f(U), leveraging the fact
that the buffer limits the probability of elements being added to S. In Section 4.4, we tie
together the analysis to bound f(T ) by f(Ŝ) for fixed α and β.
The analysis reveals that the optimal choice for β is 1, and that α should be chosen in

proportion to OPT/k, where k is the rank of theMp. Since OPT is not known a priori,
in Section 4.6, we leverage a technique by Badanidiyuru et al. [BMKK14] that efficiently
guesses the α to within a constant factor of the target value. The final algorithm is then
log k copies of Randomized-Streaming-Greedy run in parallel, each instance corresponding
to a “guess” for α. One of these guesses is approximately correct, and attains the bounded
asserted in Theorem 14.

Theorem 14. LetMp = (N , I) be a p-matchoid of rank k, let f : 2N → R≥0 a nonnegative
submodular function over N , and let ε > 0 be fixed. Suppose there exists an algorithm for the
offline instance of the problem with approximation ratio γp. Then there exists a streaming
algorithm using total space O

(
k log k
ε2

)
that, given a stream over N , returns a set Ŝ ∈ I such

that

(1− ε)OPT ≤
(

4p+
1

γp

)
E
[
f(Ŝ)

]
.

Some notation for the analysis

• Let S̃ be the state of S at the end of the stream.
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Randomized-Streaming-Greedy(α,β)
Let G be an instance of Streaming-Greedy(α,β)
Let SG refer to the set S maintained by G.
B ← ∅ // B is a buffer of size K > 0
while (stream is not empty)
e← next element in the stream
if Is-Good(SG,e) then B ← B + e // buffers the “good” elements
else send e downstream to G // G will reject e
if |B| = K then
e← an element from B picked uniformly at random // e is “good”
B ← B − e
send e downstream to G // G will add e to SG

for all e′ ∈ B such that (not Is-Good(SG,e)))
B ← B − e′
send e′ downstream to G // G will reject e′

end for
end if

end while
S′ ← Offline(B)
Return arg maxZ∈{SG,S′} f(Z)

Figure 2: Randomized-Streaming-Greedy rewritten with the deterministic portion
reduced to Streaming-Greedy.

• Let U be the set of all elements to pass through S during the stream.

• Let B̃ be the set held by B at the end of the stream.

• Let Ŝ = arg maxZ∈{S̃,S′} f(Z) be the set output by Randomized-Streaming-Greedy.

S̃, U , and B̃ are random sets depending on the random selection process from B. Ŝ is a
random variable depending on B̃, S̃, and the offline algorithm’s own internal randomization.

4.1. Reducing to Streaming-Greedy

If we set the buffer limit K to 1, eliminating the role of the buffer B, then Randomized-
Streaming-Greedy reduces to the deterministic Streaming-Greedy algorithm from Section
3. In Figure 2, we refactor Randomized-Streaming-Greedy as a buffer placed upstream
from a running instance of Streaming-Greedy. The buffer only filters and reorders the
stream, and the analysis of Streaming-Greedy holds with respect to this scrambled stream.
More precisely, if r denotes the random bits dictating B, then for any fixed r, the analysis of
Section 3 still applies. We recap the preceding analysis for Streaming-Greedy as it applies
here.
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Lemma 15. Let α, β ≥ 0 be fixed parameters. For any T ∈ I, we have

f(U ∪ (T \ B̃)) ≤ (1 + β)2

β
· p · f(S̃) + kα.

Furthermore, |U | ≤ OPT/α.

4.2. Upper bounding f(U ∪ T ) by f(Ŝ)

To bound f(U ∪ T ), where T ∈ I is any independent set, we split fU (T ) into the portion
fU (T \B) that escapes the buffer, and the remainder fU (T ∩B) captured by the buffer. We
bound the former with Lemma 15 and the latter by guarantees for Offline to obtain the
following.

Lemma 16. For any T ∈ I, we have

E[f(U ∪ T )] ≤ kα+

(
(1 + β)2

β
· p+

1

γp

)
E
[
f(Ŝ)

]
Proof. For ease of exposition, let r denote the random bits that dictate the random selections
from B, and let us subscript variables by r to highlight their dependence. Let T ′r = T \ B̃r
and T ′′ = T ∩ B̃r. For any fixed r, we have,

f(Ur ∪ T ) = f(Ur) + fUr(T ) ≤ f(Ur) + fUr(T
′
r) + fUr(T

′′
r ) by submodularity,

≤ kα+
(1 + β)2

β
· p · f(S̃r) + fUr(T

′′
r ) by Lemma 15,

≤ kα+
(1 + β)2

β
· p · f(S̃r) + f(T ′′r ) by submodularity,

≤ kα+
(1 + β)2

β
· p · f(S̃r) +

1

γp
E
[
f(S′r)

]
.

Here, the expectation surrounding f(S′r) is generated by the offline algorithm Offline,
which may be randomized (see, for example, Table 1). Taking expectations of both sides
over r, we have

E[f(U ∪ T )] ≤ kα+
(1 + β)2

β
· p ·E

[
f(S̃)

]
+

1

γp
E
[
f(S′)

]
≤ kα+

(
(1 + β)2

β
· p+

1

γp

)
E
[
f(Ŝ)

]
,

as desired.
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4.3. Upper bounding f(T ) by f(U ∪ T )

The remaining challenge is to bound E[f(U ∪ T )] from below by some fraction of f(T ).
The following technical lemma, used similarly by Buchbinder et al., gives us a handle on
E[f(U ∪ T )].

Lemma 17 ([BFNS14]). Let f : 2N → R≥0 be a nonnegative submodular function. Suppose
R is a random set according to a distribution µ on 2N where no element e ∈ N is picked
with probability more than ρ. Then E[f(R)] ≥ (1− ρ)f(∅). Moreover, for any set Y ⊆ N ,
E[f(R ∪ Y )] ≥ (1− ρ)f(Y ).

In this case, U is a random set, and we want to upper bound the probability of an element
e ∈ N appearing in U . Intuitively, taking K large limits the probability of an element
being selected from the buffer, while by Lemma 15, taking α large decreases the number of
elements in U .

Lemma 18. For any element e ∈ N ,

P[e ∈ U ] ≤ 1−
(

1− 1

K

)OPT/α

.

Proof. An element is added to S (and therefore U) if and only if it is selected from B when
|B| reaches K. By Lemma 15, we select from B at most OPT/α times, and each selection
is made uniformly and independently at random from K elements.

With this, we apply Lemma 17 to give the following.

Lemma 19. Let T ∈ I be a fixed independent set. Then

E[f(U ∪ T )] ≥
(

1− 1

K

)OPT/α

f(T ).

Proof. By Lemma 18, for all e ∈ N , P[e ∈ U ] ≤
(

1− (1− 1/K)OPT/α
)
≡ ρ. The claim

then follows Lemma 17.

4.4. Overall Analysis

Tying together Lemma 16 and Lemma 19, we have the following.

Lemma 20. For any T ∈ I, we have(
1− OPT

αK

)
f(T ) ≤ kα+

(
(1 + β)2

β
· p+

1

γp

)
E
[
f(Ŝ)

]
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Proof. Composing Lemma 16 and Lemma 19, we have,(
1− 1

K

)OPT/α

f(T ) ≤ kα+

(
(1 + β)2

β
· p+

1

γp

)
E
[
f(Ŝ)

]
.

By Bernoulli’s inequality, (
1− 1

K

)OPT/α

≥ 1− OPT

αK
,

and the claim follows.

4.5. A bound for approximate α

We would like to fix α as a constant fraction of OPT. For example, taking α = εOPT/2k,
where ε > 0, and plugging into Lemma 20 gives the cleaner bound,(

1− 2k

εK

)
f(T ) ≤ ε

2
OPT +

(
(1 + β)2

β
· p+

1

γp

)
E
[
f(Ŝ)

]
.

However, the algorithm does not know OPT, and instead we will try to estimate OPT
approximately. Let us lay out the bound when α is within a factor of 2 of εOPT/2k.

Lemma 21. Let ε > 0 be a fixed parameter. If ε ·OPT/4k ≤ α ≤ ε ·OPT/2k, then(
1− 4k

εK

)
OPT ≤ ε

2
OPT +

(
(1 + β)2

β
· p+

1

γp

)
E
[
f(Ŝ)

]
.

In particular, for K = 4k/ε2, we have

(1− ε)OPT ≤
(

(1 + β)2

β
· p+

1

γp

)
E
[
f(Ŝ)

]
.

4.6. Efficiently estimating α

Badanidiyuru et al. showed how to “guess” OPT space-efficiently and in a single pass
[BMKK14]. Let z = arg maxx∈N f(x). Clearly, OPT ≥ f(z), and by submodularity of f ,

OPT = max
T∈I

f(T ) ≤ max
T∈I

∑
t∈T

f(t) ≤ max
T∈I
|T | · f(z) ≤ k · f(z).

Fix ε > 0, and suppose we run a parallel copy of Randomized-Streaming-Greedy for each
α in

A(z) =
{

2i : i ∈ Z
}
∩
[ ε

4k
· f(z),

ε

2
f(z)

]
,

20



and at the end of the stream return the best solution among the log(2k) copies. For some
α ∈ A(z), we have

ε

4k
·OPT ≤ α ≤ ε

2k
·OPT,

where we get the approximation guarantee in Lemma 20.
This strategy requires two passes: one to identify z, and the second running log(2k) copies

of Randomized-Streaming-Greedy in parallel. We can reduce the number of passes to 1 by
updating z and A(z) on the fly. Enumerate the stream e1, e2, . . . , and for for each i, let

zi = arg max
ej :j∈[i]

f(ej)

be the single element maximizing f among the first i elements seen thus far. A(zi) shifts up
over through the stream as zi is updated. At each step i, we maintain parallel solutions
for each choice of α ∈ A(zi), deleting instances with α below A(zi) and instantiating new
instances with larger values of α.
To ensure correctness, it suffices to show that when we instantiate an instance of

Randomized-Streaming-Greedy for a new threshold α, we haven’t skipped over any el-
ements that we would want to include. Let α ∈ A(zi)−A(zi−1), i.e. f(zi−1) < α ≤ f(zi).
If f(ej) ≥ α for some j < i, then

α ≤ f(ej) ≤ f(zi−1),

a contradiction.

4.7. Simpler algorithm and better bound for cardinality constraint

When the p-matchoid is simply a cardinality constraint with rank k, we can do better. If
we set β =∞ in Randomized-Streaming-Greedy(α,β), then the algorithm will only try to
add to S without exchanging while |S| < k, effectively halting once we meet the cardinality
constraint |S| = k. In Figure 3, we rewrite Randomized-Streaming-Greedy(α,∞) with
the unnecessary logic removed.

Lemma 22. If |S̃| = k, then f(S̃) ≥ kα.

Lemma 23. If |S̃| < k, then for any set T ⊆ N ,

f(S̃ ∪ T ) ≤ f(S̃) + f(T ∩B) + α|T |.

Proof. Fix t ∈ T \ (S̃ ∪B), and let S−t be the set held by S̃ when t is processed. Since t is
rejected, and S−t ⊆ S̃, we have

fS̃(t) ≤ fS−t (t) ≤ α.
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Randomized-Streaming-Greedy(α,∞)
B ← ∅, S ← ∅
while (stream is not empty)
e← next element in the stream
if |S| ≤ k and fS(e) > α then
B ← B + e

if |B| = K then
e← uniformly random from B
B ← B − e, S ← S + e
for all e′ ∈ B s.t. fS(e′) ≤ α
B ← B − e′

end if
end while
S′ ← Offline(B)
return arg maxZ∈{S,S′} f(Z)

Figure 3

Summed over all t ∈ T \ (S̃ ∪B), we have

fS̃(T \B) ≤
∑
t∈T\B

fS̃(t) ≤ α|T |.

Finally, we write

f(S̃ ∪ T ) = fS̃(T ) + f(S̃) ≤ fS̃(T \B) + fS̃(T ∩B) + f(S̃)

≤ f(S̃) + f(T ∩B) + α|T |

to attain the desired bound.

Lemma 24. For K = k/ε, and α such that (1 − ε)OPT ≤ (2 + e)kα ≤ (1 + ε)OPT, we
have

E
[
f(Ŝ)

]
≥ 1− 2ε

2 + e
·OPT.

Proof. Let T ⊆ N be an optimal set with |T | = k and OPT = f(T ).
If |S̃| = k, then the claim follows Lemma 22. Otherwise, |S̃| < k and by Lemma 23, we

have

f(S̃ ∪ T ) ≤ f(S̃) + f(T ∩B) + kα.

By Lemma 17, we also have

E
[
S̃ ∪ T

]
≥
(

1− 1

K

)k
f(T ) ≥

(
1− k

K

)
f(T ) ≥ (1− ε)f(T ).
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Finally, by the bound for Offline, we have,

f(T ∩B) ≤ eE
[
f(S′)

]
Together, we have

(1− ε)f(T ) ≤ E
[
f(S̃) + ef(S′)

]
+ kα ≤ (1 + e) E

[
f(Ŝ)

]
+ kα.

Solving for E
[
f(Ŝ)

]
and plugging in f(T ) = OPT and kα ≤ 1+ε

2+eOPT, we have

E
[
f(Ŝ)

]
≥ 1

1 + e
((1− ε)OPT− kα) ≥ (1− 2ε)

2 + e
OPT,

as desired.

The preceding analysis reveals that the appropriate choice for α is OPT/(2 + e)k, where
OPT = max{f(T ) : |T | ≤ k} is the maximum value attainable by a set of k elements, and
that a sufficiently large choice forK is k/ε. As in Section 4.6, we can efficiently approximate α
by guessing α in increasing powers of (1+ ε), maintaining at most O(log1+ε k) = O(ε−1 log k)
instances of Randomized-Streaming-Greedy(α,∞) at any instant. The resulting bound is
stronger than previously derived for a 1-matchoid.

Theorem 25. Let f : 2N → R≥0 be a nonnegative submodular function over a ground set N ,
and let ε > 0 be fixed. Then there exists a streaming algorithm using total space O

(
k log k
ε2

)
that, given a stream over N , returns a set Ŝ such that |Ŝ| ≤ k and f(Ŝ) ≥ 1−ε

2+e ·OPT, where
OPT = max{f(T ) : |T | ≤ k} is the maximum value attainable by a set of k elements.

5. A Deterministic Algorithm via Iterated Greedy

Gupta et al. gave a framework that takes an offline algorithm for maximizing a monotone
submodular functions and, by running the algorithm as a black box multiple times over
different groundsets, produces an algorithm for the nonnegative case [GRST10]. Here we
adapt the framework to the streaming setting, employing Streaming-Greedy as the blackbox
for the monotone case.
We first present Iterated-Streaming-Greedy as an algorithm making two passes over
N . In the first pass we run Streaming-Greedy(α,β) over N as usual. Let S1 denote the
set output, and U1 the set of all elements added to S1 at any intermediate point of the
algorithm, as per Section 3. In the second pass, we run Streaming-Greedy(0,β) over the
set N \ U1 of elements that were immediately rejected in the first pass to produce another
independent set S2. Lastly, we run our choice of offline algorithm over U1 to produce a third
independent set S3 ∈ I. At the end, return the best set among S1, S2, and S3.

If we pipeline the two instances of Streaming-Greedy, then Iterated-Streaming-Greedy
becomes a true streaming algorithm with only one pass over N . When the first instance
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Iterated-Streaming-Greedy(α,β,N)
// run Streaming-Greedy over N
(S1, U1)← Streaming-Greedy(α,β,N)
// U1 denotes the set U in Section 3.
S2 ← Streaming-Greedy(0,β,N \ U1)
S3 ← Offline(U1)
return arg maxŜ∈{S1,S2,S3} f(Ŝ)

rejects an element e outright, e is sent downstream to the second instance of Streaming-
Greedy. Note that the running time of Offline depends on the size of its input U1, which
by Lemma 5 is at most OPT/α.

Lemma 26. Let T ∈ I be any independent set. Then(
2 · (1 + β)2

β
· p+

1

γp

)
E
[
f(Ŝ)

]
≥ f(T )− kα

Furthermore, if Offline is a deterministic algorithm, then Iterated-Streaming-Greedy is
deterministic and the above holds without taking expectations.

Proof. By submodularity, we have

f(U1 ∪ T ) + f(U2 ∪ (T \ U1)) ≥ f(U1 ∪ SU ) + f(T \ U1) (2)

and

f(T \ U1) + f(U1 ∩ T ) ≥ f(T ) + f(∅). (3)

By nonnegative of f and equations (2) and (3), we have,

f(T ) ≤ f(T ) + f(∅) + f(U1 ∪ S2) ≤ f(U1 ∪ T ) + f(U2 ∪ (T \ U1)) + f(U1 ∩ T ).

By Corollary 12, we have f(U1 ∪ T ) ≤ (β+1)2

β · p · f(S1) + kα and f(U2 ∪ (T \ U1)) ≤
(β+1)2

β · p · f(S2), and f(U1 ∩ T ) ≤ 1
γp
· f(S3) by assumption. Plugging into the above, and

noting that f(S1), f(S2), f(S3) ≤ f(Ŝ) gives the bounds we seek.

Corollary 27. Let ε > 0 be given. If α ≤ εOPT/k, then(
2

(1 + β)2

β
· p+

1

γp

)
E
[
f(Ŝ)

]
≥ (1− ε)OPT,

and the inequality holds without taking expectations if Offline is a deterministic algorithm.
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The appropriate value of α is guessed efficiently exactly as described in Section 4.6. Here,
if |U1| grows too large in an instance of Iterated-Streaming-Greedy(α,β) for some fixed
α, then α must be too small and we can terminate the instance immediately.

Theorem 28. Let Mp = (N , I) be a p-matchoid of rank k, let f : 2N → R≥0 be a
nonnegative submodular function over N , let ε > 0 be fixed. Suppose there exists an offline
algorithm for finding the largest value independent set in p-matchoid with approximation
ratio γp. Then there exists a streaming algorithm using total space O

(
k log k
ε

)
that, given a

stream of N , returns a set Ŝ ∈ I such that(
8p+

1

γp

)
E
[
f(Ŝ)

]
≥ (1− ε)OPT.

If the offline algorithm is deterministic, then the claimed algorithm is deterministic and the
above bound holds without expectation.
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A. Exchange lemmas for matroids

Lemma 29. LetM = (N , I) be a matroid, let S, T ⊆ N be two subsets, and let x, y ∈ N
be two elements. If S spans x, and T + x spans y, then S ∪ T spans y.

Proof. It suffices to assume that S and T are independent sets.
Extend S to a base B in S ∪ T . Since B extends S, B spans x, and B is a base in

(S ∪ T ) + x. Since (S ∪ T ) + x spans y, B spans y.

Let G be a directed graph. For v ∈ V(G), let N+(v) = {w : (v, w) ∈ E(G)} denote the set
of outgoing neighbors of v, and N−(v) = {u : (u, v) ∈ E(G)} the set of incoming neighbors
of v.
The following lemma is implicit in Badanidiyuru [Bad11].

Lemma 30. Let M = (N , I) be a matroid, and G a directed acyclic graph over N such
that for every non-sink vertex e ∈ N , the outgoing neighbors N+(e) of e span e. Let I ∈ I
be an independent set such that no path in G goes from one element in I to another. Then
there exists an injection from I to sink vertices in G such that each e ∈ I maps into an
element reachable from e.

28



Proof. Restricting our attention to elements reachable from I in G, let us assume that the
elements of I are sources (i.e., have no incoming neighbors) in G. Let us call an element
e ∈ N an “internal” element if its is neither a sink nor a source in G.
We prove by induction on the number of internal vertices reachable from I. In the base

case, the outgoing neighbors of each i ∈ I are all sinks, and G is bipartite. For any subset
J ⊆ I, N+(J) =

⋃
i∈J N

+(i) spans J . J is independent, so we have |J | ≤ |N+(J)|. Thus,
by Hall’s matching theorem, there exists an injection I ↪→ N+(I) such that each i ∈ I maps
into N+(i).
In the general case, let e ∈ N \ I be an internal vertex in G. Consider the graph H

removing e and preserving all paths through e, defined by,

V(H) = V(G)− e = N − e,
E(H) = (E(G) \ {(a, b) : a = e or e = a}) ∪ {(a, b) : (a, e), (e, b) ∈ E(G)}

H has one less internal vertex than G, the same sink vertices as G, and a vertex a ∈ V(H) is
reachable from i ∈ I in H iff it is reachable from i in G. For any vertex a ∈ N−G (e) that had
an outgoing arc into e, we have

N+
H(a) = (N+

G (a)− e) ∪N+
G (e),

which spans a by Lemma 29. Since any other vertices has the same outgoing arcs, we
conclude that N+

H(a) spans a for any non-sink vertex of H.
By induction, there exists an injection from I into the sinks of H such that every i ∈ I

is mapped to a sink vertex reachable from i in H. By construction, these vertices are also
reachable sinks in G, as claimed.
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